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Abstract

Phenotypic robustness, or canalization, has been extensively investigated both experimentally and theoretically. However, it
remains unknown to what extent robustness varies between individuals, and whether factors buffering environmental
variation also buffer genetic variation. Here we introduce a quantitative genetic approach to these issues, and apply this
approach to data from three species. In mice, we find suggestive evidence that for hundreds of gene expression traits,
robustness is polymorphic and can be genetically mapped to discrete genomic loci. Moreover, we find that the
polymorphisms buffering genetic variation are distinct from those buffering environmental variation. In fact, these two
classes have quite distinct mechanistic bases: environmental buffers of gene expression are predominantly sex-specific and
trans-acting, whereas genetic buffers are not sex-specific and often cis-acting. Data from studies of morphological and life-
history traits in plants and yeast support the distinction between polymorphisms buffering genetic and environmental
variation, and further suggest that loci buffering different types of environmental variation do overlap with one another.
These preliminary results suggest that naturally occurring polymorphisms affecting phenotypic robustness could be
abundant, and that these polymorphisms may generally buffer either genetic or environmental variation, but not both.
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Introduction

Variation is ubiquitous in biology. The sources of non-random

phenotypic variation within species can be genetic, caused by

alleles segregating within a population, or environmental, caused

by the fluctuating external conditions all organisms face.

Waddington, who introduced the concept of canalization over

65 years ago [1], observed that ‘‘wild-type’’ individuals are often

quite insensitive to both genetic and environmental variation. In

other words, they are robust.

Genetic robustness (GR) is the insensitivity of a trait to variation

in the genome. Thus when multiple individuals experience the

same genetic perturbation(s), the one with less change in the trait’s

value has higher GR. Such perturbations can be artificially

introduced via mutagenesis in a laboratory, or can be naturally

occurring polymorphisms within a species (because only the latter

can impact the evolution of species in the wild, we concentrate on

natural variation in this study).

Analogously, environmental robustness (ER) is the insensitivity

of a trait to variation in the environment. Environmental variation

can either be obvious (such as large fluctuations in temperature) or

subtle (such as the inevitable micro-environmental variation

always present even in ‘‘controlled’’ experiments), but in either

case the concept of ER is the same.

Despite the ubiquity of phenotypic robustness, we still lack even

a basic understanding of how robustness to different perturbations

comes about. In particular, one fundamental but largely

unexplored question is to what extent robustness is polymorphic

within species. This has important implications for our under-

standing of the evolution of robustness, since polymorphism is

necessary for evolution (via either natural selection or random

drift) to occur. Another major unresolved question is whether the

factors buffering genetic variation are the same as those buffering

environmental variation. Evidence from the numerous studies

addressing this question falls into three general categories:

theoretical evidence, indirect empirical evidence, or direct

empirical evidence.

Some theoretical studies [2–3] have concluded that GR may

only be selected for under very restricted conditions, whereas

selection for ER shares no such restrictions. For this reason these

studies suggest that GR may exist only because factors buffering

environmental variation exert a similar (though selectively neutral)

canalizing effect on genetic variation. However, such studies do

not demonstrate whether environmental buffers are actually

capable of buffering genetic variation. A different approach was

taken in a pioneering theoretical study [4] that used computational

modeling of RNA secondary structure to demonstrate an

association between ER and GR; but whether this finding also

applies to living organisms has not been established.

Indirect empirical studies usually show an association between

GR and ER, either across species or across phenotypes. For

example, in a study of five traits in Drosophila melanogaster, the traits

with highest GR also had the highest ER [5]. Likewise among five

strains of an RNA virus, GR (for plaque size) correlated with ER

[6]. Indirect evidence is not conclusive, however, because

alternative explanations (other than GR and ER being caused

by the same factors) are quite plausible. For example, in the RNA

virus study [6], the strains with greatest robustness were also the
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ones that had accumulated the most deleterious mutations, so it is

possible that factors responsible for the changes in GR and ER

were independently mutated in these most-mutated strains. In the

Drosophila study [5], different traits had different mutational

variances, confounding any comparison of robustness between

traits [7]. Finally, GR and ER can also show a negative association

[8], or no association [9–10].

Direct empirical investigations have been rare, despite having

the potential to provide the most convincing answer to this

question. Hsp90, the most well-studied buffer of genetic variation,

has also been shown to buffer micro-environmental variation in

Arabidopsis thaliana [11–12] and Drosophila [13]. The most

important limitation of these studies for answering questions

about phenotypic robustness in general is that it is not clear if the

results from Hsp90 will apply to the hundreds or thousands of

other buffering factors present in living systems [14] as well.

Quantitative genetics offers a promising approach to disentan-

gling the genetic and environmental components of phenotypic

robustness. In particular if the robustness of some trait is

polymorphic within a species, and if genomic regions that

contribute to polymorphic GR or ER could be genetically mapped

to quantitative trait loci (QTL), then a comparison of the regions

contributing to each type of buffering would indicate whether the

same factors (or at least the same regions of the genome) contribute

to each type of buffering.

Loci influencing polymorphic ER of morphological traits have

been genetically mapped in Saccharomyces cerevisiae [15], Arabidopsis

[12,16], and Drosophila [17]. QTL affecting the related phenom-

enon of developmental stability (typically measured by fluctuating

asymmetry–variation in a trait that is repeated at least twice in

each individual, such as the size of teeth on the left vs. right sides of

a mouse) have also been mapped [18–19]. In contrast to ER, no

loci influencing GR have yet been mapped (see Materials and

Methods).

We have developed a framework for the genetic mapping of

alleles that influence the buffering of environmental and genetic

variation. By applying this framework to genome-wide gene

expression data, we are able to explore ER and GR in the context

of thousands of traits simultaneously, providing the means to

empirically characterize general properties of ER and GR, and

how they relate to one another. Using this methodology, we

present an analysis of the genetic architecture of phenotypic

robustness.

Results

A Method for Genetic Mapping of Phenotypic
Robustness

The GR for any group of strains (composed of genetically

identical individuals) can be measured as a trait’s between-strain

variation; this GR can then be compared with that of another

group (containing comparable natural genetic variation). If strains

within a species differ in their GR, then their GR is polymorphic

(note that a strain could have higher GR for one trait but lower

GR for another). Polymorphic GR is a form of epistatic gene-gene

interaction that uncovers cryptic genetic variation: in the strains

with higher GR, genetic variation is (by definition) suppressed,

resulting in a constant trait value even in the presence of a varying

genetic background. If a difference in GR between two groups of

strains is caused by a single polymorphic factor, where one allele is

a more effective buffer than the other, then the polymorphism is

epistatically interacting with at least one (and perhaps many) other

polymorphism(s). The observed difference in GR is the result of

this interaction. Not all epistatic interactions affect GR, however.

For example, if the direction of effect of one allele depends on the

genotype at a second locus, but the trait variance is not affected by

the genotype at the second locus, then this is not a GR QTL. We

note that while some factors (e.g. Hsp90) buffer genetic variation at

many loci, factors that buffer only one or a few polymorphisms fit

equally well into the definition of GR.

The situation is similar for polymorphic ER. A trait’s ER can

differ between two groups of strains due to a polymorphic factor

where one allele buffers environmental variation more effectively

than the other. In this case, it is a gene-environment interaction,

meaning the effect of environmental variation depends on the

genotype at the buffering locus. In such a context, ER can be

quantified by the within-strain variation of a trait.

It is important to understand how QTL for ER and GR differ

from more ‘‘typical’’ QTL. A typical QTL is one where the mean

of a trait is significantly associated with the genotype at some

genetic marker(s), indicating that some polymorphism(s) linked to

the marker(s) (or the marker itself) affect the associated trait. Fig. 1a

illustrates a QTL affecting the mean size of inbred strains of mice:

four individuals from each of eight strains are shown, and all 16

individuals with the AA QTL genotype (left pane) are smaller than

any of the 16 BB individuals (right pane). Also note the lack of

within-strain variation: all individuals within any single strain

(columns) have equal sizes. This is in contrast to an ER-QTL

(Fig. 1b), where within each AA strain half of the individuals are

smaller than the BB mean and half are larger, though the mean

size is no different between the genotypes. Because individuals

within any inbred strain are essentially genetically identical, the

increased within-strain variances in AA strains reflect decreased

ER (stochastic differences between individual cells may also

contribute to the within-strain variance when the phenotype in

question is at the single-cell level). In this example, we can

conclude that the polymorphic ER is likely due to a polymorphism

linked to the marker whose genotype (AA/BB) is shown. As

mentioned above, this type of ER QTL mapping has been applied

previously [12,15–17].

Alleles affecting GR can be mapped in an analogous way.

Instead of differences in within-strain variation (Fig. 1b), the

signature of polymorphic GR is a difference in the between-strain

variation (Fig. 1c). Using the median phenotype value of each

inbred strain will substantially reduce micro-environmental effects

(assuming no systematic differences in the environment for the

different strains); any difference in the dispersion of medians

within one genotype group (AA) versus the other (BB) then

indicates polymorphic GR. Despite the existence of an extensive

literature concerning ER and GR [1–17] and studies that have

genetically mapped ER QTL [12,15–17], no previous studies have

mapped GR QTL, and no study has systematically explored GR

and ER in the context of thousands of molecular traits. Finally, an

allele that affects both GR and ER will cause differences in both

within- and between-strain variation (Fig. 1d), again with no

difference in the trait mean between the two genotype classes.

Any standard QTL mapping techniques can be applied to

mapping ER alleles, simply substituting within-strain trait

variances for the (typically used) within-strain trait means.

However, to map GR alleles the variation between entire groups

of strains (segregated by the genotype at some marker, as in Fig. 1c)

must be compared. Many statistical tests exist for contrasting the

variation in multiple groups; we chose to use a variant of the

Fligner-Killeen test (see Materials and Methods), which is a test of

dispersion that has been shown to be more robust and powerful

than scores of other such tests [20–21], but has not been applied to

genetic mapping. Because it is a non-parametric rank-based test, it

does not require any particular distribution of data points, and is
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robust to outliers. To ensure that only effects on trait variability

were considered, in all analyses we discarded any trait/marker

pairs with even marginally (nominal p,0.01) significant associa-

tion between marker genotype and trait median (see Materials and

Methods).

Our approach is attractive in several respects. First, it is

unbiased in the sense that it can be applied to any quantitative trait

and any genetic polymorphism, much like traditional genetic

mapping methods; in fact it can even be applied to previously

published data sets, where appropriate replication of phenotype

measurements in genetically identical individuals exists. Second, it

uses the same individuals/phenotypes/genetic markers to map

both GR and ER, allowing for straightforward comparison

between the results of each. And third, it is computationally

efficient, allowing millions of trait/marker pairs to be analyzed in a

short time frame.

Figure 1. Types of QTL discussed. For each QTL type, four genetically identical mice from each of eight inbred strains (columns) are shown. Half
of the strains have genotype AA at a particular genetic marker (left panes), and half have genotype BB (right panes). a. A ‘‘typical’’ QTL that affects the
trait mean: all individuals with genotype BB are larger than any individuals of genotype AA. Thus a polymorphism linked to the genetic marker affects
the trait’s mean value. b. An environmental robustness (ER) QTL: The mean trait value is identical for each strain, but there is greater within-strain
variance for strains with genotype AA. Thus a polymorphism linked to the genetic marker affects the trait’s sensitivity to the environment (a gene-
environment interaction). c. A genetic robustness (GR) QTL: The mean trait value is identical for each genotype, but not for each strain; there is
greater between-strain (but not within-strain) variance for strains with genotype AA. Thus a polymorphism linked to the genetic marker affects the
trait’s sensitivity to the genetic background (an epistatic gene-gene interaction). d. A combined ER+GR QTL: Again the mean trait value is identical for
each genotype, but there is both greater between-strain and within-strain variance for strains with genotype AA. Thus a polymorphism linked to the
genetic marker affects the trait’s sensitivity to both the genetic background and the environment.
doi:10.1371/journal.pone.0008635.g001
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Mapping Genetic Robustness in Mouse
We chose to use gene expression levels as our quantitative traits,

because they are numerous–allowing thousands of traits to be

studied simultaneously–and have been shown to be amenable to

quantitative genetic analysis [22]. To this end we generated

genome-wide gene expression measurements from the livers of

,20 individuals from each of 19 diverse inbred mouse lines (see

Materials and Methods)–a total of 370 mice (182 females and 188

males). These inbred lines have previously been genotyped at

,157,000 single-nucleotide polymorphisms [23], providing a

dense set of genetic markers for testing.

Applying our algorithm for mapping of GR loci (Fig. 1c) to the

most informative microarray probes/markers (see Materials and

Methods), we identified hundreds of gene expression traits at the

maximum possible significance level for this data set (p,0.0001).

An example of such a maximally significant hit is shown in

Fig. 2a: one genotype group (nine strains) forms a tight cluster of

median expression levels, while the other genotype group (ten

Figure 2. Genetic robustness QTLs in mouse. a. An example of a GR QTL in the mouse gene expression data set. A histogram of expression
levels from mice of one genotype (red) form a tight unimodal distribution, while those of the other genotype (blue) form a much wider bimodal
distribution. The median values for each genotype are required not to be significantly different. b. GR QTLs in males. Transcripts are arranged in the
genomic order of their genes along the Y-axis and genetic markers are in genomic order along the X-axis. Small black dots located at the intersection
of a particular row and column indicate trans-acting hits between the trait/marker combination represented by that row/column; larger red dots
indicate cis-acting hits. c. Left pane: the estimated fraction of true-positive male GR hits that is cis-acting. Right pane: the same as the left pane, for
females. d. Left pane: the overlap between male and female GR QTLs. Right pane: the overlap between male and female cis-acting GR QTLs.
doi:10.1371/journal.pone.0008635.g002
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strains) is split into a bimodal distribution straddling the tightly

clustered group (Specifically, every expression level from the

bimodal group is further from that group’s median value than

any expression level from the tightly clustered group is from that

group’s median, and the two medians are not significantly

different from one another. As long as these two criteria are met,

the actual values of the data do not affect the significance of our

rank-based metric.). Because statistical power is limited with only

19 strains, our results should be interpreted as a coarse-grained

view of robustness QTL.

Among males, 233 gene expression traits mapped at this

maximal significance to an average of 20.2 non-redundant genetic

markers each (Fig. 2b); in females, 261 traits mapped to 21.2

markers each (Fig. S1a) (finding ,20 markers per trait was not

surprising, considering the strong correlations between many

marker pairs, usually those in close genomic proximity). To assess

whether this could occur by chance, we permuted the data set and

ran our algorithm on the randomized data (see Materials and

Methods). Repeating this over ten-thousand times, we never

observed as many associations as in the real data (p,0.0001 for

both males and females), confirming that GR was polymorphic

and genetically mappable for many transcripts. Tests of population

stratification, batch effects, SNPs disrupting probe hybridization,

and systematically inflated p-values all showed the lack of any

confounding factors (see Materials and Methods).

Using gene expression levels as traits has an advantage over

most other phenotypes: if the gene encoding the transcript in

question is located close in the genome to a marker that is a

significant hit for that trait, then it can be inferred to most likely be

a cis-acting polymorphism. If instead the marker is far away from

the gene or on a different chromosome, then it is likely trans-acting

[22]. We classified an expression trait as likely having a cis-acting

basis (a ‘‘cis hit’’) if its GR mapped to at least one marker within

5 mb of the gene itself.

The number of cis hits we observed was greater than expected

by chance. In males, 39 GR QTL were cis-acting (Fig. 2b red

points; p,0.0001), and in females, 46 were in cis (Fig. S1a, red

points; p,0.0001). We estimate that in males, 35% of all true-

positive hits are cis-acting; in females, this figure is 34% (Fig. 2c)

(see Materials and Methods). Therefore in both sexes, cis hits make

up over a third of the loci influencing GR.

We found no evidence for any sex-specificity of GR QTL (see

Materials and Methods); therefore the overlap between the male

and female lists is reflective of our test’s statistical power. This

overlap consisted of 78 transcripts (Fig. 2d and Fig. S1b),

indicating reasonably high power of our test. The male/female

overlap among the cis-acting subset of hits was higher still, with 25

overlapping transcripts (Fig. 2d).

We did not find any GR QTL hotspots (loci where the GR of

many transcripts maps), as can be seen from the lack of vertical

‘‘stripes’’ of points in Fig. 2b and Fig. S1: most markers were

associated with only one of the 78 transcripts, and the maximum

number of transcripts mapping to a marker was ten. Thus

polymorphisms affecting GR appear each to influence only a small

number of traits. Furthermore, the transcripts affected by GR

QTL did not show any bias in functional annotation, suggesting

that polymorphic GR is not limited to any particular annotated

class of genes.

Mapping Environmental Robustness in Mouse
We employed the same mouse gene expression data set

described above to identify loci influencing ER, using the

approach illustrated in Fig. 1b. A within-strain standard deviation

was calculated for each trait/strain combination, which was

analyzed using an additive model (see Materials and Methods). We

found 211 transcripts mapping to an average of 7.6 markers each

in males (p = 0.005; Fig. 3b), and 219 transcripts each mapping to

7.6 markers in females (p = 0.006; Fig. S2a). We did not detect any

confounding factors affecting our ER QTL mapping (see Materials

and Methods).

In contrast to GR QTL, for ER QTL we found only seven cis

hits in females, and four in males (Fig. 3b red points and Fig. 3c).

These are almost exactly what would be expected by chance in

lists of these sizes (,6.5 expected for each), so they do not support

the hypothesis that even a subset of ER alleles are cis-acting. In

fact, considering that we were able to find strong evidence of cis

hits among the GR QTL, this result suggests that nearly all ER

QTL in our list are likely to be trans-acting.

Repeating the male/female overlap test on our lists of ER QTL,

we found seven transcript/marker pairs shared between the two

lists (Fig. 3d), which is only slightly more than the random

expectation of 1.2. This is in contrast to the much larger overlap

between male and female GR hits (Fig. 2d). This lack of male/

female overlap is due to a marked sex-specificity of ER QTL (see

Materials and Methods), quite unlike the non-sex-specific GR

QTL.

We next tested predictions made by a subset of the ER QTL

in an independent data set. We generated genome-wide gene

expression data from the livers of seven female mice from each

of two strains (A/J and C57BL/6J [B6]) that were part of our

original 19 strain data set. Even though the micro-environmen-

tal variation in this new data set is completely independent from

that in our original data set, we predicted that the ER QTL

would have a similar buffering effect. In two sets of genes, where

expression levels were predicted to be more variable in either

A/J or B6, we observed confirmation rates of 61% (34/56 genes)

and 63% (17/27 genes) respectively (see Materials and

Methods), and the two distributions of within-strain variance

ratios were significantly different from one another (t-test

p = 0.003). Although these results do not confirm the genomic

positions of ER QTL, they do confirm the genetic basis of ER

for over 50 genes. The 11 genes with the strongest confirmations

are listed in Table 1; as with the genes buffered by GR QTL, a

wide range of functional categories are represented. The top

replicated gene, Hsd3b5 (involved in metabolism of steroid

hormones), has a replication significance of p = 1.361026.

Interestingly, this transcript was highlighted by a previous study

of B6 mouse livers that showed it to be among the most sensitive

in the entire genome to environmental perturbations such as a

common pollutant (di[2-ethylhexyl] phthalate) or dietary

restriction [24]. Our results are quite consistent with this, and

further suggest that Hsd3b5 transcript levels may not be as

sensitive to such treatments in strains with the alternate ER

QTL allele, such as A/J. As expected if ER QTL are sex-

specific, 79 male ER QTL (identified from the full 19-strain

data set) showed no evidence of replication in the independent

female expression data (t-test p = 0.27).

To test if ER QTL are tissue-specific, we profiled gene

expression in the hypothalami and kidney cortexes of a subset of

the 14 female mice used above (11 hypothalami and nine kidneys).

In both cases we found no significant difference in the expression

variance ratios for genes predicted to be more variable in A/J vs.

B6 livers (t-test p.0.18 for both). This lack of replication cannot

be attributed to the smaller number of samples used for

hypothalamus and kidney, because restricting the liver replication

analysis to the same individuals did not appreciably affect the

results. Therefore we conclude that the ER QTL we have

observed are likely to be tissue-specific.

Genetics of Robustness
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Comparing Genetic and Environmental Robustness Loci
Having successfully mapped both GR and ER QTL loci, we

quantified the overlap between them. Strikingly, we found no cases

where both ER and GR of an expression trait mapped to the same

marker, using the genome-wide significance cutoffs described

above. However, these cutoffs may be too stringent. A more

sensitive test would be to restrict our search for GR QTL within

only the ER QTL transcript/marker pairs while relaxing our GR

QTL cutoffs because of the much smaller number of tests being

performed. We restricted our search for ER QTL to within the

GR QTL hits in a similar fashion.

Even with these more sensitive tests, we found no more overlap

between ER and GR QTL than expected by chance. When

searching for ER QTL within the list of GR hits found in both

males and females (involving 78 transcripts), we tested five

significance cutoffs for defining an ER hit, spanning a wide range

of strengths (see Materials and Methods). The cutoffs were applied

to both male and female ER analyses, resulting in a total of ten

tests. The minimum p-value (assessed by randomization) for

enrichment of ER hits within the GR list across all tests was 0.06,

indicating no more overlap than expected at any threshold. The

reciprocal test, searching for GR QTL within the significant ER

hits, also showed no significant overlap: again applying five cutoffs

to both male and female lists, the minimum observed p-value for

overlap enrichment was 0.14, in agreement with the reciprocal

enrichment test. Our power calculations for each test (above)

Figure 3. Environmental robustness QTLs in mouse. a. Example of an ER QTL in the mouse gene expression set. A histogram of the within-
strain expression level standard deviations (s), which are significantly greater for one genotype compared to the other. The median values for each
genotype are required not to be significantly different. b. ER QTLs in males. Transcripts are arranged in the genomic order of their genes along the Y-
axis and genetic markers are in genomic order along the X-axis. Small black dots located at the intersection of a particular row and column indicate
trans-acting hits between the trait/marker combination represented by that row/column; larger red dots indicate cis-acting hits. c. Left pane: the
estimated fraction of true-positive male ER hits that is cis-acting. Right pane: the same as the left pane, for females. d. Left pane: the overlap between
male and female ER QTLs. Right pane: the overlap between male and female cis-acting ER QTLs.
doi:10.1371/journal.pone.0008635.g003
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indicate that this lack of overlap is unlikely to be due to insufficient

power of the tests: taking into account our power to detect ER

QTL (see Materials and Methods), at least ,14 of the 78

significant GR transcripts would be expected also to be found as

ER QTL if ER and GR QTL co-localized (probability of

observing zero overlaps ,1026), and even more ER hits would

be expected also to be found as GR QTL. Finally, simulations

demonstrated our ability to identify joint ER+GR QTL when they

exist (see Materials and Methods).

Mapping Genetic and Environmental Robustness in
Arabidopsis and Yeast

While the lack of overlap between ER and GR QTL in our

mouse gene expression data was clear, whether this finding would

apply to other traits and species was not. Therefore we extended

our analysis to previously published life-history and morphological

trait data from Arabidopsis. While the number of traits examined in

these studies is necessarily small when compared to gene

expression studies, they can at least indicate whether the patterns

are consistent with the findings from our mouse study. In addition,

since the number of strains used is much larger than in our mouse

data, individual robustness QTL can be identified with much

greater confidence.

In one published study [25], the germination time of seeds from

a set of 98 recombinant inbred lines (RILs) was measured in three

environments (light, dark, and light+the gibberellin inhibitor

paclobutrazol [PB]). An average of ,12 plants from each RIL

were tested in each environment, which is sufficient replication to

allow both ER and GR mapping within each environment. We

found one significant GR QTL (Fig. 4a; uncorrected p = 0.001,

genome-wide permutation across all three environments

p = 0.039), but no ER QTL that even approached genome-wide

significance. Interestingly, this GR QTL was found in only one of

the three environments, suggesting that GR QTL can be

condition-specific (see Materials and Methods). A sensitive test

for ER QTL co-localization with this GR QTL is to test just the

most significant GR QTL marker, since then no correction for

genome-wide testing is required. But even this test was not

significant (p = 0.58; 99% confidence interval [CI] = 0.23–0.99),

supporting the distinction between GR and ER QTL.

We also analyzed data from a study [26] in which four

correlated phenotypes (flowering time [FT], rosette leaf number

[RLN], cauline leaf number [CLN], and total leaf number [TLN])

were measured in two photoperiod environments, long days and

short days. An average of ,12 plants for each of 96 RILs (Nd x

Col) were measured in each environment. Here we found no GR

QTL, but a number of ER QTL: six of the eight possible trait/

environment combinations had an ER QTL (uncorrected

p,0.0006 for each; overall genome-wide permutation p = 1025),

which mapped to two loci (Fig. 4b and Fig. S3). Testing just these

six most significant trait/marker/environment combinations, we

found no evidence for overlapping GR QTL (all six had

uncorrected p.0.2 and 99% CI lower-bound p.0.05).

Another Arabidopsis data set we analyzed [27] measured the

same four phenotypes, in three environments: short days, long

days, and long days with a vernalization treatment. Approximately

10 plants for each of 162 RILs (Cvi x Ler) were measured in each

environment. We found a result similar to above, with six of the 12

possible trait/environment combinations having at least one ER

QTL (Fig. 4c; uncorrected p = 0.001 for each, overall genome-

wide permutation p = 0.003), but no significant GR QTL. Testing

only the most significant ER QTL trait/marker/environment

combinations for GR QTL, we still did not find any evidence for

more than a slight (,0.5%) chance of one co-localizing GR QTL

(see Materials and Methods).

With this data set it is also possible to separately map QTL

buffering different types of environmental variation. We define

micro-environmental variation as variation within a single

treatment group (e.g. long days), and macro-environmental

variation as the variation between treatment groups. Macro-

environmental variation can be measured by taking the median

trait value for each strain within each experimental condition

(thereby removing micro-environmental fluctuations, as in the first

step of GR QTL mapping) and then calculating the within-strain

standard deviation for each trait median across all conditions

tested. With only three macro-environments in the experiment

[27], estimates of macro-environmental variation are based on

only three data points per trait and thus may be subject to a great

deal of error, but they will at least be independent of the micro-

environmental variation (note that all the ER QTL we report in

mice are micro-ER QTL). We found ‘‘macro-ER QTL’’ for all

Table 1. The 11 ER QTL with most strongly confirmed predictions.

Gene symbol
% within-strain variance
explained by ER QTL QTL chr QTL pos

Predicted more
variable strain

B6:A/J log2
variance ratio

Hsd3b5 58.3 15 46057296 B6 7.6

T 62.7 9 43663988 B6 4.3

BE655403 57.8 6 80679828 B6 3.0

Olfr125 84.2 1 1.72E+08 B6 3.1

1110065F06Rik 56.5 11 63036066 B6 3.2

Spon2 63.6 2 77180992 B6 2.5

Chrna4 59.5 5 8411367 B6 3.2

Slc25a25 69.3 6 53955400 A/J 22.7

Aacs 78.4 1 27827338 A/J 22.9

Il23r 53.9 6 6583041 A/J 23.1

Sdf2l1 54.3 1 1.84E+08 A/J 22.6

Genes with ER QTL from the 19-strain set whose genotypes differed between A/J and B6 strains were tested in an independent group of A/J and B6 female livers (see
Materials and Methods). The 11 genes with the strongest confirmation (measured by magnitude of the B6:A/J variance ratio in the replication data set) are shown.
doi:10.1371/journal.pone.0008635.t001
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four traits, using the same significance cutoffs as for ‘‘micro-ER

QTL’’ above. These occurred at two loci, one of which was in

precisely the same location as a micro-ER QTL affecting CLN

variation in short days (Fig. 4c). Although co-localization of QTL

does not prove a single factor is responsible for both, the overlap is

nevertheless striking, and is consistent with the hypothesis that the

same polymorphism(s) are buffering very different types of

environmental variation.

To determine the pattern of ER/GR QTL overlap in a species

aside from multicellular diploids such as mouse and Arabidopsis, we

also analyzed a set of morphological traits in haploid S. cerevisiae, a

unicellular yeast. Using automated high-throughput microscopy,

281 traits were previously measured in 62 yeast strains from a

genetic cross between two diverged parental strains [15]. Because

these measurements were performed on over 600 different

individuals of each strain from three replicate cultures, the

within-strain variability in each trait is reflective of micro-

environmental and stochastic differences; within-strain coefficients

of variation (CVs) were reported for 220 traits. These CVs were

compared to strain genotypes, and 25 CVs were found to map to

28 QTL where the trait means did not also map [15]. Genetic

mapping of within-strain trait CVs is precisely equivalent to our

ER mapping, so we used the 25 morphological traits with ER

QTL as input for our GR mapping algorithm. At all significance

cutoffs tested–including one lenient enough to allow the GR of all

25 traits to map somewhere in the genome–we found no overlaps

between the locations of GR and ER QTL for any trait, consistent

with the findings from mouse and Arabidopsis.

Discussion

Our results suggest that many naturally occurring polymor-

phisms may buffer genetic variation, and that these polymor-

phisms are generally distinct from those buffering environmental

variation. We found similar patterns for mouse gene expression

levels, Arabidopsis life-history traits, and yeast morphological

phenotypes, implying that this segregation of buffering effects is

not limited to any one particular class of traits or species.

Underscoring the lack of overlap between different classes of

buffering QTL, for mouse gene expression traits we found

differences in their mechanistic properties as well: ER QTL are

mostly sex-specific and trans-acting, whereas GR QTL are not

sex-specific and often cis-acting (the reason for this unexpected

difference will be an interesting subject for future work). Unlike

for GR/ER QTL, we found that macro-ER QTL do overlap

micro-ER QTL, suggesting that the same polymorphism(s) might

be able to buffer very different types of environmental variation.

Both the independent replication of ER QTL and our finding of

many cis-acting GR QTL support the validity of these

preliminary results.

Our approach was designed to separate the effects of genetic

and environmental variation by measuring both within- and

between-strain phenotypic variation, but it remains possible that

this separation was not perfect. For example, if some inbred lines

were not precisely genetically identical then some genetic variation

may have contributed to our within-strain variation, or if taking

the median trait values for genetically identical individuals failed to

‘‘average out’’ all micro-environmental effects then some environ-

mental differences may be a component of our between-strain

variation. However, both of these effects (as well as any others that

reduce our ability to separate sources of variation) will tend to

increase the overlap between ER and GR QTL, and thus make our

results conservative.

It should be noted that the within- and between-strain trait

variation we have studied can have many potential sources. Aside

from false positive associations that occur in any studying mapping

thousands of traits (which we account for by permutation testing;

see Materials and Methods), the only statement we can make

about the sources of the phenotypic variation we observe is that

they are ultimately rooted in the genetic differences between

strains in our panel. We cannot make any inferences about the

actual biological mechanisms by which these alleles exert their

effects. For example, phenomena such as behavior could be

involved: if one strain has a more variable sleep/wake cycle than

another, the expression of many genes may show a concomitant

increase in variability. Alternatively, genetically-rooted differences

in the abundances of cell types in the livers of different strains

could also give rise to ER or GR QTL. While these scenarios do

technically fit the definition of robustness used throughout this

Figure 4. Genetic and environmental robustness QTLs in
Arabidopsis. a. A GR QTL for seed germination timing [25] maps to
chromosome 4. The QTL is specific to one environment (light +
paclobutrazol [PB]), and there is no co-localized ER QTL. b. ER QTLs for
two (highly correlated) traits, rosette leaf number (RLN) and total leaf
number (TLN) [26], map to chromosome 5. There is no co-localized GR
QTL. c. An ER QTL for cauline leaf number (CLN) [27] in short days
(‘‘micro-ER’’) is located on chromosome 5. This co-localizes with a
macro-ER QTL for CLN, but not with any GR QTL. The figure begins at
,32 cM into chromosome 5 because to the left of this position are two
QTL for trait means, and thus these regions are not considered for ER or
GR QTL mapping.
doi:10.1371/journal.pone.0008635.g004
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work, whether robustness should be defined to exclude such cases

is an issue we will not attempt to address here.

These findings have a number of implications for our

understanding of canalization and evolution. Polymorphisms are

the raw material for natural selection, so studying the properties of

polymorphic alleles reveals what avenues are available for

evolution. Of course we have only examined a snapshot of

polymorphisms, and it is entirely possible–indeed, almost certain–

that some polymorphisms are capable of buffering both genetic

and environmental variation. If these dual buffering alleles are in

fact exceedingly rare, as suggested by this analysis, then they

would have to confer a vastly superior fitness advantage to be

driven to fixation (100% frequency within a species) at higher

rates than the far more common alleles buffering just one type of

variation. Based on theoretical work [2–3] a great fitness

difference seems unlikely (see Materials and Methods), so we

favor the hypothesis that canalizing factors fixed in a species will

also usually buffer only one type of variation. It is even possible

that most canalizing factors are fixed by neutral drift, in which

case the properties of common buffering polymorphisms (includ-

ing their tendency to confer GR or ER, but not both) would

closely parallel the properties of fixed alleles, because the fixed

alleles would be a random subset of the common polymorphisms.

Indeed, the fact that even traits important to fitness (such as

germination time and flowering time in Arabidopsis) have

robustness QTL suggests the absence of strong stabilizing

selection and a more dominant role for neutral drift (see Materials

and Methods for further discussion). However in the (perhaps

rare) instances when buffering of a trait becomes strongly

(dis)advantageous, our finding that abundant genetic variation in

phenotypic robustness exists implies that selection could often act

rapidly by fixing existing alleles.

The ability to genetically map both ER and GR QTL, along

with the knowledge of the existence of GR QTL, opens up

possibilities for future work. One important question that could be

addressed is whether robustness QTL affect complex human

disease phenotypes, in addition to the phenotypes studied here.

Existing data from genome-wide association studies (GWAS) in

humans could be re-analyzed to find polymorphisms affecting the

within-genotype variation in clinically important quantitative

traits; these would almost surely be missed by current approaches

to analyzing GWAS, and may increase our understanding of the

risk factors involved in complex diseases [28]. If robustness QTL

are identified, twin studies could then reveal whether such

polymorphisms affect ER or GR: ER QTL would have the

property that monozygotic twins with the less robust genotype

would show greater difference from one another than those with

the more robust genotype (analogous to the greater within-strain

variance of the less robust ER QTL allele), while GR QTL would

show no such difference in twin variability.

Many other avenues for follow-up work exist as well. For

example, recombinant inbred lines established from normally

isolated races or interfertile species could reveal buffering effects of

factors fixed since the divergence of those populations. Knowledge

of the properties of canalizing polymorphisms will allow more

empirically-grounded theoretical work on the evolution of

canalization, as well as potential roles for robustness QTL in

phenotypic plasticity and evolvability, to be carried out. Exper-

iments involving different types of environmental variation (e.g.

field studies) may reveal many new ER QTL, whose properties

could be compared with the laboratory-based ER QTL reported

here. And finally, we can now start to examine ER and GR QTL

for signs of natural selection acting upon them. This may point us

towards the answer to another fundamental question: whether

canalization is most often a product of natural selection, or just a

by-product of random drift.

Materials and Methods

Data Generation
The 19 inbred lines profiled for this study were 129S1/SvImJ,

A/J, AKR/J, BALB/cByJ, C3H/HeJ, C57BL/6J, C57BLKS/J,

C57L/J, CAST/EiJ, CZECHII/EiJ, DBA/2J, FVB/NJ, LG/J,

NOD/LtJ, NZB/BlNJ, PERA/EiJ, SJL/J, SM/J, and SWR/J. All

mice were reared at Jackson Laboratories in Bar Harbor, ME and

shipped to Jackson Laboratories in Sacramento, CA (JAX West) at

7 weeks of age. Mice were maintained on a 12 h light-dark cycle

and fed ad libitum (Purina Chow from Ralston-Purina Co., St.

Louis, MO). At 20 weeks of age all mice were euthanized and liver

tissues were collected, flash frozen in liquid nitrogen, and stored at

280 degrees C prior to RNA isolation. In addition, 14 females

from two inbred lines (A/J and C57BL/6J) used for replication of

ER QTL were reared at The Mouse Clinical Institute in

Strasbourg, France. All mice were maintained on a 12 h light-

dark cycle and fed a chow diet ad libitum until 7 weeks of age, at

which point they were switched to a high-fat diet. At 16 weeks of

age all mice were euthanized and liver, hypothalamus, and kidney

cortex tissues were collected, flash frozen in liquid nitrogen, and

stored at 280 degrees C prior to RNA isolation. All procedures of

housing and treatment of animals were performed in accordance

with IACUC regulations.

RNA preparation and array hybridizations were performed at

Rosetta Inpharmatics. The custom ink-jet microarrays were

manufactured by Agilent Technologies (Palo Alto, CA). A custom

array was designed for this study and consisted of 39,280 non-

control oligonuceotides extracted from the mouse Unigene clusters

and combined with RefSeq sequences and RIKEN full-length

cDNA clones. Mouse liver tissues were homogenized and total

RNA extracted using Trizol reagent (Invitrogen, CA) according to

manufacturer’s protocol. Three mg of total RNA was reverse

transcribed and labeled with either Cy3 or Cy5 fluorochrome.

Labeled complementary RNA (cRNA) from each animal was

hybridized against a cross-specific pool of labeled cRNAs

constructed from equal aliquots of RNA from representative

animals for each strain. The hybridizations were performed in

fluor reversal for 24 hours in a hybridization chamber, washed,

and scanned using a confocal laser scanner. Arrays were quantified

on the basis of spot intensity relative to background, adjusted for

experimental variation between arrays using average intensity over

multiple channels, and fitted to a previously described error model

[29] to determine significance (type I error). Alternative normal-

ization, such as median-centering, did not appreciably affect our

results. All microarray data are MIAME compliant and have been

deposited in the NCBI GEO database under accession number

XXXXX.

ER and GR Mapping
For both ER and GR mapping in mouse, we only considered

transcripts with s.0.15 (median within-strain s for ER mapping

and between-strain s for GR mapping), since probes with little or

no variability across all samples are unlikely to show large

differences in variability between subsets of samples. The results

were largely robust to variation in this threshold, with the primary

effect being that decreasing the stringency increased both the FDR

and the number of hits. Any differences in transcript lists were

taken into account when calculating overlaps between lists. In

addition we restricted our analyses to the ,9,000 most informative

markers, namely those with allele frequencies closest to 50%
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(minor allele present in 9/19 strains), to maximize our power for

genetic mapping.

For all analyses we excluded any QTL for trait medians, to

focus on effects restricted to trait variability. We used the same

correlation approach as for ER QTL (above) to find QTL for

medians (with an uncorrected p,0.01 cutoff). Because these p-

value cutoffs determined what trait/marker pairs we excluded from

our analysis, not correcting for multiple tests is conservative; if we

were to take into account the tens of millions of tests being

performed in each QTL scan of the mouse gene expression data,

the nominal p-value needed to pass a Bonferroni correction would

be ,1029, meaning that far fewer trait/marker pairs with

moderate-strength ‘‘typical’’ QTL would be excluded.

The basis for our GR mapping is the median variant of the

Fligner-Killeen test [20–21]. In this test, all data from two or more

median-centered groups are merged into a single list and then

ranked. The difference between each rank and the median rank is

then combined within groups and used as a measure of each

group’s dispersion:
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where k groups (in the present context, k = 2) are represented by

index i and individual data points within each group by index j; Xij

is a data point; N is the total number of data points in all groups; ni

is the number of data points in group i; W21 is the inverse normal

function; a is the grand mean a value; ~XX i is the median Xij value for

group i; and ai is the mean a value for group i. The test statistic d is

distributed as a x2 with k21 degrees of freedom; a p-value

computed based on d represents the probability of observing a

particular GR QTL by chance (although we do mention these p-

values in the text, we assess their true significance by permuation,

described below). We note that when any ni is odd, then one

element of Xij{~XX i is guaranteed to be zero, which introduces a

slight bias against identifying the odd-numbered group i as a high-

dispersion subset if at least one other ni is even. This bias shrinks

with increasing n. One possible variant of the test that avoids the

bias altogether is to replace ~XX i by X
i
; in practice this tends to

increase the number of hits but also the FDR at a given

significance threshold, so we have not used it in this work. Since

the bias applies equally to our permuted data, it did not affect our

statistics. Note that a maximally significant Fligner-Killeen test

result for a given sample size does not imply that a particular

marker’s genotype explains all of the variance in the phenotype

being mapped (as a maximally significant result would indicate in

the context of traditional genetic mapping), but rather that the

dispersions of the rank order of phenotype values for each

genotype are as different as they possibly could be.

ER mapping was done by calculating a within-strain standard

deviation for each trait, separately for males and females. A linear

Pearson correlation (precisely equivalent to a t-test in this context)

was then calculated between these standard deviations and the

genotypes at every eligible genetic marker. In the mouse analysis

the genotype had to explain at least 50% of the variation in within-

strain variability (corresponding to a nominal p,0.00085) to be

counted as an ER QTL (this does not mean that each gene can

have only one significant marker, since marker genotypes can be

highly correlated with one another, and so can explain

overlapping portions of the variance). Correcting for the median

or mean (by using the coefficient of variation) did not substantially

impact our results, because all ‘‘typical’’ QTL—even extremely

weak ones (nominal p = 0.01)—were already excluded from the

analysis.

All p-values (except where noted as uncorrected p-values) were

estimated for both GR and ER mapping by randomly permuting

genotypes, so that one strain’s genotypes were paired with

another’s phenotypes, and then comparing the observed results

to the distribution of permuted results. This preserves the

correlation structure both between markers and between traits,

and thus is an appropriate method to estimate p-values. We note

that in these inbred mouse lines, many unlinked markers show

strong correlations with each other, which can lead to a single trait

having apparent QTL at many different loci, when in fact only

one is truly causal. While such effects will tend to dilute our signal

and make it harder to pinpoint the causal locus, they will not cause

the appearance of false QTL when none actually exist. Most

importantly, any effects of marker genotype correlations will be

accounted for by our permutation strategy.

These permutation tests allow us to estimate the false discovery

rate (FDR) among GR and ER QTL, by comparing the observed

number of QTL to that seen in the randomizations. For GR QTL,

we found FDRs of 63.1% in males and 58.1% in females. For ER

QTL, the FDRs are 72.0% for males and 70.1% for females.

These high FDRs underscore the notion that with only 19 strains,

we can only provide a coarse-grained view of these QTL. The fact

that ER QTL can be confirmed (Table 1), and that GR QTL are

often cis-acting, both support the notion that our QTL list

contains many true-positives.

Combining the male and female GR QTL would have led to an

overestimate of the number of significant loci in this intersected set

if randomizations were done separately for males and females.

This is because the male and female data are not actually

independent (they share genotypes), so more overlap would be

expected by chance than would be estimated from separately

permuting each gender’s data and then intersecting the results. For

this reason, we permuted the male and female data together (e.g.

the genotypes of strain X were paired with the phenotypes of strain

Y, for both males and females), and estimated the expected

overlap from these shared permutations.

To estimate the fraction of true-positive GR hits that is cis-

acting, we calculated the overall number of true-positives (total hits

minus false positives) involving microarray probes that could be

assigned to a unique genomic location and the number of cis-hit

true-positives (cis hits minus false positives). The ratio between

these two is equal to the approximate fraction of true-positives that

act in cis (this follows from the fact that cis-QTL are a subset of all

QTL, we used the same thresholds for cis and trans-hits, and we

have estimates for the number of true positives of each). For males

this is 35%; for females, 34%. The analogous estimate for cis-

acting ER hits yields zero for males (since the observed number is

slightly below the expected), and 0.8% for females, which is

statistically indistinguishable from zero.

We calculated enrichments of Gene Ontology annotations near

significant GR QTL, but did not find any significant enrichments

(though our power to detect any enrichments was low, due to the

large size of genomic regions associated with most transcripts).

One significant marker was located close (55 kb) to one of the

three HSP90 genes in the genome, but this is not unexpected given

the large number of significant markers. To perform this analysis
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we tested both the closest gene to each marker, and also all genes

within 100 kb. As controls we used randomly chosen markers, as

well as markers resulting from GR QTL permutation runs.

Testing of ER QTL Predictions
Testing of the ER QTL in additional A/J and C57BL/6J mice

was performed as follows. To be included in the set of predictions

tested, a gene had to be the target of an ER QTL whose genotype

differed between A/J and C57BL/6J, and also had to have no

more than one missing data point in each of the two groups of

replication microarrays. We defined confirmation as the correctly

predicted strain having higher variation. Because the ER QTL

make relative (not absolute) predictions about within-strain

variation, we used the average within-strain variance ratio for

genes not predicted to be different between the two strains as a

baseline for comparison to our predictions (to account for the

possibility that one strain tends to be more variable in general than

the other, which would skew the confirmation results). With a

sample size of seven mice of each strain, a variance ratio of 5.8 is

needed to reach a nominal significance of p = 0.05 (by F-test).

Among the 83 genes tested for replication in female liver, by

chance we would expect to see ,2.1 genes agreeing with our

prediction of which is the more variable strain at this two-sided

p = 0.05 cutoff, and ,2.1 disagreeing. Consistent with the latter,

we found 3 genes disagreeing; however we found 11 genes in

agreement (Table 1), which is significantly (p = 1026) greater than

the 2.1 expected. The top gene, Hsd3b5, had a 194-fold (7.6 on

a log2-scale) difference in variance between B6 and A/J, yielding

an F-test p = 1.3e-6. Given that 83 genes were tested, the

probability of observing one replicating this strongly by chance

is 8361.3e-6 = 0.0001.

Testing for Confounding Effects
Because the mice in our experiment were kept in multiple cages

and shipped to JAX West on multiple dates, we tested whether this

may have introduced systematic errors (‘‘batch effects’’) into our

data. We classified every pair of mice with the same strain and sex

into three partially overlapping groups: those that shared a cage

(n = 116), those that were shipped together (n = 94), and those that

were neither caged nor shipped together (n = 359). If cages or

shipping affected our data in any systematic way, we would expect

expression levels from pairs in one or both of the first two

categories to be more highly correlated than pairs in the third

category. However, we observed similar average correlations in all

three groups: r = 0.691, 0.706, and 0.685, respectively (s.0.11 for

all three). Therefore we conclude that cage and shipping effects did

not greatly influence the expression data.

Our permutation method does not account for the population

structure of the mouse strains. Because some strains are more

closely related than others, this could in theory introduce

artifactual QTL, for example if one monophyletic clade had more

variability for a trait than another (the potential pitfalls of

measuring canalization in groups with unequal genetic variation

have been stressed previously, e.g. [10]). Under any type of

population stratification, more closely related strains would co-

occur in the same genotype class (e.g. the high-dispersion class in

GR mapping) more than expected by chance (based on all tested

markers). To test if such stratification influenced our results, for all

171 possible pairs of our 19 mouse strains we compared

phylogenetic distance (measured by the number of differing SNP

genotypes across all markers) to frequency of co-occurring in a

genotype class for either ER or GR QTL. For both types of QTL

we observed no enrichment of co-occurrence for closely related

pairs, indicating a lack of population stratification in this data set.

As a second test of population structure, we plotted the cumulative

distribution of p-values for all four of our QTL scans (ER and GR

QTL in males and females), as done previously by numerous

studies (e.g. [30], as well as nearly all genome-wide association

studies of human populations). Under the assumption that only a

tiny fraction of marker/trait pairs will have true associations, the

distribution should follow a straight line with slope = 1 in the

absence of population structure (or any other confounding factor)

inflating p-values in a systematic fashion. All four plots showed the

absence of inflated p-values (Figure S4).

Another possibility not accounted for by permutation is if our

GR QTL actually resulted from ‘‘regular’’ QTL for trait mean

where one allele of the causal variant was present at a ,50%

frequency in the high-dispersion genotype class, but not present in

the low-dispersion class. Such a case could result in an increase in

dispersion for one genotype, which is the signature of GR QTL.

However regardless of the strength of this hypothetical regular

QTL and the causal allele frequencies in each genotype class, our

simulations of this scenario showed that the effect on trait mean is

detected much more easily than the effect on dispersion, so that

the effect on trait mean must be very significant (p%0.01) before

having even any appreciable effect on the dispersion. Because we

use a very conservative (for our purposes) cutoff of nominal

p = 0.01 to disqualify any marker/trait pair showing evidence of a

regular QTL from consideration as GR QTL, regular QTL will

not be falsely detected as GR QTL.

To test if any of our results may be affected by the presence of

SNPs within the microarray probes used to measure expression

levels, we compiled a list of 1,428 probes overlapping known SNPs

(3.6% of all probes). We found no significant enrichment for this

subset of probes in any set of our GR or ER hits, when using either

the entire genome or the subset of ,2,000 most variable probes as

the background set. This lack of enrichment indicates that

hybridization artifacts due to SNPs within microarray probes are

unlikely to affect our results.

Finally, one factor that may at first appear to be a possible

confounder in the ER QTL analysis is behavioral differences

between strains that could cause one strain to have a higher

variance for some trait than another strain. However even though

this may well occur, it is perfectly consistent with the ER QTL

framework. To illustrate this in the setting of ‘‘typical’’ QTL,

imagine a study that mapped typical QTL for obesity in mice.

These QTL could cause obesity through changed behavior (e.g.

eating more or exercising less), or alternatively through a different

mechanism (e.g. changed metabolic rate). In either case, however,

it is a genetic effect on obesity. The same holds true for ER QTL:

even if they are due to changed behavior, this behavior is rooted in

genetic differences between strains, which affects environmental

robustness and leads to ER QTL.

Testing Sex-Specificity and Power
To determine if the GR QTL were sex-specific, we compared

the number of QTL found separately in males and females to the

number found when the same set of 370 mice were split into

random halves, irrespective of their genders. Each half had the

same number of samples as in analyses separating mice by sex, but

since the partitioning was random, the number of hits in each list

could be used to determine if separating by sex is any different

than random segregation. In over one thousand random

partitionings of the data we observed an average of 5,140

(s= 272) significant transcript/marker pairs, very close to the

male/female average of 5,129, indicating that the GR QTL can

be detected equally well in both single-and mixed-sex populations,

and thus they are not sex-specific.
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Power of the ER mapping was estimated by randomly

partitioning the data into two groups (with the constraint that as

close as possible to an equal number of mice from each strain were

included in each group), performing ER mapping, and calculating

four values: the FDRs for ER hits from each group (based on 100

genotype randomizations), the overlap between groups, and the

overlap between false discoveries (from the same 100 randomiza-

tions). Because there are millions of possible marker/trait

combinations, overlaps between truly random pairs would be

negligible; but the false positives from each of our two randomly

chosen groups are not ‘‘truly random’’ in this sense, because they

share the same genotypes. For this reason we first used the

randomizations to estimate the frequency of overlaps among false

positives (8.2%), and then used this to calculate the overlaps

among true positives as all overlaps minus the expected false

positive overlaps. We then calculated power as the ratio of true

positive overlaps to total true positives. This entire process was

repeated over 1,000 times to ensure an accurate estimation of

power. The resulting figure of 28.5% should be considered a lower

bound because in the presence of sex-specific effects, the signal/

noise ratio (and thus power) will be much higher in a population of

only males or females than in a mixed population of the same size.

Because our power calculations were done in mixed populations, it

will be an underestimate of the power we have in each single-sex

group. Although this test has less power than GR mapping, with

this power we would still expect to see at least ,165 transcript/

marker pair overlaps between males and females in the absence of

sex-specific effects, in contrast to the seven that were actually

observed. Therefore we concluded that the lack of overlap

between males and females was not due to a lack of power;

instead, ER QTL in this data set are mostly sex-specific.

The expectation of ,165 overlaps in the absence of sex-specific

effects was calculated as follows: expected overlap = (number of

significant transcript/marker pairs)*([fraction true positives]*[po-

wer]+[fraction false positives]*[overlap between false positives]).

The number of significant GR transcripts expected also to be

found as ER transcripts if ER and GR QTL co-localized was

calculated as (number of GR transcripts)*(fraction true positives)*

(power), which conservatively assumes no overlaps between false-

positive ER and GR loci. For the analysis of ER and GR QTL

overlap, the five cutoffs tested for ER hits within the GR QTL list

were at correlation coefficients r = 0.6, 0.5, 0.4, 0.35, and 0.3

(explaining between 36% and 9% of the variance in within-strain

variabilities). For the reciprocal test of GR hits within the ER QTL

list, the five cutoffs were p = 7.5e-4, 1.5e-3, 3e-3, 6e-3, and 1.2e-2.

Simulations
To test if the lack of GR/ER QTL overlap could possibly be

due to our test having less power to detect ER QTL in the

presence of GR QTL (or vice versa), we turned to simulations. We

simulated data for 36105 traits, each of which had either a GR

QTL, ER QTL, or GR+ER QTL. A measure of the relative

power of our mapping methods is the ratio of true ER QTL

detected as ER QTL (at some significance threshold) to true

ER+GR QTL detected as ER QTL. If GR QTL have no effect on

our ability to detect ER QTL, then this ratio should be close to

one at all thresholds; if instead GR QTL weaken our power to

detect ER QTL, then the ratio will be greater than one. Strikingly,

at all 10 thresholds tested, the ratio was between 0.99 and 1.01

(Fig. S5a), indicating that GR QTL do not affect our ability to

map ER QTL. The reciprocal test for the effect of ER QTL upon

power to detect GR QTL yielded similar results (all 10 ratios were

between 0.97 and 1.01; Fig. S5b). In sum, our test is able to detect

dual ER+GR QTL when they exist.

Simulated data (described above) were generated to mimic our

male mouse expression data. For each trait, 182 individuals from

19 strains (91 of each genotype) were simulated. All individuals

from genotype 1 were assigned random trait values sampled from

a normal distribution with mean zero and s= 1. To simulate ER

QTL, individuals with genotype 2 were assigned random trait

values sampled from a normal distribution with mean zero and

s= 1.5. To simulate GR QTL, individuals with genotype 2 were

assigned random trait values sampled from a normal distribution

with mean = +/22 (+2 for half the strains and 22 for the other

half) and s= 1. To simulate ER+GR QTL, individuals with

genotype 2 were assigned random trait values sampled from a

normal distribution with mean = +/22 and s= 1.5. As in all

analyses above, traits where the median value correlated with

genotype at p,0.01 were discarded. For ER mapping the ten

cutoffs were between correlation coefficient r = 0.2 and 0.65 in

increments of 0.05, and for GR mapping they were between x2

values of 2 and 11 in increments of 1. At each cutoff a ratio of ER

(or GR) hits among true ER (or GR) traits to ER (or GR) hits

among ER+GR traits was calculated. Altering the strengths of the

simulated ER and GR QTL did not substantially affect these

ratios.

Arabidopsis and Yeast Analysis
Arabidopsis data were analyzed as follows. Genetic markers with

.50% missing values were discarded, and plants heterozygous at

any given marker (due to incomplete inbreeding) or missing a

marker genotype were ignored in the analysis of that marker

(neither of these filters excluded more than 1% of the data). The

same nominal p = 0.01 cutoff as above was used to discard any

marker/trait pairs where the marker was associated with trait

median. Data permutations were conducted to estimate the

probability that a given number of (GR or ER) QTL would be

found with randomized genotypes. Bootstrapping was done by

sampling the data points for each trait/environment combination

with replacement, to generate bootstrap data sets that were then

analyzed in the same way as the real data. All randomization p-

values and bootstrap confidence intervals were based on at least

1,000 permutations/bootstraps. Several Arabidopsis data sets

[31–34] were analyzed that did not contain any significant GR

or ER QTL. For yeast, the median value for each trait across all

three replicate cultures was used as input for the GR mapping,

applied as described above.

In our analysis of the data from [25], we found that GR QTL

can be condition-specific. The GR QTL from this data set

(shown in Fig. 4a) was only seen in the environment with

light+PB; at the most significant marker, uncorrected p = 0.43 in

light and 0.72 in dark; Fig. 4a). Bootstrap testing (see Materials

and Methods) revealed that at the most significant marker, the

99% CI for the p-value of GR in light+PB did not overlap with

either the 99% CI for GR in dark or the 95% CI for GR in

light, demonstrating the condition-specificity of this GR QTL.

In our analysis of the data from [27], we found only a slight

(,0.5%) chance of one co-localizing ER/GR QTL. All six ER

QTL from this data set had uncorrected p.0.02 for GR QTL,

which is not significant after correcting for six tests; five of the

six 99% CI lower bounds had p.0.01, with the sixth lower

bound at p = 0.003, indicating a 0.5% chance that one of the six

overlapped a GR QTL significant at the nominal p = 0.003

level.

Expansion of Points Made in the Main Text
In the Introduction we state that ‘‘no loci influencing GR have

yet been mapped’’. While many examples of QTL for naturally
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occurring epistatic interactions that reveal cryptic variation exist,

these have not been shown to affect GR. Alleles affecting GR must

increase the variability of a trait across different genetic

backgrounds, without affect the mean value (which is required

since loci affecting the mean will almost always affect the variance

as well).

In the discussion we state that it is unlikely a great fitness

difference exists between polymorphisms buffering one type of

variation (genetic or environmental) vs. both types. Let us

imagine the case of stabilizing selection on a trait, i.e. selection

for robustness. Theoretical work has shown that GR will be

selected for only in a very narrow range of stabilizing selection

pressures; and within this restricted range, selection for ER will

be relatively weak compared to a higher level of stabilizing

selection (for an illustration of this see Figure 9 of [3]). Therefore

at no point in the spectrum of stabilizing selection strength is the

fitness advantage of a dual ER+GR polymorphism very much

greater than both ER and GR alleles alone (in most cases

because the ER allele fitness effect dominates). We use this to

reason that since single-type buffers dominate the common

polymorphisms, they are also likely to dominate the fixed alleles,

regardless of whether most fixation takes place due to selection

or random drift.

Another point about the fitness effects of buffering polymor-

phisms is that it is entirely possible that dual buffering

polymorphisms arise frequently but are strongly deleterious and

therefore not present in our panel of strains due to negative

selection. However, such deleterious variants are not relevant to

questions of what possibilities are available for the evolution of

robustness, because they will essentially never be driven to

fixation if they are subject to strong negative selection. By

focusing on natural variation, both for ER/GR polymorphisms

themselves and for the polymorphisms being buffered by GR

QTL, we are examining only what is most relevant to the

evolution of robustness in natural populations. We note that while

studies using genetic variation produced in the lab (such as

complete gene deletion strains) can be quite informative in terms

of the factors and mechanisms underlying robustness (e.g. [14]),

they are less informative with regard to the evolution of

robustness, since most gene deletions (or equivalent null alleles)

are unlikely to become fixed—or even reach appreciable allele

frequency—in natural populations. Nevertheless, if dual ER/GR

buffers exist but have roles essential for life, then they would be

invisible to our approach, since any variants affecting their

buffering would be lethal (and the same drawback applies to

studies of gene deletion strains, which are restricted to

nonessential genes).

In the discussion we also state that ‘‘the fact that even traits

important to fitness (such as germination time and flowering time

in Arabidopsis) have robustness QTL suggests the absence of strong

stabilizing selection and a more dominant role for neutral drift.’’

Although we find this hypothesis to be the most likely, some

alternative explanations for having many robustness QTL do

exist. For example a polymorphism underlying a robustness QTL

could be under balancing selection, or could be currently

undergoing a selective sweep; different alleles could have been

fixed in different (normally isolated) populations that were each

advantageous to their own environments; or the robustness QTL

observed in laboratory settings might not be expressed as such in

the wild. Finally, we note that the existence of robustness QTL

also suggests the absence of strong destabilizing selection, i.e.

selection for trait variability, which could be advantageous for

bet-hedging strategies.

Supporting Information

Figure S1 a. GR QTL in females. Transcripts are arranged in

the genomic order of their genes along the Y-axis and genetic

markers are in genomic order along the X-axis. Small black dots

located at the intersection of a particular row and column indicate

trans-acting hits between whatever trait/marker combination is

represented by that row/column; larger red dots indicate cis-acting

hits. Only genetic markers and traits with at least one significant hit

in males or females are shown, and redundant markers (with

identical genotypes) are included. b. GR QTL found in both males

and females, with the same traits and markers as above.

Found at: doi:10.1371/journal.pone.0008635.s001 (0.16 MB TIF)

Figure S2 a. ER QTL in females. Transcripts are arranged in

the genomic order of their genes along the Y-axis and genetic

markers are in genomic order along the X-axis. Small black dots

located at the intersection of a particular row and column indicate

trans-acting hits between whatever trait/marker combination is

represented by that row/column; larger red dots indicate cis-

acting hits. Only genetic markers and traits with at least one

significant hit in males or females are shown, and redundant

markers (with identical genotypes) are included. b. ER QTL found

in both males and females, with the same traits and markers as

above.

Found at: doi:10.1371/journal.pone.0008635.s002 (0.09 MB TIF)

Figure S3 ER QTL for three (highly correlated) Arabidopsis leaf

traits in long days, and for one leaf trait in short days, map to

chromosome 2. There is no co-localized GR QTL.

Found at: doi:10.1371/journal.pone.0008635.s003 (0.11 MB TIF)

Figure S4 Test of population structure in ER and GR QTL

results. For each set of p-values, the cumulative distribution is

shown (blue). The deviation from the diagonal line (red) is

indicative of p-value inflation due to population structure or some

other systematic bias, assuming that true marker/trait associations

are extremely rare. For comparison see Figure 2 in Kang et al

(2008). a. Male GR QTL p-values. b. Female GR QTL p-values.

c. Male ER QTL p-values. d. Female ER QTL p-values.

Found at: doi:10.1371/journal.pone.0008635.s004 (0.10 MB TIF)

Figure S5 a. The ratio of true simulated ER QTL detected as

ER QTL (at a range of thresholds) to true ER+GR QTL detected

as ER QTL. If GR QTL have no effect on our ability to detect ER

QTL, then this ratio should be close to one at all thresholds; if

instead GR QTL weaken our power to detect ER QTL, then the

ratio will be greater than one. b. The ratio of true simulated GR

QTL detected as GR QTL (at a range of thresholds) to true

ER+GR QTL detected as GR QTL. If ER QTL have no effect on

our ability to detect GR QTL, then this ratio should be close to

one at all thresholds; if instead ER QTL weaken our power to

detect GR QTL, then the ratio will be greater than one.

Found at: doi:10.1371/journal.pone.0008635.s005 (0.10 MB TIF)
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