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Abstract

Background: The International Commission on Radiological Protection (ICRP) recommended
annual occupational dose limit is 20 mSv. Cancer mortality in Japanese A-bomb survivors exposed
to less than 20 mSv external radiation in 1945 was analysed previously, using a latency model with
non-linear dose response. Questions were raised regarding statistical inference with this model.

Methods: Cancers with over 100 deaths in the 0 - 20 mSv subcohort of the 1950-1990 Life Span
Study are analysed with Poisson regression models incorporating latency, allowing linear and non-
linear dose response. Bootstrap percentile and Bias-corrected accelerated (BCa) methods and
simulation of the Likelihood Ratio Test lead to Confidence Intervals for Excess Relative Risk (ERR)
and tests against the linear model.

Results: The linear model shows significant large, positive values of ERR for liver and urinary
cancers at latencies from 37 - 43 years. Dose response below 20 mSv is strongly non-linear at the
optimal latencies for the stomach (11.89 years), liver (36.9), lung (13.6), leukaemia (23.66), and
pancreas (11.86) and across broad latency ranges. Confidence Intervals for ERR are comparable
using Bootstrap and Likelihood Ratio Test methods and BCa 95% Confidence Intervals are strictly
positive across latency ranges for all 5 cancers. Similar risk estimates for 10 mSv (lagged dose) are
obtained from the 0 - 20 mSv and 5 - 500 mSv data for the stomach, liver, lung and leukaemia. Dose
response for the latter 3 cancers is significantly non-linear in the 5 - 500 mSv range.

Conclusion: Liver and urinary cancer mortality risk is significantly raised using a latency model
with linear dose response. A non-linear model is strongly superior for the stomach, liver, lung,
pancreas and leukaemia. Bootstrap and Likelihood-based confidence intervals are broadly
comparable and ERR is strictly positive by bootstrap methods for all 5 cancers. Except for the
pancreas, similar estimates of latency and risk from 10 mSv are obtained from the 0 - 20 mSv and
5 - 500 mSv subcohorts. Large and significant cancer risks for Japanese survivors exposed to less
than 20 mSv external radiation from the atomic bombs in 1945 cast doubt on the ICRP
recommended annual occupational dose limit.
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Background
Analyses of cancer mortality in survivors of the atomic
bombing of Japan in 1945 have played a central role in
establishing risk estimates and radiation protection
limits for workers and the wider public. While many
people exposed at Hiroshima and Nagasaki received
fairly high doses, the recommended occupational and
environmental dose limits aim to control the risks from
much lower doses. Typically, analyses of the full cohort of
Japanese survivors, whose doses ranged from 0 - 4000 mSv
or more, are extrapolated downwards to predict the risks
from doses below 20 mSv [1]. However, even if a particular
model gives a good overall account of the full range of
data, fitting that model and extrapolating the results may
misrepresent the risks at low doses where the dose response
may be quite distinct.

My previous paper [2] considered the cancer mortality
data for those survivors whose external (flash) dose from
the A-bombs was below 20 mSv, the annual occupational
dose limit recommended by the International Commis-
sion on Radiological Protection (ICRP). I applied several
different models, each of which used as their exposure
variable the radiation dose lagged by an unknown
latency. One model adopted the standard assumption
that Excess Relative Risk (ERR) is proportional to dose, in
this case the lagged dose. Other models allowed that ERR
might be a non-linear function of dose, as suggested by
radiation cell biology studies of the bystander effect. All
the models detected ERR values for a dose of 10 mSv
which were far higher than predicted by extrapolating the
standard analyses of the full cohort. The linear model
found large, significant results for the liver, while the
preferred non-linear model found large, significant
results for the stomach, liver, and lung. These results
occurred over a range of latencies.

The statistical method I used to assess the significance of
the findings with non-linear models was criticised by
Mark Little [3]. In this paper the data is re-analysed with
other methods of statistical inference for the preferred
non-linear model.

The models use Poisson regression to analyse the
grouped data in the 0 - 20 mSv subcohort of the 1950-
1990 Life Span Study LSS12 [4]. The models take the
form l = lo(1+ERR) where l is the cancer risk, lo depends
only on control variables, and ERR depends only on the
lagged radiation dose. Profile Likelihood Confidence
Intervals for ERR were based in [2] on the Likelihood
Ratio Test (LRT) for comparisons between nested models.
Once latency is fixed, the models depend smoothly on all
other parameters. If Wilks Theorem [5] holds, the
asymptotic null distribution of LRT is c2 on d degrees
of freedom when the null hypothesis is specified by fixing

the values of d parameters in the wider model. For
example, the LRT comparison of the linear model ERR =
bD with the control model ERR = 0 is asymptotically c2

on 1 d.f. if the control model holds. Here the null
hypothesis is b = 0 and Wilks Theorem does apply to this
nested pair. As Little [3] pointed out, the non-linear
models are less well behaved. The transient model ERR =
sDexp(-τD) and the two-phase model ERR = bD + sDexp
(-τD) are indeterminate in τ when s = 0, so one of the
regularity conditions for Wilks Theorem fails. In any case,
even if the asymptotic null distribution of LRT were
known, the distribution for a given finite set of records
may differ from the asymptotic case.

However, the actual distribution of LRT can be estimated
by simulation before comparing two competing models
or constructing confidence intervals. Bootstrap methods
[6,7] can also be used to construct confidence intervals
more directly.

In response to questions raised during peer review I also
consider whether the data justifies fitting the two-phase
model, investigate uncertainties in the “optimal latency”
as estimated from the data, extend the analysis to include
the covariate “city”, and compare results from the 0 -
20 mSv and 5 - 500 mSv dose ranges.

Methods
An initial analysis of latency is carried out for all cancer
sites with at least 100 cases (deaths) in the 0 - 20 mSv
subcohort. Sites which appear to have a raised dose
response are then analysed by the bootstrap and the
distribution of LRT is estimated by simulation. A fuller
simulation is carried out for the stomach, the site with
the largest number of cases in this subcohort. The
analysis focuses on the behaviour of the two-phase
model (defined below) and its relation to the linear
model. It aims to compare confidence intervals obtained
by bootstrap and LRT simulation methods and to
discover without relying on Wilks Theorem, whether
the apparent elevation and non-linearity of the dose
response in the 0 - 20 mSv subcohort are statistically
significant. Further analysis considers variation in
latency, the impact of “city”, male and female subco-
horts, and the 5 - 500 mSv dose range. Computations use
the statistical freeware R [8], giving a further check on
previous results. Possible sources of error in the Japanese
data itself and the potential for confounding by other
covariates as discussed in [2], are not reconsidered here.

As previously source data for the 1950-1990 mortality
cohort LSS12 was obtained from RERF [9] via the CEDR
[10], and the 0 - 20mSv subcohort defined by restricting the
weighted adjusted colon dose. The subcohort comprises
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3011 data cells with 1690391.75 p-y. The control model,
linear model, and two-phase model are defined as in [2].
Briefly, the control model is log-linear in 14 indicator
variables for 5 year age-at-exposure categories, an indicator
for gender, and the numerical variable log mean attained
age, each of which is well-defined for the data cells. The
control model is specified as l = l0 = exp(a+Σbjxj) where a
and the bj are unknownparameters, xj are the covariates, exp
denotes exponential, and the Poisson parameter in cell i
with Ti person-years is liTi where li is evaluated using the
covariates in cell i. At this stage, as in [2], “city” (Hiroshima
or Nagasaki) is not included as a covariate.

Other models are defined by l = l0(1+ERR) where ERR
depends only on Dj, the radiation dose lagged by a
latency parameter j. Dj is defined as the weighted
adjusted colon dose in 10 mSv units when time-since-
exposure ≥ j, and 0 otherwise.

For the linear model, ERR = bDj

For the two-phase model, ERR = bDj + sDjexp(-τDj)
where exp denotes exponential.

Themodels require 1+ERR > 0 in all cells so that the Poisson
distributions are defined. For the two-phase model τ > 0,
slightly modifying the previous approach where τ ≥ 0.
However, τ = 0 reduces to the linear model as does s = 0.

In fitting a model at latency j by Poisson regression, the
unknown parameters a,bj and b, s, τ (as appropriate to
the model) are chosen to maximise the likelihood of the
observed data assuming independent Poisson distribu-
tions in each cell. Equivalently, fitting minimises the
sum over the 3011 data cells of Ei - Oiln(Ei), where Oi

and Ei = liTi are the observed and expected number of
cases in cell i.

Latency j is fixed during the minimisation. The models
depend smoothly on all other parameters. ERRD,j
denotes the Excess Relative Risk evaluated at D for the
fitted model with latency j. Note ERR1,j is the estimated
risk at 10 mSv lagged by j years. For model I nested
within model J, LRTJ-I,j is the Likelihood Ratio Test
computed at latency j.

Code written in R emulates the previous model fitting
with Excel-Solver, using the Newton-Raphson minimisa-
tion routine “optim” [11]. Results for the stomach at
latency j = 5, 6,... 44 are checked against the values
obtained previously.

At a given cancer site, the control, linear, and two-phase
models are fitted at latency j = 5, 6,... 44 to give LRTJ-I,j for
each pair of nested models: linear against control, two-

phase against control, and two-phase against linear. Sites
are selected for further analysis if LRTlin-con,j > 4 for some
j, or if LRT2p-lin,j > 6 for some j (not assuming that this
criterion establishes statistical significance). For sites
meeting the criterion for the linear model, Profile
Likelihood Confidence Intervals for b = ERR1,j are
computed using Wilks Theorem at integer values of j.
For sites meeting the criterion for the two-phase model,
j = jmabs is chosen to maximise LRT2p-con,j (not LRT2p-lin,j)
so that fitting at jmabs gives the absolute Maximum
Likelihood Estimate (MLE) for the model. The “optimal
latency” jm is chosen to maximise LRT2p-con,j subject to the
constraint ERR1,j ≥ 0. Bootstrap confidence intervals and
LRT simulations are then computed at jm . Details are given
in the next two more technical subsections, and examples
with commentary are supplied with Additional File 1. The
method for taking account of uncertainty in the “optimal
latency” is outlined in a final subsection.

Bootstrap
Fitting the two-phase model at j = jm gives a maximum
likelihood estimate ψ̂ for the vector of all 20 model
parameters and determines fitted values of li in each
data cell. The parametric bootstrap assumes the observed
data arose from sampling this fitted model, and
considers the variation arising if other data had been
sampled from that same model.

Sampling the independent Poisson distributions with
parameters liTi gives simulated observations in each data
cell. Fitting the two-phase model to this simulated data
gives simulated parameter values including β , σ and
τ , and therefore a simulated value of ERR = ERRD,j =
β σ τφ φ φD D D+ −exp( ) ). The entire process is repeated B
times to give the bootstrap replications ERR*.

There are many well-established methods to obtain
confidence intervals from bootstrap replications [7,12].
The two options chosen here are the original “percentile”
method, which is easy to describe, and the “Bias-
corrected accelerated” method which is much faster to
compute, and in general more accurate.

The 1-2a “percentile” confidence interval has endpoints

ERR ERRB B( ) ( ( )),αα αα
∗∗ ∗∗

1−

where ERR B( )αα
∗∗ denotes the Bath ordered value of ERR*.

With B = 1000 replications and a = 0.025, the endpoints
of the 0.95 percentile interval are the 25th and 975th

order statistics of ERR*.

For the Bias-corrected accelerated (BCa) confidence
interval (see [7] Chapter 5 pp. 203-207 and p.249)
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simulation is again carried out using liTi. However, the
simulated observations are now used to fit the model to
the “Least Favourable family” of distributions, obtained
by restricting the parameter vector ψ to a line para-
metrised by ζ, passing through the MLE ψ̂ and defined
by ψ ψ ζδ= +ˆ ˆ where

ˆ ( ˆ) ( )δ ψ ψ= −i h1

Here i-1(ψ̂ ) is the inverse of the Fisher Information
evaluated at ψ̂ and h( )ψ is the gradient of the function
h which defines the variable of interest (in this case ERR)
in terms of the model parameters ψ.

For each bootstrap replication, fitting the simulated data
along the LF family determines ζ and thus the simulated
value ERR = h( )ψ ζδ+ . If ERR*LF denotes the resulting
set of B replications, the BCa confidence interval has
endpoints

ERR ERRLF B LF B( ) ( ),αα αα1 2

∗∗ ∗∗

where

α

α

α α

α
1

2
1 1

1

1

= + + − +

= + + − +− −

Φ

Φ

( ( ) /( ( ))

( ( ) /( (

( ) ( )

( ) (

w w z a w z

w w z a w z αα)))

Here F is the standard normal cumulative distribution
and z(a) is the 100ath percentile point of a standard
normal distribution. The parameters w and a are
estimated from the bootstrap replicates. The bias-
correction w is computed as

w = <−Φ 1([#{ }] / )ERR LF
∗∗ ERR B

i.e. the fraction of bootstrap replications along the LF
family which are below the original fitted value of ERR,
in normal units.

The acceleration a is computed as

a = 1 6 3 2
3 2/ /( ) / m m

where m3 and m2 are the 3rd and 2nd moments of

LF
∗ ( )0 , the partial derivative of the log likelihood of the

simulated data with respect to ζ, evaluated at ζ = 0.

Code for this calculation is shown inAdditional File 1, Code
File AC1.txt, which calls Additional File 1, Data Files
stomdat1.txt, lambda2.txt and theta2.txt. Additional File 1,
Commentary File ACom1.doc discusses this code.

Despite the intricate formulas, computation is much
faster for BCa than for the simpler percentile method,

because optimisation is now restricted to a line within the
full 20-dimensional parameter space. The percentile CIs
are computed at B = 1000, the recommended minimum
number, while BCa results are obtained at B = 5000.

Coverage for the percentile and BCa methods is tested
using the stomach data. For each of 400 sets of simulated
observations generated by sampling the Poisson dis-
tributions determined by the original fitted parameters,
the model is refitted to the simulated data. Confidence
intervals for the simulated ERR are obtained by the
bootstrap methods (B = 1000) using the refitted
parameters and counted as 1 or 0 if they contain or
exclude the “true” value of ERR from the original fitted
parameters. To streamline these computations of cover-
age for the percentile method, data is restricted to the
Hiroshima subcohort (N = 1536 cells) and the model
simplified to use 10-year rather than 5-year age-at-
exposure categories. Estimating coverage for the BCa

method uses the full 0 - 20 mSv dataset and model. The
application of both methods to compute CIs from the
observed data uses the full dataset and model.

Simulation of LRT
The Likelihood Ratio Test (LRT) for comparing nested
models H0 ≤ H1 (H0 contained within H1) given the
observed data D is LRT = 2[L(H1, D ) - L(H0, D )]
where L(Hi, D ) is the log likelihood of the observed
data after fitting the model Hi. In well-behaved situa-
tions where Wilks theorem [5] applies, the asymptotic
distribution of LRT is known, provided the data was
drawn from a distribution which satisfies the null
hypothesis H0. In particular, an appropriate critical
value t0.95 can be chosen for rejecting H0 if LRT > t0.95
and this will result in a 5% error rate of rejecting H0

when it is true. Typically H0 fixes the values of d
parameters in the full model H1 which allows those
parameters to vary freely in an open neighbourhood. In
this case Wilks theorem says that LRT is asymptotically
c2 distributed on d degrees of freedom if the observed
data was generated by the model with those d
parameters fixed as specified. On that basis, the null
hypothesis can be rejected if LRT > t0.95 = F-1(0.95) where
F is the cumulative of a c2 distribution on d degrees of
freedom.

Wilks theorem depends on many regularity conditions
for the models H0 and H1. If these fail, LRT may not be
c2 distributed; its distribution may depend on H0 rather
than just on the number of specified parameters, and
there may be no simple universal 95% critical value for
rejecting H0. Simulation aims to estimate the distribu-
tion of LRT and then to obtain conservative critical
values which are sufficient to reject H0. Confidence
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intervals for functions of the parameters are constructed
using these critical values.

For the two-phase model LRT p H2 0− is the Likelihood
Ratio Test for the hypothesis H0: (b, s, τ) = (b0,s0,τ0) vs.
the alternative (b, s, τ) ≠ (b0,s0,τ0), i.e. H1 is the union
of H0 with its alternative, and leaves (b, s, τ) free to vary,
subject only to the defining conditions of the two-phase
model. For various choices of H0 the null distribution of
LRT p H2 0− assuming H0 holds is sampled by Monte
Carlo simulation (see [7] Chapter 4; for another context
see [13] p.84) as follows.

One) The model is fitted subject to H0. The resulting
parameter estimates give fitted values λ̂0i and therefore
λ̂0i Ti for each cell, subject to H0.

Two) Poisson distributions with parameters λ̂0i Ti are
sampled independently to give simulated cases Oi in
each cell.

Three) The model is fitted to the simulated data Oi
subject to H0, yielding new fitted values 0i for each
cell. Put K Oi i i0 0 01

3011
2= − −∑ ( ln )λ λ .

Four) The model is fitted to the simulated data Oi with
(b, s, τ) allowed to vary freely within the parameter

space, yielding new fitted values λi for each cell. Put

K = − −∑2
1

3011
( ln )Oi i iλ λ . The simulated value of

LRT p H2 0− is defined as LRT* = K0 - K. Note that up to a
constant which depends on the simulated data O but not
on the model, K0 = -2L(H0, O ) while K = -2L(H1, O ).

Five) Steps Two through Four are repeated 500 (or 1000)
times to give the sample LRT*.

An example of the required code is given in Additional
File 1, Code File AC2.txt which calls Additional File 1,
Data Files stomdat1.txt, lambda1.txt, theta1.txt, and
Additional File 1, Code File AC2s.txt. Additional File 1,
Commentary File ACom2.doc discusses this code.

While step Four is time-consuming, steps One and Three
are quick as the model is log-linear in the remaining
parameters. Step Two is trivial in R. Note that in step
Four the possible values of (b, s, τ) are still constrained
by the requirement that 1+ERR > 0 in all cells. For
computability, the constraint is set at 1+ERR ≥ 0.001.

To check whether Wilks theorem holds, LRT* is first
tested against a c2 distribution on 3 d.f. by the
Kolmogorov-Smirnov (one-sample) test. LRT* is then
tested against gamma distributions with unknown shape
and rate parameters. A g distribution is fitted to LRT*

using the “fitdistr” subroutine of R (MASS library) [14].
When testing LRT* against the fitted distribution with
shape parameter ŝ and rate parameter r̂ , the Kolmo-
gorov statistic D is obtained from the (one sample) K-S
test but its p-value is determined by simulation (as in the
Lilliefors test). When LRT* has 500 elements, 500
random deviates are taken from the fitted g distribution
with parameters ŝ and r̂ to form a sample S, a new
gamma distribution Γ is fitted to S, the K-S statistic D*
for testing S against Γ (one-sample) is computed, and the
process is repeated 5000× to estimate the probability
that D* > D when samples are drawn from g( ŝ , r̂ ).
R code was adapted from [15].

For the special case (b0,s0,τ0) = (0,0, arbitrary) the
sample LRT* uses 1000 replications; note that in this
case LRT p H2 0− = LRT2p-con. Likewise at the MLE
estimate (b0,s0,τ0) = ( ˆ , ˆ , ˆβ σ τ ), LRT* is produced during
the (percentile) bootstrap with 1000 replications. In
both cases the simulations required for the p-value of D
use 1000 random deviates of the fitted g distribution.

For the liver, lung, pancreas and leukaemia, LRT
simulation (×1000) is carried out at (0,0, arbitrary)
and ( ˆ , ˆ , ˆβ σ τ ), and (×500) at 3 points chosen at random
with s0 = 0 and b0 in the intervals -0.5 < b0 < 0, 0 < b0 <
1, and 1 < b0 < 10, and also at 4 points chosen at random
in a neighbourhood N10 of ( ˆ , ˆ , ˆβ σ τ ). N10 comprises
those (b0,s0,τ0) for which the observed (not simulated)
LRT p H2 0− < 10. Each set of simulations gives a sample
LRTi* and corresponding fitted gamma distributions gi.

For the stomach, simulations and corresponding fitted gi
are carried out at the MLE and 50 other random points in
the parameter space: (×500) at 11 points with s0 = 0, 4
points in a neighbourhood N10 of ( ˆ , ˆ , ˆβ σ τ ), 34 other
points in the (b, s, τ) parameter space, and (×1000) at
(0,0, arbitrary) and ( ˆ , ˆ , ˆβ σ τ ).

Estimates of a 95% critical value for the null distribution of
LRT are then obtained in three ways. For each cancer site,
the fitted gamma distributions and the order statistics of
the simulated LRTi* are used to estimate a global 95%
critical value as ′t .95 = max(sup(t.95,i), sup(s.95,i)) where
t.95,i is the 95th percentile of gi and s.95,i is the 95th

percentile of LRTi*. That is, at each value of (b0,s0,τ0)
tested for a particular site, 95% of the simulated LRT values
and the 95th percentile of the fitted gamma distribution are
both below ′t .95 . An overall conservative estimate t.95 is
chosen to exceed the corresponding maximum for all
simulations and all cancer sites investigated. At each site, a
refined estimate ′′t .95 = max(sup(t.95,j)) is obtained by
considering only the fitted gamma distributions and
restricting to simulations at points (b0,s0,τ0) within N10.
At each cancer site ′′t .95 ≤ ′t .95 ≤ t.95.
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The neighbourhood N10 of ( ˆ , ˆ , ˆβ σ τ ) is termed “appro-
priate” if the overall estimate t.95 ≤ 10 so that for (b0,
s0,τ0) outside N10, LRT p H2 0− > t.95 . This is not a
circular definition; t.95 is computed from the behaviour
of simulated LRT at points outside as well as inside N10

for each site, while for (b0,s0,τ0) within N10 and even at
( ˆ , ˆ , ˆβ σ τ ) simulation may, if N10 is inappropriate, give
LRT* with 95th percentile > 10.

Profile Likelihood Confidence Intervals for ERR1,j and
ERR0.025,j are then constructed using all three estimates
for the critical value. With j fixed, let Uj be the set of
those (b0,s0,τ0) which cannot be ruled out with 95%
confidence as LRT p H2 0− < t.95(alternatively < ′t .95 , or
< ′′t .95 ) Define the 95%CI for ERRD,j as the range of
ERRD,j over Uj.

When s0 = 0, LRTlin H− 0
is the Likelihood Ratio Test for

the hypothesis H0: b = b0 and s = 0 vs. the alternative b ≠
b0 and s = 0, while LRT2p-lin is the Likelihood Ratio Test
for the hypothesis s = 0 vs. the alternative s ≠ 0. Note
LRT2p-lin + LRTlin H− 0

= LRT p H2 0− . Simulated null
distributions of all three LRT’s are obtained for points
with s = 0. Conservative, global, and refined estimates
T.95, ′T.95 and ′′T.95 of the 95% critical value for LRT2p-lin
are then defined in the same fashion as t.95, ′t .95 and

′′t .95 for LRT p H2 0− . For each cancer, ′′T.95 is the
supremum of the 95th percentiles of g distributions
fitted to the simulations of LRT2p-lin, ′T.95 is the
supremum of 95th percentiles of the fitted g distributions
and simulations of LRT2p-lin, and T.95 is an overall
conservative value exceeding ′T.95 for all cancer sites
considered. Likewise ′′T.99 and ′′T.999 are defined from the
99th and 99.9th percentiles of the fitted g distributions.
These various estimates are used as critical values for
LRT2p-lin when testing the linear model against the two-
phase model, given the observed data.

Latency
For latency j = 5, 6,... 44 BCa 95%CIs for ERR1,j and
ERR0.025,j are computed.

Since the observed data is regarded as a sample from an
underlying distribution, the optimal latency jm as inferred
from the data is an estimate, whose distribution is again
obtained by simulation. The two-phase model is fitted at
jm and the fitted model is resampled to provide simulated
data, from which a new estimate φm is determined. To
simplify, φm is restricted to integer values 5, 6,... 44. The
process is repeated ×200 for the stomach, liver, lung,
pancreas and leukaemia. The resulting set of φm is
compared with the range of latencies for which BCa 95%
CIs are strictly positive, and likewise with the range for
which LRT2p-lin exceeds the estimated critical values.

To test whether the distributions of LRT2p-con and
LRT2p-lin depend on latency, null distributions at
(b0,s0,τ0) = (0,0, arbitrary) are simulated (×500) for
the stomach with j = 5, 10, 15,... 40 and compared with
the null distribution from simulation (×1000) at jm.

City, dose range, and gender
The models are refitted with “city” as an added control
covariate. For each of the 5 cancers, the optimal latency
Fm (restricted to 5, 6,... 44) is determined along with
latency ranges over which BCa 95% and 90% CIs for
ERR1 are strictly positive.

The models including “city” are fitted to the 5 - 500 mSv
subcohort. A limited analysis of the null distributions of
LRT2p-con and LRT2p-lin including “city” is carried out on
the 0 - 20 mSv and 5 - 500 mSv dose ranges. For each
cancer at its Fm, H0: (b0,s0,τ0) = (0,0, arbitrary) is used
for simulation of LRT2p-con and H0: (b0,s0,τ0) = ( β̂ lin ,0,
arbitrary) where β̂ lin is the fitted parameter for the linear
model, is used for simulation of LRT2p-lin. Gamma
distributions fitted to the simulated LRT* are used to
estimate 95% critical values and to assign p-values to the
LRT2p-con and LRT2p-lin arising from the observed data.

The models including “city” are fitted separately to the
male and female subcohorts in the 0 - 20 mSv dose range
for the stomach, liver, and lung.

Finally, the linear model including “city” is fitted to the
0 - 5 mSv, 5 - 20 mSv, 0 - 0.5 mSv, and 0.5 - 20 mSv data
for the liver and lung.

The very extensive simulations of LRT were shared across
a number of PC’s.

Results
Table 1 shows the individual cancer sites with over 100
cases (deaths) in the subcohort.

To check R against Excel, the two-phase model is fitted to
the stomach data for latencies j = 5, 6,... 44 and
LRT2p-con,j computed in both programmes. The difference
(LRT2p-con,j,R) - (LRT2p-con, j, Excel) has a range of (-0.079,
0.000), mean = -0.004, s.d. = 0.014. At the optimal latency
jm = jmabs = 11.89, LRT2p-con, j = 21.1903 by either
method. The parameter estimates in R are β̂ = 0.4586,
σ̂ = 120.0076, τ̂ = 82.6729, confirming the point
estimates reported in [2]. On that basis, the methods are
taken as comparable. Results are also comparable when
computing LRT-based confidence intervals.

For the linear model ERR = bDj with j = 5, 6,... 44 only
the liver and urinary tract showed significant results.
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Figure 1 shows LRTlin-con,j against j for these two
cancers, while Figure 2 shows the fitted values ERR1 = β̂
when j ≥ 30 with 95%CIs (Profile Likelihood, assuming
LRT ~ c2 on 1 d.f. for testing b = b0 against b ≠ b0). For
the liver with this model, jm = jmabs = 38.58, at which
β̂ = 0.69 (0.25, 1.26). Of the 540 cases in the subcohort,
171 have j > 38.58. For the urinary tract, j is locally
optimal at 41.32 at which β̂ = 2.14 (0.51, 5.12). Of the
103 cases in the subcohort, 23 have j > 41.32.

The stomach, liver, lung, pancreas, and leukaemia were
selected for further analysis as LRT2p-lin,j > 6 for some j, an
indication that the dose response may be non-linear. For
the pancreas and leukaemia, Figure 3 shows LRT2p-lin,j and
LRT2p-con,j while Figure 4 shows ERR1,j = ˆ ˆ exp( ˆ)β σ τ+ −
as estimated from fitting the two-phase model at latency
j. Note that β̂ may differ greatly from the value
obtained by fitting the linear model at j. Related graphs

for the stomach, liver, and lung were shown in [2],
though their statistical significance is reconsidered
below.

Table 2 shows the latencies jmabs and jm which
maximise LRT2p-con,j without and with the constraint
ERR1,j ≥ 0, the values of LRT2p-con,j and LRT2p-lin,j at jm

along with the fitted parameters and corresponding
point estimates of ERR1 and ERR0.025 and their bootstrap

Table 1: Cancer sites with over 100 cases (deaths) in the
0-20 mSv subcohort

Site Cases (deaths) in the 0-20 mSv subcohort

Stomach 1482
Liver 540
Lung 524
Pancreas 179
Rectum 171
Oesophagus 131
Gall 125
Lymph 109
Leukaemia 105
Breast (F) 105
Urinary 103

Figure 1
LRT for Linear vs. Control model: liver and urinary.
For cancers of the liver (blue) and urinary (red) and for
latency j = 5, 6,... 44 years, LRT = LRTlin-con,j is the
Likelihood Ratio Test for comparing the linear and control
models at latency j. Values above the horizontal line
LRT = 3.841 are significant at p < 0.05.

Figure 2
ERR1 with 95%CIs for Linear model: liver and urinary.
For cancers of the liver (blue) and urinary (red) and for
latency j = 30, 31,... 44 years, ERR1 is the Excess Relative
Risk from 10 mSv (lagged dose) as estimated by fitting the
linear model at latency j. The error bars show Profile
Likelihood 95%CIs assuming a c2 (1 d.f.) distribution of LRT
for testing b = b0 against b ≠ b0.

Figure 3
LRT for Two-phase vs Control and Linear models:
pancreas and leukaemia. For each cancer and for latency
j = 5, 6,... 44 years, LRT2p-con = LRT2p-con,j is the Likelihood
Ratio Test for comparing the two-phase and control
models at latency j, and LRT2p-lin = LRT2p-lin,j is the
Likelihood Ratio Test for comparing the two-phase and
linear models at latency j.
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confidence intervals by the BCa (5000 replications) and
percentile (1000 replications) methods. For the stomach,
liver, and lung, these confirm the point estimates in [2].

Coverage for the BCa method is estimated for the
stomach at 94% for ERR1 (376 of 400) and 93% for
ERR0.025 (372 of 400). Coverage for the percentile method
is estimated for the stomach using the 0 - 20 mSv
Hiroshima subcohort with the simplified two-phase model
(10 year age-at-exposure categories) giving 94.3% for ERR1

(377 of 400) and 93% for ERR0.025 (372 of 400). All CIs
reported in Table 2 use the full model (5 year categories,
both cities).

For the stomach with latency j = 5, 6,... 21, Figure 5
shows the BCa 95% confidence intervals (B = 5000) for
ERR1 and ERR0.025. Each of these CIs is strictly positive.
Since the minimum time-since-exposure in the subco-
hort is 6.08 years, for j = 5 or 6 the model involves no
correction for latency and ERR is a function of the
unmodified colon dose.

More generally, for each site (stomach, liver, lung,
pancreas, leukaemia) there is a neighbourhood sur-
rounding jm over which BCa 95% CIs for ERR1 and
ERR0.025 are strictly positive, which was evaluated
restricting to integer latencies and using B = 5000
bootstrap replications. For the stomach, both CIs are

Figure 4
ERR1 for Two-phase model: pancreas and leukaemia.
For cancers of the pancreas (red) and leukaemia (blue) and
for latency j = 5, 6,... 44 years, ERR1 is the Excess Relative
Risk from 10 mSv (lagged dose) as estimated by fitting the
two-phase model at latency j.

Table 2: Latencies, LRT, fitted parameters, ERR and bootstrap confidence intervals for the two-phase model

Site jmabs jm LRT p-con m2 ,φ LRT p-lin m2 ,φ β̂ σ̂ τ̂ ERR1 ERR0.025

Stom 11.89 11.89 21.19 19.64 0.46 120.01 82.67 0.46
(0.21, 0.80)bca

(0.19, 0.79)per

0.39
(0.15, 0.70)bca

(0.15, 0.71)per

Liver 36.90 36.90 34.87 27.64 1.43 291.22 76.76 1.43
(0.70, 2.41)bca

(0.72, 2.39)per

1.10
(0.49, 1.90)bca

(0.40, 1.88)per

Lung 36.99 13.60 16.04 14.74 0.44 37.90 4.46 0.88
(0.34, 1.50)bca

(0.27, 2.07)per

0.86
(0.40, 1.49)bca

(0.32, 2.02)per

Panc 11.86 11.86 16.22 14.80 9.77 1060.94 43.77 9.77
(3.50a, 14.27)bca

(1.72, 55.11)per

9.12
(3.25b, 13.46)bca

(1.49, 48.25)per

Leuk 23.66 23.66 25.40 25.29 1.69 3353.15 172.25 1.69
(0.20, 4.81)bca

(0.19, 4.77)per

1.17
(0.18, 3.58)bca

(0.24, 3.79)per

jmabs: latency (years) which maximises LRT2p-con

jm: optimal latency, which maximises LRT2p-con with the constraint ERR1 ≥ 0
LRT p-con m2 ,φ : Likelihood Ratio Test for the two-phase model against the control model at jm

LRT p-lin m2 ,φ : Likelihood Ratio Test for the two-phase model against the linear model at jm

ˆ , ˆ , ˆβ σ τ : fitted parameters for the two-phase model at jm

ERR1 : Excess Relative Risk at 10 mSv (lagged by jm), as estimated from the fitted two-phase model
ERR0.025 : Excess Relative Risk at 0.25 mSv (lagged by jm), as estimated from the fitted two-phase model
bca Bootstrap BCa 95%CI (5000 bootstrap replications)
per Bootstrap percentile 95%CI (1000 bootstrap replications)
a : minimum bootstrap value, lower tail probability = 0.034
b : minimum bootstrap value, lower tail probability = 0.024
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strictly positive when 5 ≤ j ≤ 21. For the liver, both CIs
are strictly positive when 32 ≤ j ≤ 43. For the lung, both
CIs are strictly positive when 7 ≤ j ≤ 21. For the pancreas,
both CIs are strictly positive when 5 ≤ j ≤ 11. For
leukaemia, the 95% CI for ERR1 is strictly positive when
24 ≤ j ≤ 26, but the 95% CI for ERR0.025 is strictly
positive when 19 ≤ j ≤ 36.

For each site, simulating data (200 sets) from the fitted
model at jm and re-determining the optimal latency φm
(restricting to integer values) from the simulated data
shows the uncertainty in jm itself. For the stomach 5 ≤

φm ≤ 21 for 196 out of 200 simulated datasets, while 5 ≤

φmabs ≤ 21 for 187 out of 200 simulated datasets. For the
liver, 32 ≤ φm ≤ 43 for 200 out of 200 simulated
datasets, while 32 ≤ φmabs ≤ 43 for 197 out of 200

simulated datasets. For the lung, 7 ≤ φm ≤ 21 for 184 of
200, while 7 ≤ φmabs ≤ 21 for 173 of 200 simulated
datasets (nb for the lung jm ≠ jmabs). For the pancreas
the results are weaker, as 5 ≤ φm ≤ 11 for 157 of 200, and
5 ≤ φmabs ≤ 11 for 151 of 200 simulated datasets. For
leukaemia 24 ≤ φm ≤ 26 for 132 of 200 and 24 ≤ φmabs ≤
26 for 130 of 200, but 19 ≤ φm ≤ 36 for 188 of 200 and
19 ≤ φmabs ≤ 36 for 184 of 200 simulated datasets.

Additional File 1, Tables S1, S2, and S3 give the
simulated null distributions of LRT for the two-phase
model with the null hypothesis H0: (b, s, τ) = (b0,s0,τ0)
vs the alternative (b, s, τ) ≠ (b0,s0,τ0), for the stomach,
liver, lung, pancreas, and leukaemia. Additional File 1,
Table S1 shows simulation for each cancer at the fitted
values (b0,s0,τ0) = ( ˆ , ˆ , ˆβ σ τ ) and for randomly selected
points in the neighbourhood N10 of the fitted values (see
Methods). Additional File 1, Table S2 shows simulation
for each cancer with s0 = 0, where τ0 is arbitrary.
Additional File 1, Table S3 shows additional simulation
for the stomach when s0 ≠ 0, but (b0,s0,τ0) is outside the
neighbourhood N10. For the simulations in S2, Addi-
tional File 1, Table S4 shows the results for the linear
model and the comparison with the two-phase model.
These simulations are carried out at the optimal latency
for the specific cancer.

As the control parameters are optimised subject to H0

before simulating LRT, perhaps other choices of control
parameters while retaining H0 might yield different
estimates of the null distribution of LRT subject to H0.
However, four sets of simulations (×500) for the
stomach with (b0,s0,τ0) = (0, 0, arbitrary) using very
different choices of control parameters and total cases
expected, yielded fairly similar LRT* and fitted gamma
distributions as shown in Table 3. Optimised control
parameters for the observed data are shown in the last
row. This is evidence that the null distribution of
LRT p H2 0− is approximately independent of the para-
meters used to simulate the data, provided that H0

holds. In the terminology of [7] (Chapter 4 p. 139)

Figure 5
ERR1 and ERR0.025 with 95%CIs for Two-phase model:
stomach. For stomach cancers and for latency j = 5, 6,... 21
years, ERR1 (red) is the Excess Relative Risk from 10 mSv
(lagged dose) as estimated by fitting the two-phase model at
latency j, while ERR0.025 (green) is the Excess Relative Risk
from 0.25 mSv (lagged dose) as estimated by fitting the two-
phase model at latency j. The error bars show bootstrap
95%CIs computed with the BCa method, using 5000
replications.

Table 3: Null distribution of LRT2p-con for the stomach with various control parameters

a b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11 b12 b13 b14 b15 b16 N qlrt s r qgam expect

-5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 500 8.23 2.38 0.64 8.32 11389.77
-15 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 500 8.61 2.36 0.63 8.50 7528.62
-8 -1 0 2 0 0 0 0 5 0 0 0 0 0 0 0 0 500 8.39 2.35 0.63 8.42 1418.11
-14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 500 8.45 2.24 0.60 8.59 1013.12
-18.13 -0.84 3.11 -1.05 -0.77 -1.09 -0.69 -0.27 -0.31 -0.29 0.20 0.15 0.29 0.40 0.37 0.45 0.16 1000 8.88 2.42 0.60 8.96 1482.00

a,bj : specified values of control parameters
N: number of simulations
qlrt: 95th percentile of LRT p-con2

∗∗

s, r: shape and rate parameters of the fitted gamma distribution for LRT p-con2
∗∗

qgam: 95th percentile of the fitted gamma distribution for LRT p-con2
∗∗

expect: expected number of cases
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LRT p-con2
∗∗ is an “approximate pivot” even though Wilks

Theorem fails. In turn, this gives the basis for rejecting
H0 given the observed data.

The simulated null distributions of LRT p H2 0− from
Additional File 1, Tables S1, S2, and S3 are then applied
to estimate t.95, ′t .95 and ′′t .95 as defined in Methods. All
simulations showed LRT and its fitted gamma distribu-
tion had 95th percentiles qlrt(0.95) < 10 and qgamma
(0.95) < 10. Thus t.95 = 10 is a conservative estimate
throughout the parameter space, for all cancer sites
considered here, and the choice of N10 is appropriate
(see Methods).

Table 4 shows Profile Likelihood 95% confidence
intervals for ERR1 and ERR0.025 at optimal latency jm

as computed with the various estimated critical values.

Likewise from Additional File 1, Table S4 and using the
notation in that file, all simulations of the null
distribution of LRT2p-lin showed qlrt2(0.95) < 8 and
qgamma2(0.95) < 8 so T.95 = 8 is a conservative estimate
throughout the parameter space, for all cancer sites
considered here. For any given site ′T.95 is the supremum
of qlrt2(0.95) and qgamma2(0.95) over simulations for
that site. ′′T.95 is the supremum of qgamma2(0.95) over
simulations for that site. Likewise ′′T.95 and ′′T.999 are the
suprema of qgamma2(0.99) and qgamma2(0.999) over
simulations for that site. Table 5 shows these critical
values and the observed value of LRT2p-lin (see Table 2)
for each site.

Null distributions of LRT p H2 0− and LRT2p-lin for the
stomach with j = 5, 10,... 40 show little variation with
latency and are similar to those obtained at jm as shown
in Table 6.

Simulation of the optimal latency φm as described earlier
also has implications for non-linearity. Again restricting
to integral latencies, for the stomach LRT2p-lin > 9.4 when
5 ≤ j ≤ 21 and 196 of 200 simulated datasets gave φm in
this range. For the liver LRT2p-lin > 16.7 when 34 ≤ j ≤ 38
(198 of 200 simulations). For the lung LRT2p-lin > 7.7
when 7 ≤ j ≤ 21 (184 of 200 simulations). For leukaemia
LRT2p-lin > 9.4 when 17 ≤ j ≤ 36 (191 of 200 simulations).
Each of these results shows non-linearity (see Table 5)
and for the stomach and liver the evidence is very strong.
For the pancreas, LRT2p-lin > 9.5 when 7 ≤ j ≤ 11 but only
156 of 200 simulations give φm in this range.

The covariate “city” has little impact on the estimates of
ERR when taken as an additional control. For the liver
including “city”, BCa 95%CIs for ERR1 and ERR0.025 are
strictly positive when 29 ≤ j ≤ 43, again restricting to
integral latencies. With “city” included in both models
LRT2p-con attains its maximum subject to ERR1 ≥ 0 when
jm = 37 and LRT2p-con = 28.41. At jm = 37, ERR1 = 1.26
with BCa 95%CI (0.61, 2.14) and ERR0.025 = 0.68 with
BCa 95%CI (0.18, 1.25). For comparison, without “city”
the optimal integral latency is jm = 37, at which ERR1 =
1.22 with BCa 95%CI (0.59, 2.11) and ERR0.025 = 0.74
with BCa 95%CI (0.23, 1.43). As a test of non-linearity
(with “city” included in both models) LRT2p-lin > 6.8

Table 4: Profile Likelihood 95% confidence intervals for ERR at estimated critical values of LRT p H2 0−

site jm t.95 ERR1 ERR0.025 ′t .95 ERR1 ERR0.025 ′′t .95 ERR1 ERR0.025

stom 11.89 10 (0.08,1.02) (0.06,0.93) 9.72 (0.08,1.01) (0.06,0.92) 8.16 (0.11,0.95) (0.08,0.87)
liver 36.90 10 (0.38,3.21) (0.19,2.59) 8.59 (0.44,3.05) (0.23,2.45) 8.28 (0.46,3.01) (0.25,2.42)
lung 13.60 10 (0.07,3.89) (0.08,3.87) 9.44 (0.08,3.75) (0.10,3.74) 8.48 (0.11,3.52) (0.12,3.50)
panc 11.86 10 (0.48,-) (0.38,-) 9.03 (0.60,-) (0.49,-) 8.79 (0.64,-) (0.52,-)
leuk 23.66 10 (-0.21,8.20) (0.03,6.46) 7.93 (-0.09,7.05) (0.06,5.51) 7.58 (-0.07,6.86) (0.06,5.35)

t.95, ′t .95 and ′′t .95 : conservative, global and refined estimates of the 95% critical value of LRT for the hypothesis H0: (b, s, τ) = (b0,s0,τ0) vs. the
alternative (b, s, τ) ≠ (b0,s0,τ0). See Methods.

Table 5: Critical values and observed value of LRT2p-lin

Site jm T.95 ′T.95 ′′T.95 ′′T.99 ′′T.999 LRT2p-lin

Stom 11.89 8 7.542 7.276 10.394 14.708 19.64
Liver 36.90 8 6.779 6.603 9.329 13.082 27.64
Lung 13.60 8 7.418 6.930 9.795 13.740 14.74
Panc 11.86 8 7.372 7.007 10.049 14.265 14.80
Leuk 23.66 8 6.269 5.832 8.507 12.245 25.29

T.95, ′T.95 , ′′T.95 : conservative, global and refined estimates of the 95% critical value of LRT for comparison of two-phase and linear models. See
Methods.

′′T.99 , ′′T.999 : refined estimates of the 99% and 99.9% critical value of LRT for comparison of two-phase and linear models. See Methods.
LRT2p-lin : observed value of LRT for comparison of two-phase and linear models. See Table 2.
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when 29 ≤ j ≤ 41, and LRT2p-lin > 18.15 when 34 ≤ j ≤
38, whereas without “city” LRT2p-lin > 6.86 when 32 ≤ j ≤
41 and LRT2p-lin > 16.73 when 34 ≤ j ≤ 38.

Table 7 includes results with “city” for the 0 - 20 mSv
dose range, for all 5 cancers. It also shows that fitting the
two-phase model with “city” to the 0 - 20 mSv and 5 -
500 mSv dose ranges gives comparable results for ERR1

and latency, for the stomach, liver, lung, and leukaemia.

A limited analysis by simulation of LRT for the model
with “city” was carried out over the 0 - 20 mSv and 5 -
500 mSv dose ranges, focused at the optimal (integral)
latencies on the null distributions of LRT2p-con and
LRT2p-lin at (b0,s0,τ0) = (0, 0, arbitrary) and (b0,s0,τ0) =
( β̂ lin , 0, arbitrary) where β̂ lin is obtained by fitting the
linear model. Results are shown in Table 8 and the fitted
gamma distributions are used to assign p-values to the
observed LRT in Table 7.

From Table 8 (with “city”) and Additional File 1, Table
S4 (without “city”), the criterion LRT2p-lin > 6 is a test of
non-linearity at 90% level. Accordingly, Table 7 also
shows the latency ranges surrounding Fm for which
LRT2p-lin > 6.

Other aspects of the analysis (simulated null distribu-
tions of LRT2p-con and LRT2p-lin across the parameter
space and simulated variation in optimal latency jm)
were not repeated with “city”.

For the stomach, liver, and lung Table 9 shows the results
when the two-phase model with “city” is fitted separately
to the male and female 0 - 20 mSv subcohorts. For the
pancreas and leukaemia, there were too few cases to split
the data by gender.

Table 10 shows the linear model with “city” fitted to the
0 - 20 mSv, 0 - 5 mSv, 5 - 20 mSv, 0 - 0.5 mSv, and 0.5 -
20 mSv subcohorts for the liver and lung.

Discussion
This paper develops and partially corrects the approach
in [2] and the two should be read in conjunction. I focus
initially on the 0 - 20 mSv dose range, which provides
over 60% of the person-years of observation in the Life
Span Study 12 cohort. Over the full data range 0 - 8000
mSv and the truncated range 0 - 4000 mSv the dose
response for cancer mortality is known to be approxi-
mately linear and risk estimates for 1000 mSv have been
obtained through the ongoing Life Span Study project.
The ICRP recommendations for radiation protection are
then based on linear extrapolation, as the Excess Relative
Risk from 10 mSv is presumed to be 0.01 times the ERR
from 1000 mSv.

If we were confident that the approximate linearity of the
dose response extends to the low dose region, then linear
extrapolation would be justified. But this is not known,
and the response may be approximately linear over a

Table 6: LRT simulations for the stomach with (b0,s0,τ0) = (0, 0, arbitrary) and various latencies

j N qlrt2pcon s r qgam2pcon qlrt2plin sl rl qgam2plin

5 500 9.53 2.39 (0.14) 0.59 (0.04) 9.26 7.72 2.07 (0.12) 0.66 (0.04) 7.39

10 500 8.79 2.56 (0.15) 0.65 (0.04) 8.67 6.87 2.09 (0.12) 0.70 (0.05) 7.02

15 500 8.90 2.46 (0.15) 0.64 (0.04) 8.59 6.89 2.02 (0.12) 0.72 (0.05) 6.63

20 500 8.21 2.38 (0.14) 0.63 (0.04) 8.48 6.87 2.00 (0.12) 0.72 (0.05) 6.60

25 500 8.70 2.62 (0.16) 0.65 (0.04) 8.84 7.58 2.01 (0.12) 0.66 (0.04) 7.20

30 500 8.51 2.31 (0.14) 0.63 (0.04) 8.28 6.71 1.84 (0.11) 0.68 (0.05) 6.62

35 500 8.84 2.31 (0.14) 0.61 (0.04) 8.54 7.09 1.79 (0.10) 0.65 (0.04) 6.79

40 500 8.46 2.45 (0.15) 0.67 (0.04) 8.11 6.95 1.86 (0.11) 0.70 (0.05) 6.46

11.89 1000 8.88 2.42 (0.10) 0.60 (0.03) 8.96 7.18 1.94 (0.08) 0.65 (0.03) 7.10

j: latency
N: number of simulations
qlrt2pcon: 95th percentile of LRT p-H2 0

∗∗

s, r: shape and rate parameters with their estimated standard errors for the fitted gamma distribution for LRT p-H2 0

∗∗

qgam2pcon: 95th percentile of the fitted gamma distribution for LRT p-H2 0

∗∗

qlrt2plin: 95th percentile of LRT p-lin2
∗∗

sl, rl: shape and rate parameters with their estimated standard errors for the fitted gamma distribution for LRT p-lin2
∗∗

qgam2plin: 95th percentile of the fitted gamma distribution for LRT p-lin2
∗∗
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wide dose range but highly non-linear at lower doses.
There are many examples of non-linear dose response in
radiation cell biology [16,17].

Thus, if the Japanese data is used to derive risk estimates
for doses such as 10 mSv or 1mSv which are directly
relevant to occupational and public exposure, it makes
sense to consider the 0 - 20 mSv data in its own right and
in relation to wider dose ranges, rather than to pool the
data and apply linear extrapolation.

Secondly, a latency parameter j is used to assess the
delay between exposure and cancer mortality. Although

it would be better to allow latency to modify dose by
some smooth function rather than an abrupt switch from
no effect to full effect when Time-Since-Exposure passes
j, this is much harder to compute and was not
attempted here.

As pointed out during peer review, we should consider at
the outset whether the data is sufficient for fitting a non-
linear model based on mean dose. Figure 6 shows
scatterplots of p-y observation against mean dose, for the
ranges 0 - 500 mSv, 5 - 20 mSv, 0 - 5 mSv, and 0 - 0.5 mSv.
Clearly the 0 - 500 mSv and 5 - 500 mSv data contains
a wide variety of doses. The 5 - 20 mSv data shows a

Table 7: Optimal (integral) latency, LRT and ERR, including “city”, by dose range

Dose range Site Fm LRT2p-con
at Fm

LRT2p-lin
at Fm

ERR1
at Fm

Latency Range ERR0.025
at Fm

Latency Range

0-20 Stom 11 13.02
p = 0.007

12.27
p = 0.003

0.38 (0.11, 0.70)
(0.16, 0.65)*

5-18
5-21*
9-21nl

0.34 (0.11, 0.63)
(0.14, 0.59)*

5-21
5-21*

5-500 Stom 8 9.03
p = 0.025

5.74
p = 0.07

0.29 (0.06, 0.60)
(0.09, 0.55)*

7-9
5-11*

0-20 Liver 37 28.41
p < 10-7

18.96
p < 10-4

1.26 (0.61, 2.14)
(0.69, 1.97)*

29-43
29-43*
29-41nl

0.68 (0.18, 1.25)
(0.24, 1.20)*

29-44
29-44*

5-500 Liver 37 14.47
p = 0.003

10.55
p = 0.005

0.74 (0.25, 1.43)
(0.32, 1.30)*

34-41
34-42*
34-41nl

0-20 Lung 16 10.43
p = 0.03

7.13
p = 0.05

1.00 (0.36, 1.84)
(0.42, 1.72)*

10-21
10-21*
12-16nl

0.80 (0.21, 1.66)
(0.28, 1.53)*

10-16
10-21*

5-500 Lung 16 21.69
p < 10-4

19.63
p < 10-5

1.33 (0.67, 2.22)
(0.73, 2.10)*

7-21
7-21*
12-21nl

0-20 Panc 10 14.89
p = 0.002

13.7
p < 0.001

11.32 (5.35, 16.46)
(5.44, 15.60)*

5-11
5-11*
7-11nl

10.77 (4.21, 16.05)
(4.70, 15.31)*

5-11
5-11*

5-500 Panc 42 1.97
p = 0.64

1.96
p = 0.38

0.44 (-, -) -

0-20 Leuk 25 21.66
p < 10-4

21.66
p < 10-5

1.39 (0.09, 4.31)
(0.26, 3.79)*

24-25
24-26*
17-36nl

0.89 (0.11, 2.22)
(0.16, 2.16)*

19-33
17-33*

5-500 Leuk 28 14.76
p < 0.001

8.60
p = 0.013

1.83 (0.45, 3.92)
(0.59, 3.66)*

24-31
24-32*
24-28nl

Dose range: data on which the two-phase model is fitted, including “city” as a control covariate
Fm: latency, restricted to integers 5, 6,... 44, which maximises LRT2p-con subject to ERR1 ≥ 0
LRT2p-con: Likelihood Ratio Test comparison of two-phase and control models at Fm. p values derived from Table 8
LRT2p-lin: Likelihood Ratio Test comparison of two-phase and linear models at Fm. p values derived from Table 8
ERR1: Excess Relative Risk at 10 mSv, from the two-phase model fitted across the dose range with latency Fm, and its BCa 95%CI (5000 replications)
Latency range: integral latency range around Fm for which BCa 95%CI is strictly positive
*: BCa 90%CIs (5000 replications)
nl: integral latency range around Fm for which LRT2p-lin > 6
ERR0.025: as above, for 0.25 mSv (computed only when Dose range = 0-20 mSv)
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spread of mean doses. Whilst the 0 - 5 mSv data is
concentrated below 1 mSv, there is a spread of mean doses
in that region. Each dose range determines a very large
dataset.

The fact that for the stomach, liver, lung, and leukaemia
rather similar results for ERR1 and latency are obtained
from fitting the two-phase model across the 5 - 500 mSv
dose range as from fitting across the 0 - 20 mSv dose
range suggests that there is also sufficient information
in the 0 - 20 mSv data to justify fitting this model. The
stomach, with the largest number of cases, shows fairly
tight confidence intervals for Excess Relative Risk over a
broad range of latencies, which supports the validity of
the model.

If the dose response were linear, similar estimates of its
slope (b) should be obtained over different dose ranges.
As the liver and lung data illustrate (Table 10), fitting the
linear model separately to subcohorts of the 0 - 20 mSv
dose range yields very different estimates of the dose
response. For the liver, there are significant results at
comparable latencies in the 0 - 20 mSv dose range and all
the subranges, but the estimates of b from doses below
5 mSv (or below 0.5 mSv) are completely different from
those obtained from doses above 5 mSv (or 0.5 mSv), in
fact around 20 times higher when latency = 36 years. For
the lung, the linear model detects some significant activity
in restricted dose ranges, but the results are very different,
and combining the two dose ranges yields insignificant
results. By contrast, see Table 7, the two-phase model

Table 8: simulated null distribution of LRT2p-con and LRT2p-lin including “city”, by dose range

Dose range Site Fm LRT2p-con
Shape

LRT2p-con
Rate

t0.95 LRT2p-lin
shape

LRT2p-lin
rate

T0.95

0-20 Stom 11 2.38 0.59 9.06 1.98 0.65 7.25
5-500 Stom 8 2.03 0.62 7.72 1.30 0.55 6.42
0-20 Liver 37 2.50 0.73 7.63 1.69 0.64 6.58
5-500 Liver 37 1.62 0.49 8.39 1.14 0.53 6.16
0-20 Lung 16 2.47 0.58 9.43 2.09 0.68 7.20
5-500 Lung 16 1.81 0.61 7.26 1.38 0.66 5.58
0-20 Panc 10 2.35 0.61 8.65 2.13 0.71 6.93
5-500 Panc 42 1.72 0.52 8.18 1.18 0.60 5.61
0-20 Leuk 25 2.11 0.62 7.94 1.59 0.67 6.01
5-500 Leuk 28 1.87 0.62 7.34 1.25 0.56 6.14

gamma distributions are fitted to 500 simulations of LRT2p-con for the null hypothesis (b0,s0,τ0) = (0,0, arbitrary) and of LRT2p-lin for the null
hypothesis (b0,s0,τ0) = ( β̂ lin ,0, arbitrary) where β̂ lin is the fitted parameter for the linear model. Models include “city” as a control covariate and
are fitted at the optimal (integral) latency Fm for the site and dose range.
shape: shape parameter of the fitted gamma distribution
rate: rate parameter of the fitted gamma distribution
t0.95: critical value of the fitted gamma distribution for LRT p-con2

∗

T0.95: critical value of the fitted gamma distribution for LRT p-lin2
∗

Table 9: Male and Female subcohorts, with “city”, 0-20 mSv, integral latency

Sex Site Fmabs Fm LRT2p-con
at Fm

LRT2p-lin
at Fm

ERR1

at Fm

Latency Range ERR0.025
at Fm

Latency Range

M Stom 6 6 11.82 11.06 2.41
(1.24-3.52)

5-6
5-6nl

2.30
(0.99-3.47)

5-6

F Stom 10 10 12.26 10.67 0.57
(0.18-1.10)

9-13
9-18nl

0.39
(0.07-0.56)

7-13

M Liver 37 37 19.40 14.19 1.55
(0.58-3.05)

34-42
34-38nl

1.00
(0.14-1.58)

34-42

F Liver 20 36 10.90 8.82 1.01
(0.05-1.88)

34-38
27-36nl

0.86
(0.04-1.38)

27-38

M Lung 37 16 6.04 4.92 0.89
(0.16-2.00)

12-16 0.66
(0.09-1.93)

12-16

F Lung 21 21 7.44 6.17 1.18
(0.41-2.28)

14-21
19-21nl

0.95
(0.27-1.57)

14-21

notation as in Table 7
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shows significant results for the lung with the 0 - 20 mSv
data for latencies from 10 to 21 years.

It is not unusual for a model to achieve significance on
portions of the data but fail to do so when they are
combined. Even univariate Ordinary Least Squares
regression on a bimodal independent variable may
illustrate this, as in Figure 7 with synthetic data.

As discussed in [2] the graphs of ERR against latency
show a clear separation into positive and negative

regions, as is also apparent with the linear model over
restricted dose ranges for the liver and lung. For any
given model, the “optimal latency” jm identifies the
time lag which maximises LRT within the region of non-
negative ERR1. The existence of a significant raised risk is
of interest whether or not other latencies show sig-
nificant decrease in risk, with possibly higher LRT.
Frequently jm coincides with jmabs which maximises
LRT without constraint, but the distinction is relevant for
the lung (Table 2) and more generally when simulating
the variation in latency.

Table 10: Linear model with “city” for liver and lung on partitions of 0-20 mSv, by latency

Liver Lung

range 0-20 mSv 0-5 mSv 5-20 mSv 0-0.5 mSv 0.5-20 mSv 0-20 mSv 0-5 mSv 5-20 mSv 0-0.5 mSv 0.5-20 mSv
p-y 1690392 1152356 538039 1141938 548454 1690392 1152356 538039 1141938 548454

j LRT b LRT b LRT b LRT b LRT b LRT b LRT b LRT b LRT b LRT b

6 0.01 -0.01 0.52 6.22 0.28 3.70 1.20 12.63 0.11 0.14 1.43 0.13 0.00 0.00 0.01 -0.14 0.00 0.00 0.17 0.18
7 0.02 -0.02 0.30 -2.00 0.05 -0.11 0.53 -4.57 0.00 0.01 1.40 0.13 0.10 2.23 0.00 -0.03 1.13 12.62 0.18 0.16
8 0.02 -0.02 0.30 -2.00 0.05 -0.11 0.53 -4.57 0.00 0.01 1.40 0.13 0.10 2.23 0.00 -0.03 1.13 12.62 0.18 0.16
9 0.01 -0.01 0.29 -2.00 0.01 -0.05 0.60 -4.71 0.00 0.02 1.29 0.12 0.00 0.00 0.08 -0.16 0.53 7.48 0.09 0.11
10 0.76 -0.08 1.02 -2.00 7.09 -0.50 3.04 -9.15 5.00 -0.46 1.63 0.14 0.13 2.45 0.35 0.37 1.66 14.30 0.69 0.31
11 0.75 -0.08 0.99 -2.00 7.06 -0.50 3.02 -9.12 4.96 -0.46 1.64 0.14 0.13 2.51 0.37 0.38 1.68 14.39 0.71 0.31
12 0.80 -0.09 1.18 -2.00 6.77 -0.50 3.81 -9.81 5.60 -0.47 2.15 0.16 0.81 6.90 1.98 0.95 3.55 22.14 2.11 0.57
13 0.79 -0.09 1.28 -2.00 6.70 -0.50 4.33 -10.24 5.48 -0.46 2.15 0.16 0.81 6.93 1.99 0.95 3.57 22.20 2.11 0.57
14 1.10 -0.10 2.52 -2.00 8.76 -0.50 14.14 -14.71 7.80 -0.50 3.29 0.20 0.07 1.69 7.75 2.31 2.42 14.89 6.46 1.15
15 1.10 -0.10 2.52 -2.00 8.40 -0.50 14.14 -14.71 7.83 -0.50 3.29 0.20 0.07 1.69 7.75 2.31 2.42 14.89 6.46 1.15
16 1.09 -0.10 2.49 -2.00 8.65 -0.50 14.08 -14.70 7.76 -0.50 3.30 0.20 0.08 1.77 7.81 2.32 2.45 15.00 6.51 1.15
17 0.94 -0.10 2.23 -2.00 8.11 -0.50 12.11 -14.38 7.63 -0.50 1.97 0.16 0.12 2.10 1.37 0.53 2.43 14.12 2.14 0.51
18 0.92 -0.10 2.21 -2.00 8.93 -0.56 11.96 -14.33 7.46 -0.51 1.98 0.16 0.12 2.15 1.40 0.54 2.46 14.24 2.17 0.52
19 0.89 -0.10 2.33 -2.00 9.31 -0.56 10.63 -14.12 8.27 -0.52 1.70 0.15 1.69 9.36 0.75 0.34 5.17 21.98 1.74 0.44
20 0.89 -0.10 2.33 -2.00 9.30 -0.56 10.63 -14.12 8.27 -0.52 1.70 0.15 1.69 9.36 0.75 0.34 5.17 21.98 1.74 0.44
21 0.88 -0.10 2.31 -2.00 9.86 -0.59 10.56 -14.10 8.20 -0.52 1.72 0.15 1.74 9.53 0.78 0.35 5.23 22.17 1.77 0.44
22 0.32 -0.06 1.75 -2.00 5.51 -0.50 7.84 -13.34 4.73 -0.44 0.68 0.09 0.04 1.04 0.18 -0.13 0.41 4.53 0.08 0.08
23 0.25 -0.05 1.89 -2.00 4.52 -0.47 8.88 -13.81 3.96 -0.41 0.58 0.09 0.05 1.15 0.40 -0.19 0.44 4.72 0.02 0.04
24 0.02 0.02 0.99 -2.00 0.49 -0.19 5.71 -12.83 0.52 -0.18 0.36 0.07 0.00 0.00 0.66 -0.22 0.22 3.13 0.00 0.00
25 0.02 0.02 0.99 -2.00 0.48 -0.19 5.71 -12.83 0.52 -0.18 0.36 0.07 0.00 0.00 0.66 -0.22 0.22 3.13 0.00 0.00
26 0.02 0.02 1.08 -2.00 0.46 -0.19 6.00 -13.00 0.50 -0.17 0.37 0.07 0.00 0.00 0.63 -0.22 0.23 3.25 0.00 0.00
27 0.38 0.08 0.27 -2.00 0.08 0.09 2.54 -9.59 0.03 0.05 0.35 0.07 0.82 -2.00 0.36 -0.17 0.29 -3.18 0.02 0.04
28 0.35 0.07 0.40 -2.00 0.07 0.08 2.89 -10.05 0.02 0.04 0.44 0.08 0.80 -2.00 0.16 -0.12 0.25 -2.98 0.12 0.10
29 1.18 0.15 0.00 0.00 1.29 0.40 0.41 -4.55 0.92 0.30 0.15 0.05 0.32 -2.00 0.68 -0.21 0.23 3.18 0.01 -0.02
30 1.19 0.15 0.00 0.00 1.30 0.40 0.41 -4.55 0.93 0.30 0.15 0.05 0.32 -2.00 0.67 -0.21 0.23 3.18 0.01 -0.02
31 1.21 0.15 0.00 0.00 1.35 0.41 0.39 -4.43 0.97 0.31 0.16 0.05 0.29 -2.00 0.63 -0.20 0.25 3.27 0.01 -0.02
32 1.42 0.17 0.00 0.00 1.27 0.38 0.16 3.36 0.85 0.28 0.14 0.05 0.40 -2.00 0.39 -0.16 0.00 0.00 0.00 0.01
33 1.29 0.16 0.00 0.00 1.10 0.35 0.19 3.61 0.71 0.25 0.09 0.04 0.35 -2.00 0.60 -0.19 0.00 0.00 0.01 -0.02
34 5.02 0.37 4.32 18.20 7.44 1.08 6.53 26.15 6.28 0.90 0.08 -0.04 0.24 -2.00 2.25 -0.31 0.00 0.00 0.84 -0.20
35 5.02 0.37 4.32 18.20 7.46 1.08 6.53 26.15 6.30 0.90 0.08 -0.04 0.24 -2.00 2.24 -0.31 0.00 0.00 0.84 -0.20
36 5.08 0.38 4.45 18.55 7.56 1.09 6.63 26.40 6.39 0.91 0.07 -0.04 0.24 -2.00 2.17 -0.31 0.00 0.00 0.80 -0.19
37 9.45 0.58 2.86 13.80 14.18 1.68 4.48 19.51 12.57 1.45 0.22 -0.07 0.42 -2.00 2.15 -0.30 0.13 -1.96 1.01 -0.21
38 8.62 0.56 3.15 14.53 12.94 1.54 4.85 20.35 11.46 1.33 0.16 -0.06 0.37 -2.00 1.84 -0.28 0.00 0.00 0.80 -0.19
39 9.61 0.71 1.20 8.11 10.39 1.18 1.28 9.11 9.75 1.09 0.26 -0.09 0.00 0.00 1.23 -0.24 0.13 2.12 0.64 -0.18
40 9.61 0.71 1.20 8.11 10.39 1.18 1.28 9.11 9.75 1.09 0.26 -0.09 0.00 0.00 1.23 -0.24 0.13 2.12 0.64 -0.18
41 9.74 0.71 1.28 8.39 10.56 1.19 1.33 9.33 9.91 1.11 0.24 -0.09 0.00 0.00 1.17 -0.23 0.14 2.24 0.60 -0.17
42 5.17 0.62 0.06 1.85 3.96 0.65 0.03 1.29 3.78 0.62 0.96 -0.22 1.12 6.72 2.12 -0.34 0.83 6.09 1.52 -0.29
43 4.18 0.55 0.07 1.93 2.96 0.55 0.03 1.29 2.81 0.53 0.92 -0.21 1.15 6.82 2.05 -0.33 0.83 6.09 1.45 -0.29
44 1.48 0.47 1.08 10.34 0.25 0.18 1.26 11.40 0.28 0.19 0.53 -0.25 0.15 3.14 0.85 -0.32 0.00 0.00 0.67 -0.29

range: dose range over which the linear model is fitted
p-y: person-years for the dose range
LRT: LRTlin-con when the linear model is fitted at latency j. LRT > 3.84 indicates significance at p < 0.05
b: fitted parameter value.
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The point estimates of optimal latency jm and ERR
obtained previously are confirmed by Table 2. The next
stage of analysis concerns confidence intervals for ERR at
the optimal latency. Statistical inference in [2] was based
on the Likelihood Ratio Test but it was wrongly assumed,

as Little [3] pointed out, that Wilks theorem held for the
non-linear models so that LRT would be asymptotically
c2 distributed, if the null hypothesis (specifying para-
meters in the model) were true.

One of the regularity conditions required for Wilks
Theorem is that distinct values of the model parameters
produce distinct probability distributions. In the two-
phase model when s = 0, ERR = bDj irrespective of the
value of τ. The asymptotic properties of models with an
indeterminate parameter (which cannot be identified
from the distribution) have been analysed [18-21] but I
was unable to use these methods and therefore took an
intensive computational approach, which applies to the
given set of records rather than asymptotically.

The parametric bootstrap is an established technique for
finding confidence intervals in the absence of any
information on the distribution of LRT. The percentile
method refits the model to simulated data generated by
samples from the model whose parameter values were
obtained by fitting to the actual data. The BCa method
adjusts for the fact that simulation may produce biased
estimates of the statistic of interest (in this case ERR) and
of its variance. Both methods gave good coverage with
almost identical rates when tested on the stomach data,

Figure 6
p-y observation against mean dose. For the subcohorts 0-500 mSv, 5-20 mSv, 0-5 mSv, and 0-0.5 mSv, each data cell in the
subcohort is represented by a vertical line at its mean dose, with height the p-y observation in the data cell. The total p-y
observation for each subcohort is also shown.

Figure 7
Ordinary Least Squares fitting to (synthetic)
univariate data with a bimodal independent variable.
Regression of y on x is significantly positive over portions of
data (black and blue lines) but lacks significance over the full
range (red line).
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and comparable confidence intervals for all the sites
analysed. The BCa method is much faster and generally
preferable.

However, the underlying assumption of the parametric
bootstrap is open to question. Perhaps the observed data
arose from sampling at parameter values other than
those obtained by fitting the model to that data.
Confidence Intervals based on LRT avoid this assump-
tion but depend on the critical value t.95 used to reject
the null hypothesis if LRT > t.95.

If Wilks Theorem had applied, then LRT for testing H0:
(b, s, τ) = (b0,s0,τ0) vs. the alternative (b, s, τ) ≠ (b0,
s0,τ0) would have the asymptotic distribution LRT ~ c2

on 3 d.f. if H0 holds, for any H0. Thus t.95 = F-1(0.95) =
7.8147 where F is the cumulative c2 on 3 d.f. would be
the appropriate critical value, rejecting H0 if LRT > t.95.

In the absence of any theoretical prediction, the null
distribution of LRT can still be estimated by Monte Carlo
simulation but may depend on the choice of H0 as seen
in Additional File 1, Tables S1, S2, S3 and S4. In fact
Additional File 1, Tables S2 and S3 show the null
distribution of LRT p H2 0− departs from c2 on 3 d.f. as
s0 Æ 0, while Additional File 1, Table S4 shows that
the null distribution of LRT2p-lin departs from c2 on 2 d.f.
everywhere. Table 3 indicates that the simulated null
distribution of LRT p H2 0− is fairly independent of the
parameters for the control covariates, and depends only
on H0: (b, s, τ) = (b0,s0,τ0). The null distributions when
s0 = 0 are quite different from those when s0 >> 0, as
expected since it is s0 = 0 which causes the indetermi-
nacy of the model and the failure of Wilks Theorem on
this hyperplane. Gamma distributions give a reasonable
fit to the simulated null distribution of LRT p H2 0− in
general (see Additional File 1, Tables S1, S2 and S3).
When H0 has s0 = 0, typical shape and rate parameters
are s ~ 2.24 and r ~ 0.63, while for s0 >> 0 s ~ 1.5 and
r ~ 0.5 as predicted by Wilks Theorem. Figure 8, the
probablity plot for the stomach with (b0,s0,τ0) = (0,0,
arbitrary) shows the failure of Wilks Theorem and the
close fit of simulated LRT p H2 0− = LRT2p-con with a
gamma distribution (s = 2.418, r = 0.604).

The Kolmogorov-Smirnov test against the fitted distribu-
tion is extremely sensitive and even when it distinguishes
LRT from the fitted gamma, a probability plot may show
close agreement. For example for the liver, with (b0,s0,τ0)
= (7.297, 0, arbitrary), the K-S test has D = 0.058 with
simulated p = 0.001 but the plot (Figure 9) is fairly close.

Likewise, fitted gamma distributions generally give a
reasonable fit to the null distribution of LRT2p-lin with
typical parameters s ~ 1.79, r ~ 0.68.

For the linear model, Additional File 1, Table S4 shows
simulation of the null distribution of LRTlin H− 0
generally conforms to a c2 distribution on 1 d.f. as
expected from Wilks theorem. However as b0 Æ -0.5,
the null distribution approaches a g distribution with

Figure 8
Simulated LRT at H0: (b, s, τ) = (0,0,τ0) with fitted g
and c2: stomach. At a given probability value, the red dot
shows the corresponding quantile of the simulated values
(N = 1000) of LRT = LRT p H2 0− for the stomach with the null
hypothesis H0: (b0,s0,τ0) = (0,0, arbitrary). For this H0,
LRT p H2 0− = LRT2p-con. The black line shows quantiles of the
fitted gamma distribution g, with shape s and rate r. The blue
line shows quantiles of the c2 (3 d.f.) distribution. The
horizontal lines marked 8.960 and 7.815 show the 0.95
quantiles of g and c2 (3 d.f.).

Figure 9
Simulated LRT at H0: (b, s, τ) = (7.297,0,τ0) with
fitted g: liver. At a given probability value, the red dot
shows the corresponding quantile of the simulated values
(N = 500) of LRT = LRT p H2 0− for the liver with the null
hypothesis H0: (b0,s0,τ0) = (7.297,0, arbitrary). The black
line shows quantiles of the fitted gamma distribution g, with
shape s and rate r. The horizontal line marked 7.375 shows
the 0.95 quantile of g.
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shape = 0.5, rate = 1. Since b0 = -0.5 specifies a boundary
of the parameter space, the theory of mixture models
[22] predicts, at the boundary, the null distribution of
LRTlin H− 0

~ 1/2 c2 (1 d.f.) = 1/2 g (0.5,0.5) = g (0.5,1).
The confidence intervals shown in Figure 2 for liver and
urinary cancers involve b values far from the boundary
and Wilks theorem is valid in this region.

For all simulations and all cancer sites (Additional File 1,
Tables S1, S2 and S3) the 95th percentile of the fitted
gamma distributions and the 95th percentile of the
simulated LRT p H2 0− itself are all below 10. Additional
File 1, Tables S1, S2, and S3 summarise nearly 50,000
simulations of LRT at a wide variety of randomly chosen
values of H0 . On that basis, t.95 = 10 is chosen as a
conservative estimate applying throughout the para-
meter space for all cancer sites considered here. H0 can
be rejected whenever LRT p H2 0− > 10, i.e. whenever (b0,
s0,τ0) is outside the neighbourhood N10 of the fitted
parameters ( ˆ , ˆ , ˆβ σ τ ). N10 is thus an appropriate neigh-
bourhood, as defined in Methods.

Inside this neighbourhood Additional File 1, Table S1
shows gamma distributions generally fit the simulated
LRT p H2 0− very well, justifying the definition of ′′t .95
from fitted gamma distributions within N10. The
intermediate choice ′t .95 is based on simulations inside
and outside N10 and uses both the simulations and
the fitted distributions to adjust the critical value
upwards as either may be underestimates.

For the stomach, liver, and lung, confidence intervals for
ERR obtained by the bootstrap (Table 2) or from
simulation of LRT p H2 0− (Table 4) are broadly similar,
whichever critical value or bootstrap method is chosen.
LRT intervals using ′′t .95 show closer agreement with the
bootstrap methods. For these 3 cancers, all the LRT-
based intervals for ERR1 and ERR0.025 exclude 0 as do the
bootstrap intervals, which are tighter. This validates
the claim in [2] that ERR1 is significantly elevated for the
stomach, liver, and lung.

All five cancers show significant non-linearity of the dose
response by LRT comparison of the two-phase and linear
models (Table 5). For the stomach, liver, and leukaemia
the two-phase model is preferable with p << 0.001, while
for the lung and pancreas p < 0.01.

The previous discussion concerns behaviour at the
optimal latency jm, an unknown parameter estimated
from the data. BCa intervals, comparable at jm to CIs
obtained by other methods, were used to investigate ERR
across a range of latencies, restricted to integers 5, 6,...
44. Each cancer site has latency ranges in which BCa CIs
for ERR1 and ERR0.025 are strictly positive. Figure 5

illustrates this for the stomach and also shows that ERR
is significantly raised when the dose is not modified by
latency (j = 6 is below the minimum time-since-
exposure in the 0 - 20 mSv cohort). With the linear
model, liver and urinary cancers are significantly
elevated over a range of long latencies, showing similar
variation (Figures 1 and 2).

Fitting the two-phase model at jm, simulating new data
and finding the simulated optimal latency φm gives an
estimate of the probability that the true value of jm lies
in any given region. For the liver and stomach, this
approach gives very strong evidence that jm lies in the
regions where ERR1 and ERR0.025 are strictly positive,
and where the two-phase model is clearly superior (by
LRT) to the linear model. For the lung, the evidence on
these points is still valid, though weaker. For leukae-
mia, there is strong evidence that jm lies in the region
where the dose response is non-linear, and likewise in
the region where the 95% CI for ERR0.025 is strictly
positive. However, with the variation in jm we cannot
be confident that the 95% CI for ERR1 is strictly
positive.

Many results for the pancreas are considerably weaker
than for other sites. Even at the optimal latency, the
confidence intervals are extremely wide. With the BCa

method, the lower limit is attained as the minimum
bootstrap value, and is assigned a probability > 0.025.
The “bias” and “acceleration” of the BCa bootstrap
sample are both large, unlike those for other sites. When
the uncertainty in the optimal latency is determined by
simulation at jm we cannot be confident that the true
optimal latency for the pancreas lies within the range
where ERR > 0 or where non-linearity is detected by
LRT2p-lin.

Up to this point, the primary aim was to test the validity
of the conclusions in [2], and accordingly “city” was not
included as a control covariate and the dose range
remained at 0 - 20 mSv. A limited reanalysis including
“city” in the baseline model and comparing the 0 - 20
mSv and 5 - 500 mSv dose ranges is shown in Tables 7
and 8. The higher dose range was chosen to include 10
mSv, but to exclude the lowest dose category in the
LSS12 dataset. Above 5 mSv the revised dosimetry DS02
generally agrees with the DS86 dosimetry used here
(and in [2]). Comparing these ranges tests whether the
results from 0 - 20 mSv simply reflect some anomaly in
the lowest dose category. With the exception of the
pancreas, there is a striking similarity between results
from the 0 - 20 mSv and 5 - 500 mSv dose ranges, which
show comparable estimates of the optimal latency,
latency ranges, and the Excess Relative Risk from
10 mSv.
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I do not know if any other approach to baseline risk may
explain these effects. However, significant non-linearity
and positive ERR are also found for the stomach, liver
and lung when the data is restricted to male or female
subcohorts, with “city” included in the model (Table 9).
Any possible interaction effects involving gender would
disappear with the all-male or all-female data. As
mentioned in [2] the use of log mean attained age was
an adequate alternative to the full set of attained age
categories, and alternative controls affected the estimates
of ERR by no more than a factor of 2.

The results at 0.25 mSv (ERR0.025) show that the risk
detected here arises at extremely low doses. If there are
doubts about the accuracy of the DS86 dosimetry, the
question remains as to why the DS86 dose is a
significant predictor of risk.

Overall, the results have several possible interpretations.
They may reflect confounding by other covariates not
shown in the public dataset, which may be correlated
with the external dose used here (and in LSS12) and may
also interact with radiation and may vary over time.
Differences between the rural and urban populations
may contribute to the non-linear effects. Or, these may
be caused by gross underestimates of the external dose
(unlikely) or by internal doses arising, for example, from
“black rain”. Such interpretations would be specific to
the Japanese cohort, and would therefore cast doubt on
using this data to predict radiation response elsewhere.

However, the results may also indicate that low doses of
radiation do impact on cancer mortality, provided that
latency is included in the model and the dose response is
not constrained to be linear. In radiation cell biology,
non-linear dose response is known for the bystander
effect using a variety of endpoints and the two-phase
model was proposed as a simplified form of a model for
the bystander effect [16].

This paper does not reconsider any of these possible
interpretations [2]. However, I hope it establishes the
statistical validity of this analysis of the available public
data for the 1950-1990 mortality cohort.

Conclusion
This reanalysis validates the main conclusions of [2].
Bootstrap methods and Monte Carlo simulation of LRT
show that Excess Relative Risk for cancer mortality in
Japanese A-bomb survivors exposed to external radiation
doses below 20 mSv is positive, large, and significant for
various cancers, as detected by models incorporating
latency. The dose response is highly non-linear for the
stomach, liver, lung, pancreas, and leukaemia. In each

case the two-phase model shows large Excess Relative
Risk at 10 mSv external dose lagged by the optimal
latency for the cancer. LRT-based 95% Confidence
Intervals are strictly positive, except for leukaemia.
Bootstrap BCa 95% CIs are strictly positive for all five
cancers over a range of latencies. Large, positive Excess
Relative Risk is also found when the male and female
data is analysed separately for the stomach, liver and
lung.

When the optimal latency varies by simulation, the
stomach, liver, lung and leukaemia still show non-linear
dose response, and likewise ERR > 0 at 95% level for the
stomach, liver, lung.

With “city” included as a control covariate in the two-
phase model, similar estimates of latency and ERR at
10 mSv are obtained for the stomach, liver, lung, and
leukaemia whether the dose range is 0 - 20 mSv or 5 -
500 mSv. Dose response for the liver, lung, and leukaemia
is significantly non-linear in the 5 - 500 mSv range,
particularly for the lung. Such results cannot be explained
by any anomaly of the 0 - 5 mSv data.

The linear model finds significant results for the liver and
urinary tract over a range of long latencies.

This analysis of cancer mortality in Japanese A-bomb
survivors exposed to low doses of external radiation in
1945 shows significant non-linearity of dose response
and significant large Excess Relative Risk over a range of
latencies. These findings do not support the current ICRP
recommended annual occupational dose limit of 20 mSv.
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