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Dendritic integration of excitatory and inhibitory inputs is critical for
neuronal computation, but the underlying rules remain to be eluci-
dated. Based on realistic modeling and experiments in rat hippocam-
pal slices, we derived a simple arithmetic rule for spatial summation
of concurrent excitatory glutamatergic inputs (E) and inhibitory
GABAergic inputs (I). The somatic response can be well approximated
as the sum of the excitatory postsynaptic potential (EPSP), the inhib-
itory postsynaptic potential (IPSP), and a nonlinear term proportional
to their product (k*EPSP*IPSP), where the coefficient k reflects the
strength of shunting effect. The k value shows a pronounced asym-
metry in its dependence on E and I locations. For I on the dendritic
trunk, k decays rapidly with E–I distance for proximal Es, but remains
largely constant for distal Es, indicating a uniformly high shunting
efficacy for all distal Es. For I on an oblique branch, the shunting effect
is restricted mainly within the branch, with the same proximal/distal
asymmetry. This asymmetry can be largely attributed to cable prop-
erties of the dendrite. Further modeling studies showed that this rule
also applies to the integration of multiple coincident Es and Is. Thus,
this arithmetic rule offers a simple analytical tool for studying E–I
integration in pyramidal neurons that incorporates the location spec-
ificity of GABAergic shunting inhibition.

dendrite integration � dendritic summation � neuronal computation �
shunting inhibition � synaptic physiology

Neural information processing depends critically on the sum-
mation of excitatory postsynaptic potentials (EPSPs) and

inhibitory postsynaptic potentials (IPSPs) at the dendrite, a process
that determines the change in the somatic membrane potential and
the pattern of neuronal spiking. Rall (1) proposed that the sum-
mation of EPSPs is sublinear for inputs at the same dendritic
branch, but linear for those at different branches. Measurements in
hippocampal CA1 pyramidal neurons (2) showed that the summa-
tion of EPSPs was indeed largely linear except at distal apical
dendrites. Realistic modeling studies further yielded an arithmetic
rule for dendritic integration of excitatory inputs; EPSPs are first
integrated nonlinearly at individual branches before summed lin-
early at the soma (3, 4). This ‘‘two-layer network’’ model was
supported by experiments using focal synaptic stimulation and
glutamate uncaging (5, 6).

Although much is known about the summation of multiple
EPSPs, it is unclear how EPSPs summate with IPSPs and whether
there is a simple arithmetic rule applicable to excitatory glutama-
tergic input (E)–inhibitory GABAergic inputs (I) integration in a
complex dendritic tree. A GABAergic input exerts two forms of
inhibition: a hyperpolarization that is summed linearly with the
depolarization (1, 7, 8) and a nonlinear reduction of the EPSP
amplitude by shunting the depolarizing current through GABAA
receptors (GABAARs) (1, 8, 9). The nonlinear shunting effect has
been commonly modeled as a divisive operation (8, 9), although
some biophysical studies suggested that E–I summation may be
more complex (10). The nonlinear shunting effect in E–I summa-
tion is known to depend on the dendritic location of synaptic inputs.
Previous theoretical and modeling studies have shown that shunting
inhibition is most effective when I is on the direct path from E to

the soma (‘‘on-the-path’’ theory; refs. 10 and 11). However, the
dependence of shunting on the relative locations of I and E has not
been systematically examined by experiment (but see ref. 12).
Different types of inhibitory interneurons are known to selectively
innervate distinct dendritic domains of pyramidal neurons in the
hippocampus (13) and neocortex (14). Thus, quantitative charac-
terization of the dendritic location dependence of nonlinear E–I
integration is necessary for understanding the functional conse-
quence of domain-specific inhibition.

Using iontophoretic application of glutamate and GABA in
hippocampal slices and a realistic model of the CA1 pyramidal
neuron, we have derived a simple arithmetic rule for predicting
somatic responses to a pair of coactivated excitatory and inhibitory
inputs. These responses could be well approximated by the sum of
EPSP, IPSP, and a nonlinear component proportional to the
product of EPSP and IPSP (k*EPSP*IPSP). The dependence of the
coefficient k on E–I locations provided direct support for the
on-the-path theory. Furthermore, we found that shunting inhibition
is uniform for all distal Es by a given I, but it decays rapidly with E–I
distance for proximal Es. This arithmetic rule incorporates the
location-specific features of E–I summation and provides a useful
tool for quantitative analysis of dendritic integration.

Results
Experimental Measurements of E–I Integration. We first developed a
quantitative assay of E-I integration in CA1 pyramidal neurons of
rat hippocampal slices. The whole-cell recording was made from the
soma of the pyramidal cell, and fluorescent dye Alexa Fluor 488 was
loaded into the cell via the recording pipette to visualize the
dendritic tree (Fig. 1A). Microiontophoretic applications of gluta-
mate and GABA at the apical dendrite elicited rapid membrane
depolarizations and hyperpolarizations with kinetics similar to
those of natural EPSPs and IPSPs elicited by extracellular electrical
stimulation in the CA1 region, respectively (Fig. 1B and SI Appen-
dix). For convenience, these iontophoretic responses are referred to
hereafter as EPSPs and IPSPs. When the EPSP and IPSP were
elicited simultaneously with two iontophoretic pipettes placed at
adjacent locations of the dendritic trunk, the measured somatic
response was always smaller than the linear sum of the EPSP and
IPSP measured separately (Fig. 1B). The nonlinear component of
E–I integration was obtained by subtracting the measured sum from
the linear sum. The amplitude of the nonlinear component was not
affected by changing the driving force for the IPSP from �10 to 0
mV (Fig. S1 C and D) and was absent for summation of EPSP and
hyperpolarization induced by somatic current injection
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(Fig. S1 E and F), indicating that this nonlinear component reflects
shunting inhibition. Thus, this nonlinear component was referred to
as the shunting component (SC) (Fig. 1B).

We next examined how the temporal shift between E and I affects
the amplitude of the SC, as illustrated by Fig. 1C for a case in which
I preceded E for 30 ms. The SC amplitude decreased rapidly with the
E–I interval, but significant shunting effect remained when I preceded
E for up to 200 ms (Fig. 1D). Further pharmacological experiments
indicated that prolonged inhibition with large E–I temporal intervals
was mainly caused by the activation of GABABRs, because bath
application of the GABABR antagonist CGP 35348 (60 �M) abol-
ished this prolonged component (Fig. S2). In the present study, we
focused on the fast shunting inhibition for concurrent E and I, which
is caused by opening of GABAARs.

To analyze E–I integration quantitatively, the amplitude of E was
defined as the peak value of EPSP, whereas the amplitudes of I and
the summed response were defined as the values at the time of the
peak EPSP. Under this definition, we examined how the SC
amplitude depends on the amplitude of EPSPs and IPSPs. By
setting the EPSP amplitude at a fixed value while varying the IPSP
amplitude, we found that the SC amplitude depended linearly on
the IPSP amplitude (Fig. 1E). Conversely, at a fixed IPSP amplitude
the SC amplitude depended linearly on the EPSP amplitude (Fig.
1F). Such linear dependence was also found if we define the
amplitude by the mean EPSP/IPSP value over the first 100 ms
(Fig. S3).

Derivation of Arithmetic Rule for E–I Integration by Modeling. To
further investigate the shunting inhibition, we performed computer
simulation with a realistic neuron model, using the morphology of
a reconstructed CA1 pyramidal cell (15) (Fig. 2A) and the kinetics
and distributions of ion channels reported previously (SI Appendix).
The model parameters were adjusted to yield EPSPs and IPSPs
(Fig. 2A) with kinetics similar to the experimentally observed
iontophoretic EPSPs and IPSPs (Fig. 1A). We then simulated the
EPSP, IPSP, and the summed response at the soma (Fig. 2A), and
defined SC in the same manner as that for experimental measure-
ments. The dependence of SC on the amplitudes of EPSP (0.2–8
mV) and IPSP (0.1–3.5 mV) was plotted for E at 151 �m and for
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Fig. 1. Experimental measurement of E–I integration and its dependence on
EPSP and IPSP amplitudes. (A) Image of a CA1 pyramidal neuron filled with Alexa
Fluor 488 via the recording pipette. Arrows indicate pipettes for iontophoresis of
glutamate and GABA (at 232 and 129 �m from soma). (Scale bar: 100 �m.) (B)
Examples of EPSP, IPSP, their linear sum, and response to simultaneous glutamate
and GABA pulses. SC is the recorded response (sum) minus the linear sum. (C) As
in B except that IPSP preceded EPSP by 30 ms. (D) Changes in the amplitude of SC
vs. the time interval between IPSP and EPSP, for two different sets of E/I location
(square: I at 50–100 �m, E at 150–200 �m, n � 6; triangles: E at 100–150 �m, I at
200–250 �m, n � 5). (E) SC vs. IPSP amplitude, measured for a fixed EPSP
amplitude (9–10 mV). Data are from four cells. Line indicares linear fit (R � 0.974).
(F) SC vs. EPSP amplitude, measured for a fixed IPSP amplitude (1.1–1.3 mV). Data
are from four cells. Line indicates linear fit (R � 0.965).
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Fig. 2. SimulationofE–I integration inarealisticneuronalmodelandderivation
of the arithmetic rule. (A) (Left) Reconstructed hippocampal CA1 pyramidal
neuron used for simulation. Arrows indicate I and E were at 94 and 151 �m from
the soma. (Scale: 100 �m.) (Right) Simulated EPSP, IPSP, their linear sum, simu-
lated response (sum) of concurrently activated E and I, and the SC. (B) (Upper) SC
vs. IPSP amplitude, with fixed EPSP amplitude (at 5.5 mV). Line indicates linear fit
(R � 0.999). (Lower) SC vs. EPSP amplitude, with fixed IPSP amplitude (at 3.5 mV).
Line indicates linear fit (R � 0.998). (C) Ratio between measured SC and EPSP
(SC/EPSP) plotted against IPSP (red circle) and SC/IPSP plotted against EPSP (blue
square) for the same cell in the slice recording. The amplitudes of the paired EPSP
and IPSPwererandomlyset in therangeof1–10and0.2–4mV, respectively.Eand
I locations were fixed at 110 and 45 �m. Lines indicate linear fit (red: R � 0.96,
slope k � 0.142, n � 11; blue: R � 0.92, slope k � 0.145, n � 10). (D) Simulated
SC/EPSP vs. IPSP (red circle, n � 20) and SC/IPSP vs. EPSP (blue square, n � 20). Lines
indicate linearfit (red:R�0.999, slopek�0.086;blue:R�0.999, slopek�0.087).
TheEPSPamplitudeswere randomlychosenfroma0.2- to8-mVpoolandthe IPSP
amplitude was from a 0.1- to 3.5-mV pool. I and E are at 94 and 151 �m. (E)
Simulated SC as a function of both EPSP (0.2–8 mV) and IPSP (0.1–3.5 mV)
amplitudes, with E and I at 202 and 123 �m, respectively. (F) k*EPSP*IPSP, with k
adjusted to best fit the data in E; k � 0.093, rms error: 4.9%.
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I at 94 �m from the soma. Consistent with our experimental
observations (Fig. 1 E and F), the SC amplitude depended linearly
on both the EPSP and IPSP amplitudes (Fig. 2B and Fig. S3B).

Besides the above studies using fixed EPSP or IPSP amplitude,
we further characterized the dependence of SC on IPSP and EPSP
amplitudes by randomly varying both the EPSP (in a range of 0.2
to 10 mV) and the IPSP (0.1–4 mV) in experiments and simulations.
When the amplitude ratio SC/EPSP was plotted against the IPSP
amplitude or when SC/IPSP was plotted against the EPSP ampli-
tude, we found that these two plots could be well fitted by straight
lines through the origin, with nearly identical slopes (Fig. 2 C and
D). This finding suggests that SC is directly proportional to
EPSP*IPSP. We also plotted the simulated SC amplitude against
both EPSP and IPSP amplitudes (Fig. 2E) and fitted the results by
the function SC � k*EPSP*IPSP, with k as the free parameter (Fig.
2F). This multiplicative function provided a good approximation
(rms error: 4.9%) for simulated SC over a range of EPSP and IPSP
amplitudes. Thus, the summed response to coincident E and I can
be approximated by a simple arithmetic rule:

Sum � EPSP � IPSP � k* EPSP* IPSP, [1]

where k (in the unit of mV�1) reflects the strength of shunting
inhibition (k � 0 for hyperpolarizing IPSPs). This arithmetic rule
quantitatively describes two aspects of inhibition: hyperpolarization
and shunting inhibition.

Dependence of k on E and I Locations Along the Apical Dendritic Trunk.
We further examined the dependence of k on E and I locations
along the apical dendrite trunk in the CA1 pyramidal neuron
model. For each combination of E and I locations, we computed the
k value from 20 sets of arbitrarily chosen E and I amplitudes and
plotted the results in Fig. 3A. As shown by the various cross-sections
of the 3D graph, for each I location the dependence of k on the E
location showed a clear asymmetry for proximal vs. distal Es (Fig.
3B): For a given I, the k value decayed rapidly with the I–E distance
for proximal Es (space constant �83 �m), but remained relatively
constant for distal Es. The maximal k value was higher for more
distal Is.

The dependence of k on E and I locations observed in the above
simulations was also tested experimentally by iontophoresis of
glutamate and GABA at various locations along the main dendritic
trunk of the CA1 pyramidal cell. For E at more distal sites than I
(at three sets of I locations), k was largely independent of the E

location and E–I distance, but markedly dependent on the I location
(Fig. 3C). For Es located proximally to I (at three sets of I locations),
k decreased with the E–I distance (Fig. 3D), consistent with that
found by simulation. Finally, when k was plotted as a function of the
E location for various fixed I locations, the k profile also showed a
clear distal-proximal asymmetry (Fig. 3E), similar to that found by
simulation. These results support and extend the notion of on-the-
path shunting (10, 11).

Shunting Inhibition Involving Oblique Branches. Because most syn-
aptic inputs to pyramidal neurons are located on dendritic branches,
we examined the shunting of Es distributed throughout the den-
dritic tree exerted by I located at either the dendritic trunk or an
oblique branch. For each I location of the realistic neuronal model,
we computed k as a function of the E location over the entire apical
dendrite except at the distal stratum lacunosum moleculare layer,
where local subthreshold EPSPs and IPSPs cause little change of the
somatic membrane potential (16). For I located at the apical trunk
(Fig. 4A), there was a prominent asymmetry; k values were uni-
formly large for distal Es at both the trunk and branches but
decreased rapidly with the E–I distance for proximal Es. For I
located at an oblique branch (Fig. 4B), shunting was largely
confined to the same branch. This finding is in line with the idea that
each dendritic branch is an independent functional compartment
(4–5, 11, 17–22). Notably, the asymmetry in the k profile observed
at the apical trunk (Fig. 3) was also observed at the oblique branch
when E and I were located at the same branch; k was uniformly high
for distal Es and decreased with the E–I distance for proximal Es
(Fig. 4B).

The above modeling results were then tested experimentally in
hippocampal slices. For the same location of GABA iontophoresis
at an oblique branch, we measured the SC and calculated k for
EPSPs induced at two locations along the same oblique branch. No
significant difference was found in the k value (P � 0.89, paired t
test) when the two E locations were both distal (spaced by �70 �m;
Fig. 4C). In contrast, for two Es at more proximal locations, k was
significantly smaller (P � 0.001) for the E closer to the branch point
(Fig. 4D). Furthermore, for I located at the apical trunk, the k values
were not significantly different for distal Es located at either the
trunk or branch (Fig. 4E; P � 0.92, paired t test), consistent with the
simulation results (Fig. 4A). When the I-soma distance was kept
within 100–200 �m, k values for I and E located at the same branch
were significantly higher than those for I and E located at different
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branches (Fig. 4F; P � 0.001). Finally, for a fixed E location at the
apical trunk, the k values for more proximal Is at the branch were
lower than those at the trunk (Fig. 4G; P � 0.03), with k decreasing
rapidly with the distance to the branch point (Fig. 4H). Together,
these experimental results are consistent with those found by
simulation, indicating that shunting inhibition is largely compart-
mentalized to the same branch, with the distal–proximal asymmetry
similar to that at the trunk.

Effects of Active Conductances and Transmitter Receptors. Previous
studies of E–I integration mostly addressed the role of passive cable
properties (1, 10, 11). We have examined systematically how
different ion channels and transmitter receptors affect the extent of
shunting inhibition. For the CA1 pyramidal cell model, we calcu-
lated the k values for 15 sets of randomly chosen E and I locations
before and after blocking 90% of each of the following conduc-
tances: voltage-dependent Na� channel, delayed rectifier K� chan-
nel (Kd), A-type K� channel (KA), hyperpolarization-activated
cationic current (Ih), NMDA receptor (NMDAR), and GABABR
(see SI Appendix). As shown in Fig. 5A, 90% blockade of Ih, KA,

NMDAR, and Na� channels resulted in significant changes in the
k value, whereas blockade of Kd and GABABR had no effect. These
simulation results were tested by iontophoretic experiments in
hippocampal slices using I and E located at the apical trunk within
100–200 and 100–300 �m from the soma, respectively. Specific
blockers of Na� channel (tetrodotoxin, 3 �M), Kd (tetraethylam-
monium, 3 mM), KA (4-AP, 1 mM), Ih (ZD7288, 20 �M), NMDAR
(D-AP5, 50 �M), and GABABR (CGP35348, 60 �M) were used
separately to block each of these channels or receptors. We found
that KA channel blockade increased the k value (�12%, P � 0.01),
an effect that may diminish the EPSP amplitude increase caused by
the blockade of KA channels (23). In contrast, blocking Ih and
NMDARs decreased the k value by 9% and 7%, respectively (P �
0.01), indicating contributions of these channels to the shunting
effect. However, blockade of Kd, Na� channels, and GABABRs had
no effect (P � 0.4; Fig. 5A). With the exception of the Na� channel,
these experimental findings largely agreed with the simulation
results. The discrepancy on Na� channel blockade may be attrib-
uted to a lower voltage threshold for the activation of Na� channels
in the model cell.

We also examined the role of these ion channels and receptors
in the dendrite-location dependence of k in the model. By com-
paring the k profile before and after 90% blockade of each of Kd,
Na�, KA, Ih, NMDAR, and GABABR channels, we found that
although the overall k values were altered to different extents, the
asymmetric spatial profile remained the same (Fig. S4). Further-
more, this asymmetry was found even after all of the above
conductances and receptors were blocked (Fig. 5B). Thus, the
asymmetry in the k profile results primarily from passive cable
properties of the dendrite.

Theoretical Interpretation of the Arithmetic Rule. The theoretical
basis of the arithmetic rule was next examined, using two-port
analysis of the passive dendritic tree (ref. 11 and see SI Appendix and
Fig. S5 for details). The analysis yielded a simple analytic expression
for E–I summation:

Vs � Vse � Vsi � Kei� 1
KesEri

�
1

KisEre
�VseVsi, [2]

where Vs is the somatic voltage response to concurrent E and I, and
Vse and Vsi are the somatic response to the individual excitatory
input at location e and to the individual inhibitory input at location
i, respectively. Kei is the transfer resistance between location e and
i, Kes is between e and soma, and Kis is between i and soma. Ere and
Eri are the driving forces (the difference between the reversal
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potential and resting membrane potential) for E and I, respectively.
By defining

k � � Kei� 1
KesEri

�
1

KisEre
�,

we obtain Vs � Vse � Vsi � kVseVsi.
This equation has the same form as the empirically derived

arithmetic rule, for which Vs, Vse, and Vsi correspond to sum, EPSP,
and IPSP, respectively. Considering that Eri �� Ere, and Kes and Kis

are of the same order of magnitude, k is reduced to

k �
Kei

Kes� � Eri�
. [3]

Note that in the above equation, k is inversely proportional to Eri,
a relation confirmed in our simulation (Fig. S6). When Eri ap-
proaches zero, k approaches infinity, but the product (k*IPSP)
remains finite because IPSP also approaches zero. When Eri

becomes positive, as the case of early developing synapse (24), k
should be negative, so that the shunting component
(k*EPSP*IPSP) remains negative (Fig. S7).

Integration of Multiple Es and Is. Each CA1 pyramidal neuron
receives a large number of inputs at its dendrite. Is the rule obtained
from a pair of E and I applicable to multiple Es and Is? To address
this question, we selected 20 Es and 5 Is randomly distributed in the
dendritic tree of the model CA1 pyramidal cell (Fig. 6A), with a
range of synaptic conductances (Es: 0.048–0.48 nS; Is: 0.32–6.4 nS).
We first compared the simulated response to coincident activation
of these Es and Is with that predicted by a simple arithmetic rule,
in which the response was given by the linear sum of individual
EPSPs and IPSPs together with all of the pairwise E–I interactions,
using the following equation

Sum � �
i

EPSPi � �
j

IPSPj � �
i, j

kij * EPSPi * IPSPj, [4]

where EPSPi and IPSPj are somatic responses evoked by Ei and Ij,
respectively, and kij is a coefficient for the paired Ei and Ij (which
depends on the dendritic locations of E and I but not on the
amplitude or the number of other coactivated inputs). As shown in
Fig. 6B (green circles), for 20 different sets of EPSP and IPSP
amplitudes, the predicted responses deviated from the simulated
responses (rms error was 8.5%) at both small and large sum
amplitudes. This deviation could originate from nonlinear E–E and
I–I interactions (2, 25), as indeed suggested by the systematic
deviation of the simulated responses to 20 coincident Es (Fig. 6C)
and 5 coincident Is (Fig. 6D) from the linear sum. We thus adjusted
Eq. 4 by incorporating the nonlinear E–E and I–I interactions:

Sum � EPSPS � IPSPS � �
i, j

kij * EPSPi * IPSPj, [5]

where EPSPS and IPSPS represent simulated somatic responses to
coincident Es and Is alone, respectively. Eq. 5 yielded predicted
responses in excellent agreement with simulated responses (Fig. 6B,
magenta circles; rms error was 2.7%). Thus, the arithmetic rule for
the pairwise E–I interaction can also be used for quantitative
estimate of E–I integration with multiple coincident Es and Is. Of
course, a complete arithmetic rule for multiple inputs can be
obtained only if the rules for the summation of multiple EPSPs and
multiple IPSPs are both available. Our finding on the E–I interac-
tion represents an important step toward the goal of obtaining a
complete rule for integration of multiple Es and Is.

Another potential consequence of simultaneous activation of a
large number of inputs is the generation of somatic and/or dendritic
spikes. We have tested whether the rule is valid in the presense of
backpropagating action potentials (APs). In the simulation, an AP
was evoked by injecting a depolarizing current (2 ms, 1.5 nA) into
the soma, and the concurrent EPSP and IPSP were initiated 2, 5,
or 10 ms after the AP. We then computed EPSP, IPSP, and the sum
by subtracting the AP measured separately (Fig. S8A). We found
that the arithmetic rule for subthreshold EPSP–IPSP summation
still holds in the presence of a preceding AP (Fig. S8B). However,
with the AP, there was an increase in the k value, which may be
caused by the decrease of driving force for inhibitory input when the
summation occurred at the after-hyperpolarization phase of AP
(Fig. S8A). We also examined the interaction between an IPSP and
a dendritic spike, which appeared as spikelet-EPSP at the soma
(Fig. S9A Inset). In 46 of 79 dendrites tested, large excitatory inputs
evoked somatic spikelets (the remaining 33 dendrites, in which
dendritic spikes caused somatic APs, were excluded from the
analysis). Among these 46 dendritic branches, the arithmatic rule
holds for E (spikelet-EPSP) and I at different branches or for I at
the trunk (Fig. S9 A and B), but it does not hold for E and I within
the same branch (Fig. S9 C and D). This difference may be
attributed to the mechanism for dendritic spike generation. When
E and I are located at different dendritic branches, I had little
impact on dendritic spike generation. However, the large shunting
effect of I on the same branch can prevent or reduce dendritic spike
generation induced by E, resulting in the violation of the simple
arithmetic rule.

Discussion
Based on realistic neuronal modeling and experimental measure-
ments, we derived a simple arithmetic rule that quantitatively
describes the spatial summation of a pair of E and I at the apical
dendrite of the CA1 pyramidal cell. The summed response at the
soma is equal to the algebraic sum of EPSP, IPSP, and a nonlinear
term proportional to the amplitudes of both EPSP and IPSP. The
dependence of k on E/I locations revealed that for a given I shunting
inhibition is similarly effective for all distal Es, but the effect on
proximal Es falls off rapidly with the E–I distance. Moreover, for I
at an oblique dendritic branch, the shunting effect is restricted
mainly within the branch, with the same proximal/distal asymmetry.
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Further studies showed that the asymmetry is determined largely by
the passive cable properties and the empirically obtained arithmetic
rule could be derived analytically from passive cable properties of
the dendrite. Finally, we showed that this simple rule may also be
applied to the integration of multiple Es and Is and under some
circumstances in the presence of somatic or dendritic spikes, thus
serving as a useful tool for studying E–I integration.

Nonlinear E–I integration caused by shunting of excitatory
synaptic currents through activated GABAA channels has been
shown experimentally (9, 26) and theoretically (8, 10, 11). Shunting
inhibition was generally considered to be a divisive effect (8, 9).
Here, the derivation of the simple arithmetic rule led to the
identification of the coefficient k as a single parameter for describ-
ing the dependence of the shunting effect on E and I locations.
Although there were some quantitative differences in the k values
between simulations and experiments, the asymmetry in the k
profile was similar. The smaller k values found by simulation could
be attributed to the limitation of the dendrite model based on the
cable equation (27) and the limited set of ion channels used in the
simulation. Previous theoretical analysis based on passive cable
properties has shown that shunting inhibition is maximally effective
when I is between E and the soma (on-the-path effect; see refs. 10
and 11). Contradictory to this prediction, a study in cultured
hippocampal neurons showed that nonlinear E–I interaction de-
creases rapidly with the E–I distance, regardless of whether E was
located proximal or distal to I within the dendritic branch (12). Our
finding of the asymmetric dendritic profile of k for both the apical
trunk and oblique branches supports the on-the-path theory. The
discrepancy between our results in hippocampal slices and those in
culture may be mainly attributed to differences in the cable prop-
erty. Moreover, we found that when I is located at an oblique
branch, the shunting interaction is largely confined within the
branch, similar to that found previously for both E–E (5, 6, 25) and
E–I (12, 28) summation, supporting the view that each dendritic
branch can serve as an independent computing compartment (4–5,
11, 17–22). Dendritic spikes are known to be involved in E–E
summation within branches (3, 5, 6). Here, we found that the

magnitude of k for E–I summation within the branch is much larger
than the magnitude of k for Is at the trunk (Fig. 4 A and B). Thus,
although E–E summation within the branch is more likely to evoke
dendritic spikes, the potent shunting inhibition within branches may
effectively regulate dendritic spike generation. The local vs. global
effect of the branch- vs. trunk-located I endows the neuron with the
flexibility for selective inhibitory control of Es distributed over the
dendritic arbor.

Various types of inhibitory interneurons selectively innervate
different dendritic domains of pyramidal cells (13, 14). For exam-
ple, in the hippocampal CA1 region, O-LM cells and bistratified
cells innervate the distal apical dendrite and the oblique branches,
respectively, whereas basket cells selectively synapse onto the
peri-somatic region (13, 29–31). Our results provide a quantitative
basis for analyzing domain-specific inhibition by different interneu-
rons. Most neural network models consist of point neurons (32–35)
with no dendritic arbor, and synaptic inputs were often summed
linearly to determine neuronal spiking. However, recent studies
have highlighted the importance of dendritic morphology (19, 21,
22, 36) and nonlinear interactions (3, 4, 10, 11, 37) in neuronal
computation. Our simple arithmetic rule offers an efficient tool for
incorporating location specific E–I interactions into neural network
models, to understand the role of various types of GABAergic
interneurons in shaping network activity.

Materials and Methods
The procedure of electrophysiology recording in rat hippocampal slices followed
that described (38). Computer simulation was performed by using the NEURON
simulation environment. The details of iontophoresis and electrophysiological
measurements, methods for the construction of the CA1 pyramidal neuron
model and the simulation of E–I integration are described in SI Appendix. For
statistical analysis, data are presented as mean 	 SEM, unless otherwise noted,
and Student’s t test was used to determine the significance of the difference
between results obtained from different experimental conditions.
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