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The shape of a long leaf
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Long leaves in terrestrial plants and their submarine counterparts,
algal blades, have a typical, saddle-like midsurface and rippled
edges. To understand the origin of these morphologies, we dissect
leaves and differentially stretch foam ribbons to show that these
shapes arise from a simple cause, the elastic relaxation via bend-
ing that follows either differential growth (in leaves) or differential
stretching past the yield point (in ribbons). We quantify these dif-
ferent modalities in terms of a mathematical model for the shape
of an initially flat elastic sheet with lateral gradients in longitudi-
nal growth. By using a combination of scaling concepts, stability
analysis, and numerical simulations, we map out the shape space
for these growing ribbons and find that as the relative growth
strain is increased, a long flat lamina deforms to a saddle shape
and/or develops undulations that may lead to strongly localized
ripples as the growth strain is localized to the edge of the leaf. Our
theory delineates the geometric and growth control parameters
that determine the shape space of finite laminae and thus allows
for a comparative study of elongated leaf morphology.

growing surfaces | edge actuation | leaves | buckling | rippling

L aminae, or leaf-like structures, are thin, i.e., they have one
dimension much smaller than the other two. They arise in

biology in a variety of situations, ranging from the gracefully undu-
lating submarine avascular algal blades (1) to the saddle-shaped,
coiled or edge-rippled leaves of many terrestrial plants (2). The
variety of their planforms and three-dimensional shapes reflects
both their growth history and their mechanical properties and
poses many physico–chemical questions that may be broadly clas-
sified into two kinds: (i) How does inhomogeneous growth at the
molecular and cellular level lead to the observed complex shapes
at the mesoscopic/macroscopic level? and (ii) how does the result-
ing mesoscopic shape influence the underlying molecular growth
processes? At the molecular level, mutants responsible for dif-
ferential cell proliferation (3) lead to a range of leaf shapes. At
the macroscopic level, stresses induced by external loads lead to
phenotypic plasticity in algal blades that switch between long, nar-
row, blade-like shapes in rapid flow to broader undulating shapes
in slow flow (1). Understanding the origin of these morphologi-
cal variants requires a mathematical theory that accounts for the
process by which shape is generated by inhomogeneous growth
in a tissue. Recent work has focused on some of these questions
by highlighting the self-similar structures that form near the edge
because of variations in a prescribed intrinsic metric of a surface
(4, 5), and also on the case of a circular disk with edge-localized
growth (6–8), but does not consider the subtle role of the boundary
conditions at the free edge, the effect of the finite width of a leaf,
or the phase space of different shapes that quantify the diversity
in leaf morphology.

Motivated by our experimental observations of long leaves and
artificial mimics thereof, here we address the question of the mor-
phology of a long leaf or lamina of finite dimensions (length 2L,
width 2W , thickness H , with H � W < L). In particular, we
pose mathematically a nonlinear boundary-value problem that
accounts for the coupling of growth to the shape of a lamina.
We analyze the resulting equations by using a combination of
scaling concepts, asymptotics, and stability analysis to deduce the
various morphologies that arise and show that the finite width
of a long leaf leads to a qualitatively new class of shapes, such
as saddles and rippled surfaces. We corroborate these by using

numerical simulations to construct a simple phase diagram for
the classification of the long leaf morphology.

Observations and Experiments
Shape of a Plantain Lily Leaf. In Fig. 1A, we show a typical long leaf
of the plantain lily Hosta lancifolia. We see that the midvein cur-
vature is largest near the distal end and monotonically decreases
towards the base, whereas the lamina attached to the midvein is
bent transversely so that the leaf is shaped roughly like a saddle,
with negative Gaussian curvature. However, the edges of the leaf
show a localized undulatory rippling pattern superposed on the
global saddle-shape that is most prominent where the lamina is
the widest. This morphology is relatively common in leaves and
petals of vascular and avascular plants that grow in air and water,
i.e., it is relatively independent of the effects of gravity. To focus on
the relative role of inhomogeneous growth and the intrinsic elastic
nature of the thin leaf, we cut the lamina into thin strips parallel
to the midvein. We see that the relatively stiff midvein unbends
from its naturally curved state (when the lamina is attached to it)
to a straight state, except near its tip, whereas the relaxed length of
the strips after they have straightened is different from that when
they are part of the whole leaf. The strips further from the midvein
extend more, i.e., the nonuniform distribution of growth-induced
strain is such that it generates compressive stresses along the leaf
edges, which can lead to buckling instabilities. These observations
are consistent with prior measurements in vascular and avascular
blades (1, 2), which show similar trends.

Shape of a Stretched Ribbon. To mimic growth differentially in a
thin lamina, we stretch a naturally flat thin foam ribbon (2 mm ×
4 cm × 11 cm) inhomogeneously past its elastic limit and then
unload it. The inhomogeneous residual plastic strains that remain
cause the sheet to relax to a bent state. Moderate stretching strains
(∼5%) lead to a saddle-like shape, and large stretching strains
(∼20 %) lead to ripples along its edge, shown in Fig. 1B, along
with the lateral strain distributions shown in Fig. 1C. This gradi-
ent in plastic strain is introduced easily by pulling the edges of
the foam with fingers and it leads to a plastic strain that peaks
along the edge and decreases toward the midline. We see that the
effect of the inhomogeneous residual strain is equivalent to that
of inhomogeneous, growth-induced strain∗.

Analogous phenomena arise elsewhere and perhaps afford
easier ways to understand the basic mechanism of shaping a lam-
ina. For example, when knitting or crocheting a scarf, if the number
of stitches or knots per unit length is increased as one moves away
from the center line, the scarf first forms a saddle shape because
such a shape easily accommodates the small excess length of the
edges relative to the middle. Eventually, the edge length becomes
so large that the edge itself starts to ripple. A similar phenomenon
is seen in potato chips made by frying circular disks of soft, wet
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Fig. 1. Experiments and observations of long leaf and ribbon morphology.
(A) Shape of a plantain lily Hosta lancifolia leaf showing the saddle-like shape
of the midsurface and the rippled edges. Dissection along the midrib leads to
a relief of the incompatible strain induced by differential longitudinal growth
and causes the midrib to straighten, except near the tip, consistent with the
notion that the shape is a result of elastic interactions of a growing plate.
The dashed red line is the original position of the midrib. (B) A foam ribbon
that is stretched beyond the elastic limit relaxes into a saddle shape when the
edge strain is β ∼ 5%, but relaxes into a rippled shape when the edge strain
is β ∼ 20%. (C) The observed lateral strain ε(y) is approximately parabolic for
the saddle-shaped ribbon but is localized more strongly to the edge for the
rippled ribbon.

potatoes; the edges lose water and dry out first, after which their
perimeter remains roughly constant. Additional drying of the inte-
rior causes the disk to shrink radially and thus leads to the potato
chip to form a saddle shape with crinkled edges. In all these varied
phenomena, it is the in-plane differential strain that results in the
observed complex undulatory morphologies.

Theory of a Growing Blade
Generalized Föppl–von Kármán Equations. To understand the obser-
vations and experiments described in the previous section, we
consider a naturally flat, stress-free, thin, isotropic, elastic plate
of thickness H , width 2W , and length 2L (H � W < L) lying in
the xy plane (x along the length and the normal z in the thickness
direction). When such a plate grows inhomogeneously, different
parts of it are strained relative to one another. To quantify this

differential strain, we consider the deformation map that takes
a point on the center–surface of the flat plate with coordinates
(x, y, 0) to its deformed state (x+ux(x, y), y+uy(x, y), ζ(x, y)). Here,
(ux(x, y), uy(x, y)) is the in-plane displacement field and ζ(x, y) is the
out-of-plane displacement. Then any point in the plate (x, y, z) will
then be approximately mapped to (x + ux(x, y) + zζ,x, y + uy(x, y) +
zζ,y, z + ζ(x, y))†. Here and elsewhere A,x = ∂A/∂x. Then the in-
plane strain tensor associated with this deformation field is given
by εij = 1

2 (ui,j + uj,i) + 1
2 ζ,iζ,j, where i, j = x, y, and we have kept

only the leading order terms in the gradients of the in-plane and
out-of-plane displacement fields‡. The out-of-plane deformations
are characterized by the curvature tensor, which in its linearized
form, reads as κij = ζ,ij. The scale separation induced by the small
thickness of the plate allows for a linear decomposition of the
strain and curvature tensors to the sum of an elastic and a growth
component. Then εij = εe

ij + ε
g
ij − zκg

ij, where εe
ij(x, y) is the elastic

strain tensor and ε
g
ij(x, y) is the in-plane growth strain tensor, and

similarly, κij = ζ,ij = ζe
,ij + κ

g
ij with κ

g
ij the growth curvature tensor.

Assuming that the thin plate may be described as a linearly
elastic material with Young’s modulus E, Poisson’s ratio ν, it
has a 2D Young’s modulus S = EH and bending stiffness B =
EH3/12(1 − ν2). Then the balance of forces in the plane and out
of the plane for the thin plate lead to a generalized form of the
Föppl–von Kármán plate theory (9) given by

∇4Φ = −S(κG + λg) [1]

B∇4ζ = [
ζ, Φ

] − BΩg , [2]

where the operators ∇4A = A,xxxx + A,yyyy + 2A,xxyy and [A, B] =
A,xxB,yy + A,yyB,xx − 2A,xyB,xy. Φ is the Airy function that defines
the in-plane force per length according to Nx = Φ,yy, Ny = Φ,xx
and Nxy = −Φ,xy. Here Eq. 1 is the strain (in)compatibility
relation, whose right side that has two components: (i) metric
incompatibility due to the growth induced by Gaussian curvature
κG = 1

2 [ζ, ζ] = ζ,xxζ,yy − ζ2
,xy, and (ii) metric incompatibility due to

in-plane growth

λg = εg
xx,yy + εg

yy,xx − 2εg
xy,xy. [3]

Eq. 2 describes the balance of forces perpendicular to the sheet.
The left side is the pressure induced by plate bending, whereas
the first term on the right [ζ, Φ] = Nxκxx + Nyκyy + 2Nxyκxy is just
a generalized Laplace law due to the in-plane forces and the cur-
vature, and the second term on the right is the pressure induced
by variations in the growth curvature tensor,

Ωg = (
κg

xx + νκg
yy

)
,xx + (

κg
yy + νκg

xx

)
,yy + 2

(
1 − ν

)
κg

xy,xy. [4]

In general, the resulting strains (and stresses) feed back on the
growth processes eventually shutting them down, although we do
not consider this process here.

To complete the formulation of the problem, we need to specify
the form of the growth strain tensor ε

g
ij and the growth curvature

tensor κ
g
ij and some boundary conditions. Although a variety of

forms of the growth tensors may be biologically plausible, here
we restrict ourselves to a consideration of a single nonzero com-
ponent of the growth tensor so that ε

g
xx = εg(y), consistent with

our own observations and experiments as well as earlier exper-
iments (1, 3) on long, leafy blades with W < L. This leads to
excess longitudinal growth along the ribbon that varies in magni-
tude transversely. We choose the power law form εg(y) = β( y

W )n

† This is the leading order contribution from differential growth across the thickness of
the plate consistent with thin plate theory.

‡ This corresponds to the classical theory of weakly nonlinear deformations used in the
Föppl-von Kármán theory and is valid when ζx , ζy � 1.
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for all calculations mainly for convenience§, with β characterizing
the maximum growth strain and n the gradient (or exponent) of
differential growth.

For the case of a growing blade with straight edges parametrized
by � ≡ (x = ±L, y = ±W ), the condition that the boundaries are
free of torques and forces implies that (9)

(ζ,aa + νζ,bb)|� = 0, (ζ,aaa + (2 − ν)ζ,abb)|� = 0, [5]

where (a, b) are the unit normal and tangent to the edge of the
blade. We note that the boundary value problem in Eqs. 1–5 can
be derived from a variational principle (SI Appendix), and also
describes the thermoelastic deformations of a thin plate (9), with
thermal strains being replaced by growth strains.

Dimensionless Equations for the Growth of a Long Lamina. Moti-
vated by our experiments and observations of laminae with trans-
versely varying growth in the longitudinal direction, we consider
the simplified setting for the generalized Eqs. 1 and 2 with λg =
ε

g
xx,yy ≡ εg,yy and Ωg = 0 for an infinitely long lamina, i.e., L → ∞.

Further defining the dimensionless variables x̄ = x/H; ȳ = y/H ,
ζ̄ = ζ/H , Φ̄ = Φ/EH3, w̄ = W/H , Eqs. 1 and 2 can be rewritten,
on dropping the bars, as

∇4Φ = −(εg,yy + ζ,xxζ,yy) [6]

∇4ζ = Cζ,xxΦ,yy, [7]

where C = 12(1 − ν2), with the Poisson ratio ν = 0.3, subject to
the boundary conditions of vanishing force and torque at the free
edges, i.e.,

ζ,yyy|y=±w = (ζ,yy − νζ,xx)|y=±w = 0. [8]

Analysis
Our experiments on foam ribbons show two characteristic buckling
modes. For low values of the edge-strain, we find a global defor-
mation associated with a long-wavelength saddle shape, whereas
for larger values of the edge-strain, we find a short-wavelength
edge rippled mode while the ribbon itself is flat on average. To
explore the conditions when these different modes arise, we use a
combination of scaling theory and stability and asymptotic analysis
of various boundary value problems.

Scaling. When the ribbon is doubly bent into a saddle shape with
positive transverse curvature κy and negative longitudinal curva-
ture −κx (Fig. 2A), the contour length of the edge is longer than
that of the center line, leading to a partial relaxation of the excess
marginal growth strain by out-of-plane deformation. Assuming
that the edge deflection δ � w, the edge growth strain β ∼ δκx
whereas the lateral curvature κy ∼ δ/w2. Interestingly, this implies
that the Gaussian curvature κxκy ∼ β/w2 is independent of δ in
the neighborhood of the onset of buckling, suggestive of the pres-
ence of a soft mode of deformation. The dimensionless bending
energy per length ub = Ub/EWH ∼ β2/δ2 + δ2/w4, whereas the
dimensionless stretching energy per length due to in-plane growth
ug

s = Ug
s /EWH ∼ β2. At the onset of buckling, the dimensionless

deflection δ 	 1, and ug
s ∼ ub so that the critical strain for buckling,

into a saddle shape β∗ ∼ 1/w2, and is dependent on the dimen-
sionless width of the ribbon due to growth strain gradients in that
direction. A similar saddle shape is observed in a disc that grows
anisotropically (7).

Alternately, the sheet can buckle into a set of periodic ripples
of wavelength �, and dimensionless wavenumber k = 2πH/�.
Because these ripples are generated by differential strains that
are largest along the lateral edges of the sheet, it is useful to con-
sider the persistence of a pinch of amplitude δ and wavelength 1/k

§ Alternative form of exponential law like βe− n(y−W )
W yield similar qualitative results.

Fig. 2. Characterization of saddle-shaped laminae. (A) A saddle shaped lam-
ina corresponding to a scaled width w = 10, growth exponent n = 10, scaled
maximum growth strain βw2 = 6.5 and κxw2 = 1.9. (B) The postbuckling
behavior shows the scaled curvature κxw2 vs. βw2 on a log-log plot; the
results for different w collapse onto a single curve. The Inset shows that
the onset of buckling occurs via a supercritical pitchfork bifurcation, with
κxw ∼ (β − β∗)1/2, with β∗w2 	 2.51 for all values of the growth exponent n;
only the positive branch is meaningful here. (Notation: S-stable, U-unstable.)
(C) Cross-sectional profile f (y) for different values of the maximum growth
strain β, when the critical growth strain β∗w2 = 2.51 and w = 100.

given by lp ∼ δ1/2/k, (10, 11). Approximate inextensibility implies
that β ∼ k2δ2, so that lp ∼ β1/4/k3/2. Since the wavenumber k is
itself a function of β, this relation serves as a self-consistency check
as we will see later. Depending on the ratio of lp/w, we expect three
types of buckling modes shown in Fig. 3A.

1. Filament-like buckling. lp 
 w: The scaled longitudinal bending
energy ub ∼ k4 is comparable with the stretching energy induced
by growth ug

s ∼ β2 and yields a critical strain β∗ ∼ k2. Then the
pinch persistence length lp ∼ β∗1/4/k3/2 ∼ 1/k 
 w, i.e., there is
essentially no variation laterally. The fact that β∗ is independent
of the width and vanishes as k → 0 indicates that an infinitesimal
edge-growth strain yields a corresponding critical wavelength that
diverges. Though counterintuitive, this result is consistent with
that for classical Euler-buckling of a strut where the dimensional
buckling load F ∼ B/L2 vanishes as column length L → ∞.
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Fig. 3. Characterization of rippled laminae. (A) Three types of periodic
buckling modes arise depending on the persistence of an edge pinch, or
equivalently the ratio of the wavelength of the mode 1/k to the width w.
Filament-like buckling for kw � 1, doubly-curved buckling for kw ∼ 1, and
edge rippling for kw 
 1. (B) Rescaled critical strain wavenumber kw vs.
β∗w2, showing three distinct regimes associated with the above. The solid
line corresponds to the case when the center-line of the ribbon is clamped.
(C) The cross-sectional profile f (y) for different scaled wavenumbers, when
w = 100, with the growth law ∈g= β(y/w)10 shows how the periodic ripples
localize to the edge as kw increases.

2. Doubly-curved buckling. lp ∼ w: The bending energy is the same
of the saddle-like configuration, i.e., ub ∼ (β2 + 1/w4). Compar-
ing this with the stretching energy induced by growth, ug

s ∼ β2

yields a critical strain β∗ ∼ 1/w2, now dependent on the width
of the ribbon. The ribbon is now doubly curved with negative
Gaussian curvature, and lp ∼ w, i.e., the ripples on either edge
interact.

3. Edge rippling. lp � w: Comparing the dimensionless bend-
ing energy ub ∼ lpk4 with the dimensionless stretching energy

ug
s ∼ lpβ2 yields β∗ ∼ k2. Again, β∗ is not dependent on the width,

whereas lp ∼ 1/k � w, i.e., the ripples are localized to the edge.

Stability of a Strained Ribbon. To go beyond the scaling analysis
above, we now solve the dimensionless Eqs. 6–8.

Saddle buckling. When the characteristic in-plane growth strain
reaches a critical value β∗, the flat ribbon undergoes a transition to
a saddle-shaped catenoid (Fig. 2). To approximate the shape, here
we use a shallow-shell ansatz (Fig. 2A), valid when |κxf (y)| � 1,
which reads

ζ(x, y) = −1
2
κxx2 + f (y), [9]

where
∫ w
−w f (y)dy = 0, and the longitudinal curvature κx > 0 is

assumed to be constant.
Global in-plane force equilibrium in the longitudinal (x) direc-

tion requires that
∫ w
−w Nx = ∫ w

−w Φ,yydy = 0, so that substituting
the ansatz Eq. 9 into Eq. 6 and integrating twice yields Φ,yy =
−βγg + κxf , where γg = εg−ε̄g

β
, and the average growth strain

ε̄g = 1
2w

∫ w
−w εg(y)dy = β

n+1 for the power law form εg = β( y
w )n. Sub-

stituting the result into Eqs. 7 and 8 yields the governing boundary
value problem for normal force balance at a cross-section

f,yyyy + Cκ2
x f − Cβγgκx = 0

f,yyy|±w = f,yy − νκx|±w = 0, [10]

which is analogous to the equation for a beam on an elastic
foundation of stiffness Cκ2

x subject to a distributed load Cβγgκx.
The condition of global torque balance in the longitudinal (x)

direction requires that∫ w

−w
(κx − νf,yy) + Cf (−βγg + κxf )dy = 0, [11]

where the first term in brackets is the dimensionless torque due
to ribbon curvature, and the second term CfΦ,yy is the dimension-
less torque due to in-plane forces. To solve the boundary value
problem given by Eqs. 10–11, we use the asymptotic expansion
f (y; κx) = κxf1(y) + κ3

x f3(y) + . . . . to determine the critical growth
strain β∗ at the onset of buckling, which yields (SI Appendix)

β∗ 	 (0.9 + 0.155n)/w2, n ∈ [2, 30] [12]

a result consistent with our scaling analysis. The instability arises
via a supercritical pitchfork bifurcation, with κx ∼ (β − β∗)1/2

(Fig. 2B Inset; see also SI Appendix). To further probe the shape
beyond the onset of buckling, we look for a solution to Eq. 10 of
the form f (y) = fp(y) + fh(y), where fh(y) and fp(y) are the homo-
geneous and particular solution of Eq. 10, combined with Eq. 11
to determine the relation between β and κx in the postbuckling
regime (SI Appendix). In Fig. 2B, we show the scaled longitudi-
nal curvature κxw2 as a function of the scaled maximum growth
strain βw2 for different scaled widths w and εg(y) = β( y

w )10. The
collapse of all curves for various w onto a single master curve is
consistent with the scaling law β∗ 	 2.51/w2, that follows from
the asymptotic result Eq. 12. In Fig. 2B, we also see the existence
of a rapid increase in κxw2 ∈ [0.0, 0.1] for βw2 ∈ [2.51, 2.52], i.e.,
a small increase in the maximum growth strain β leads to a large
change in the longitudinal curvature κx. This strongly nonlinear
response is associated with a soft mode of deformation for the
ribbon of nearly constant Gaussian curvature, i.e., κxκy ∼ β/w2,
wherein the growth-induced stretching strain is accommodated by
changing the mean curvature κx + κy 	 β/δ + δ/w2.

In Fig. 2C we show the cross-sectional profile of the ribbon f (y)
for various values of the maximum growth strain β (we drop the
dependence on w because there is no dependence on this parame-
ter). At the onset of buckling, f (y) is approximately parabolic, as
in our foam ribbon experiments (Fig. 1B), so that it follows from

22052 www.pnas.org / cgi / doi / 10.1073 / pnas.0911954106 Liang and Mahadevan
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Eq. 10 that Cκ2
x f − Cβγgκx 	 0, i.e., f (w) 	 β/κx. Then the trans-

verse curvature κy 	 β/κxw2, and finally κxκy 	 β/w2, consistent
with our scaling analysis. As the growth strain β is increased fur-
ther, the cross-sectional of the ribbon flattens in the center. We
examine the case of n = 2 for simplicity (see SI Appendix). As
κx increases, the particular solution fp of Eq. 10 becomes negligi-
ble compared with the homogeneous solution, with the result that
f (y) ∼ e−ηz(cos ηz − sin ηz), where z = w − |y|, and the boundary
layer width ξBL = 1/η = 0.78/κ

1/2
x independent of the growth gra-

dient exponent n, i.e., the lateral deflection near the edges decays
rapidly away from it. Indeed, as ξBL 	 w or κxw2 	 0.6, the rib-
bon shows the appearance of a boundary layer and when βw2 	 80
(β = 40β∗ in Fig. 2C), the lateral shape of the ribbon f (y) develops
a pair of secondary minima. Later, when βw2 	 750 (β = 300β∗ in
Fig. 2C), the ribbon is nearly cylindrical in the interior with a pair
of strongly localized boundary layers along its lateral edges.

Periodic Rippling. We now turn to the case of periodic rippling,
assuming that the vertical deflection is of the form

ζ(x, y) = f (y) sin kx. [13]

Here k is the dimensionless wavenumber, f (y) is the cross-sectional
profile of the surface, and we note that the sheet is on average flat,
unlike for the saddle-shape. Assuming that the in-plane compat-
ibility of Eq. 6 is satisfied, on substituting in Eq. 13 into Eq. 7
and using the boundary conditions in Eq. 5, we get the eigenvalue
problem

f,yyyy − 2k2f,yy +
(

k4 − Cβ∗γgk2
)

f = 0

(f,yyy − (2 − ν)k2f,y)|±w = (f,yy − νk2f )|±w = 0. [14]

We solve the boundary value problem given by Eq. 14 numerically
by using the boundary value problem solver bvp4c in Matlab, with
the scaled width w ∈ [10, 200] to determine the relation between
the critical maximum growth strain β∗ and the wavenumber of the
instability k. In Fig. 3B, we show that the scaled wavenumber kw as
a function of the scaled critical growth strainβ∗w2 falls onto a single
master curve, with three prominent features, a power-law scaling
regime for kw � 1, a plateau in the neighborhood of kew 	 0.09,
followed by a jump in the neighborhood of β∗

e w2 	 1.9 and finally
another power-law scaling regime when kw 
 1. These transitions
are intimately related to the profile of the ribbon in cross-section.
Indeed when k ≤ ke � 1/w, we see that the cross-sectional pro-
file is almost flat (Top frame in Fig. 3A corresponds to kw = 0.01),
i.e., the ribbon exhibits periodic filament-like buckling of a 1D fil-
ament. Indeed, this follows directly from Eq. 14; when kw � 1,
f,yyyy, f,yy � 1 so that β∗ ∼ k2 which vanishes when k → 0, consis-
tent with our scaling in the limit when the persistence length of
an edge-pinch lp 
 w (see SI Appendix for an asymptotic analy-
sis of this mode). In the neighborhood of kew 	 0.09, there is a
rapid change in β∗w2 ∈ (0.01, 1.9), indicative of a sharp transition
between two different buckling modes because of the large elastic
energy required to trigger the doubly curved periodic ripples seen
when k ≥ ke. Then the ribbon is doubly curved (Middle frame in
Fig. 3a corresponds to kw = 0.5), and there is little variation in
the maximum growth strain with β∗w2 ∈ (1.9, 2.1), whereas the
wavenumber varies enormously with kw ∈ (0.09, 0.6), suggesting
the ease of transformation of the shape of the periodic ripples in
this regime, when lp ∼ w. Finally, when kw 
 1, the ribbon is
strongly deformed in the neighborhood of the lateral edges (Bot-
tom frame in Fig. 3A corresponds to kw = 40). In this scaling
regime, β∗ ∼ k2 asymptotically and the persistence length of the
edge-pinch lp � w, so that the edges are essentially independent
of each other.

To probe the role of the boundary conditions in Eq. 14 in charac-
terizing these different periodic modes that couple the deforma-
tions along the ribbon to those perpendicular to it, we consider the

Fig. 4. Numerical simulations yield a phase diagram for the different undu-
latory shapes of a long, growing ribbon as a function of the maximum edge
growth strain β and the scaled width W . The boundaries that demarcate the
different phases follow the scaling β∗ ∼ 1/w2, consistent with our scaling
and analytic estimates (see Eq. 12 and SI Appendix). We use the power law
∈g= β(y/w)10.

alternative conditions f |0 = f,y|0 = 0 along the axis of symmetry of
the ribbon. Then the only possible mode is that of edge-rippling,
shown as the solid blue curve in Fig. 3B, which coincides with
our master curve when kw > 3.0, i.e., the ripples are localized to
the lateral edges. Earlier researchers (4, 5) have studied the self-
similar edge ripples on the boundary of a semi infinite plate but
missed the qualitatively different global saddle-like, filament-like
buckling and doubly curved modes associated with the introduc-
tion of a finite width for the ribbon. Indeed, when we clamp the
center line of the sheet, we find that when kw < 3.0 or lp > w there
is a rapid increase in the scaled critical growth strain β∗, consistent
with the elimination of the soft saddle-shaped modes.

Numerical Simulations
To corroborate and extend our scaling and stability analysis, we
implement the inhomogeneous growth of a lamina in a discrete
numerical model of a finite ribbon of width 2W , length L = 6W
and thickness H � W . This is derived by tiling the ribbon using
equilateral-triangular elements (12) (dimensionless width w =
W /H , length l = L/H and wavenumber k = 2π

�
H). Then the elas-

tic energy is the sum of the stretching energy Fs =
√

3S
4 Σij(rij−a0)2,

where rij is the current spring length and a0 is the rest spring length
and the bending energy Fb = B√

3
Σαβ(�nα − �nβ)2, where �nα and �nβ

are the unit normal vectors of the two facets (see SI Appendix).
The growth strain εg is modeled by changing the rest length of the
spring a0 to a0(1 + εg(y)), where εg(y) = β(y/W )n with n = 10 and
a damped molecular dynamics method (13) is used to minimize
the system energy.

In Fig. 4 we show the resulting stability diagram indicating the
regimes of existence of the flat, saddle, and rippled phases as a
function of the characteristic growth strain β and the scaled width
w. The stability boundary between the flat and saddle phase as well
as that between the saddle and rippled phase both show a power-
law scaling β∗ ∼ 1/w2, consistent with our scaling and analytical
results. To understand why the saddle-shaped morphology appears
first as the growth strain β is increased, we note that the charac-
teristic critical strain for the filament-buckling mode β∗ ∼ k2 is
smaller than that for the saddle-buckling mode β∗ ∼ 1/w2 only
when the wave number k is sufficiently small. Here, the finite
length of our numerical ribbon leads to a finite-size effect or equiv-
alently a cutoff as seen in our numerical simulations. At the onset
of doubly curved buckling shown in Fig. 3B when kew 	 0.09,
so that the minimum ribbon length to width ration required
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l/w ≥ 2π
0.09 	 70 to accommodate one wavelength. Saddle buckling

shown in Fig. 2B will arise when the growth strain β∗w2 = 2.51,
which corresponds to a wavelength kw 	 0.9 in Fig. 3B requiring
a minimum l/w = 2π

0.9 	 7 to accommodate one wavelength. In
our simulations, l/w = 6, so that saddle buckling occurs first as
shown in Fig. 4, consistent with our analysis above. As w increases,
we expect the two lines to become indistinguishable, although
there is a subtle mathematical issue of the order of limits as both
w/l → 0, w → ∞. For large values of both the growth strain and
the width of the blade, we see the appearance of a new shape that
globally has positive Gaussian curvature and rippled edges. This is
because the large localized extension of the edges puts the central
region of the blade in tension that is then relieved by a spherical
mode of deformation. This coupling between the localized edge
modes and the global elliptical/hyperbolic modes might be simi-
lar to that seen in a variety of pattern-forming systems, including
buckled elastic sheets (14), a topic to be explored elsewhere.

Discussion
In our study, we have addressed the origin of complex undula-
tory morphologies in artificial and natural laminae in terms of the

gradients in the in-plane elastic strain. Our general mathematical
theory for a growing lamina predicts a critical strain for the onset
of buckling and is applicable to a variety of systems including
inhomogeneous biological growth, thermal expansion, hydraulic
swelling (6), plasticity (2) etc. In particular, for a leaf of finite width
and length, we find a saddle-shaped lamina arises via a pitchfork
bifurcation, whereas larger strains lead to localized ripples along
the edges that can coexist with the saddle-shaped lamina. Our
scaling, stability, and asymptotic analysis quantify the conditions
under which these different morphologies exist, and our numer-
ical simulations allow us to determine a shape-space diagram in
terms of the dimensionless width of the lamina and the maximum
lateral growth strain. In addition to laying out a minimal frame-
work for the comparative morphology of long, undulating leaves,
our study also maps out a strategy for the control of the shape
of artificial laminae by using edge actuation rather than surface
actuation.
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