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Summary
In many species sensory stimuli elicit the oscillatory synchronization of groups of neurons. What
determines the properties of these oscillations? In the olfactory system of the moth we found that
odors elicited oscillatory synchronization through a neural mechanism like that described in locust
and Drosophila. During responses to long odor pulses, oscillations suddenly slowed as net olfactory
receptor neuron (ORN) output decreased; thus, stimulus intensity appeared to determine oscillation
frequency. However, changing the concentration of the odor had little effect upon oscillatory
frequency. Our recordings in vivo and computational models based on these results suggested the
main effect of increasing odor concentration was to recruit additional, less well-tuned ORNs whose
firing rates were tightly constrained by adaptation and saturation. Thus, in the periphery,
concentration is encoded mainly by the size of the responsive ORN population, and oscillation
frequency is set by the adaptation and saturation of this response.

Introduction
Sensory stimulus-evoked neural oscillations have been described in many animals (Adrian,
1942; Bresseler and Freeman, 1980; Galambos et al., 1981; Gray et al., 1989; Laurent and
Naraghi, 1994; Stopfer et al., 1997; Schadow et al., 2007; Tanaka et al., 2009). For a particular
modality in a given species, oscillation frequency often seems unrelated to stimulus intensity.
In the locust olfactory system, for example, odors elicit ~20 Hz oscillations that vary little in
frequency even when odor concentration varies over 5 orders of magnitude (Stopfer et al.,
2003; Assisi et al., 2007). In some cases, though, stimulus intensity does appear to modulate
oscillation frequency; the changing velocity of a visual stimulus, for example, can
systematically change the frequency of gamma oscillations in the cat visual cortex (Gray and
Prisco, 1997). What determines the frequencies of these oscillations?

Here, we used the insect olfactory system to clarify the encoding of odor intensity, and the
relationship between stimulus intensity and oscillation frequency. In insects, odor molecules
are first detected by olfactory receptor neurons (ORNs). Axons from ORNs converge upon
glomeruli in the antennal lobe (AL, analogous to the olfactory bulb) where excitatory projection
neurons (PNs, analogous to mitral cells) and mainly inhibitory local interneurons (LNs)
interact. PNs send excitatory inputs to LNs, and LNs send rapid inhibitory feedback to PNs
via GABAA-like receptors. In locusts, honeybees and Drosophila, this feedback circuit has
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been shown to synchronize groups of PNs, resulting in regular oscillating waves of output that
depolarize Kenyon cells (KCs), the intrinsic neurons of the mushroom body (MB). These waves
can be detected as a local field potential (LFP; Laurent and Naraghi, 1994; Stopfer et al.,
1997; Tanaka et al., 2009).

We found that odors evoked oscillatory responses in the moth Manduca sexta much like those
described in the locust, honeybee and fly. Further, in the moth, we found that lengthy odor
pulses evoked oscillations that began at ~40 Hz but then suddenly decreased to ~15-20 Hz.
Simultaneous LFPs and recordings from the moth’s antenna (electroantennogram, EAG)
showed the net response intensity of ORNs decreased in parallel to the shift in oscillation
frequency. This suggested oscillation frequency might be determined by the intensity of the
response of the ORN population. In apparent contradiction, though, we also found that odor-
evoked oscillation frequency remained remarkably constant across a broad range of odor
concentrations. What then is the relationship between stimulus intensity and oscillation
frequency?

Our approach, combining experimental and computational methods, led to several conclusions.
First, we found the frequency of odor-evoked oscillations in the moth olfactory system is
determined by the intensity of input to the oscillatory AL network, but this intensity is
determined by sensory adaptation and saturation of ORNs rather than by the intensity of
olfactory stimuli. Second, extending prior work, we demonstrated that the vast majority of
olfactory dynamic range is encoded in the periphery by the number of responsive ORNs rather
than by the firing rates of those ORNs. And third, we characterized a new stable oscillatory
regime in which principle neurons participating in an oscillatory network can fire much faster
than the oscillation frequency.

Results
Odors evoke fast and then slow LFP oscillations in the MB

To characterize the moth olfactory system’s neural responses, we delivered a variety of odors
(non-pheromones, see Experimental Procedures) over a wide range of concentrations, and a
range of durations from 100 ms (as moths might experience while flying in an odor plume), to
4 s (as moths might experience when sampling food from flowers).

All odor stimuli in our panel induced robust oscillations in the LFP recorded in the MB calyx
(a target of PNs, Figure 1A). Figure 1B shows an example of oscillations elicited by a
presentation of dilute benzyl alcohol vapor to the ipsilateral antenna of a moth that was mostly
intact but with its brain exposed for electrophysiological recording (see Experimental
Procedures). The first of a series of odor presentations typically elicited only weak oscillations
in the LFP; however, oscillatory power increased rapidly over the first 4 or 5 presentations
(Figure S1). Odor pulses briefer than ~1 s elicited fast, 30-40 Hz oscillations in the moth MB;
notably, odor pulses longer than ~1 s produced oscillations that were initially fast but then
dramatically slowed to 10-20 Hz (Figure 1C-E). Others (Laurent and Davidowitz, 1994; Perez-
Orive et al., 2002; Perez-Orive, 2004) and we (Figure S2) had previously observed similar but
less pronounced decreases in LFP oscillation frequency in the locust.

LFP oscillations are generated in the AL
Where, and by what mechanism are the oscillations generated? In the moth, we made
simultaneous recordings of LFPs from the AL and the MB. All odors we tested induced both
fast and slow oscillations in both the AL and the MB; further, the AL-LFP and MB-LFP signals
were highly coherent (n=10, Figure 1F).

Ito et al. Page 2

Neuron. Author manuscript; available in PMC 2010 December 10.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



We next made simultaneous intracellular recordings from pairs of AL neurons together with
LFP recordings from the MB (Figure 2; all neurons morphologically identified by dye injection
and subsequent confocal imaging). Figure 2A shows an example of a simultaneous recording
of the MB-LFP, a PN, and an LN. For most oscillation cycles, a spike in the PN was closely
followed (within ~2 ms) in the LN by either a single spike or an EPSP, suggesting LNs received
odor-driven periodic input from PNs. And, reciprocally, the membrane potential of this PN
revealed a periodic hyperpolarization and depolarization after each spike, suggesting IPSPs
from the inhibitory LNs regulated the timing of spikes in the PN. Sliding-window cross-
correlations showed that the membrane potential fluctuations in this LN and PN were tightly
coupled to LFP oscillations recorded in the MB (spikes clipped; Figure 2B). The oscillations
slowed during each trial.

Are the fast and slow oscillations generated in the AL? We made intracellular recordings from
14 PNs and 30 LNs, each simultaneously with LFPs recorded in the MB; Figure 2C displays
the spike-LFP phase relationships for spikes pooled from all recorded cells. Spikes in PNs
reliably phase-locked to the LFP at a point just past the peak of each cycle during fast (mean
direction and 95% confidence interval= 2.79° ± 9.1°; 1,950 spikes) and slow (23.4° ± 3.3°;
7,005 spikes) oscillations. Spikes in LNs phase-locked to the LFP just after the PNs during fast
(71.4° ± 3.0°; 2,623 spikes) and slow (72.6° ± 1.1°; 12,723 spikes) oscillations. The spike phase
distributions of PNs and LNs were each significantly different from uniform distributions
(Rayleigh test, p<0.05) indicating strong phase-locking. The temporal relationships of these
populations match those shown in the simultaneously-recorded example (Figure 2A).

Together, the reliable, periodic relationships among AL neurons suggested that the timed
inhibition of PNs by LNs was important for producing synchronous oscillations. To test this,
we selectively abolished fast inhibition from LNs to PNs by locally injecting picrotoxin (PCT,
a blocker of the GABAA-like inhibition in Manduca, Waldrop et al., 1987) into the AL while
recording LFPs from the MB. Injection of PCT (n=6) reversibly and significantly reduced odor-
evoked fast and slow oscillations; control injections of saline (n=5) had no effect (Figure S3).
Thus, inhibition from LNs within the AL is required for the generation of odor-elicited
oscillations. Both fast and slow oscillations are generated within the AL and are transmitted
to the MB by PNs.

Responses in KCs are shaped by oscillatory input from PNs
To test whether followers of PNs in the MB are sensitive to the oscillatory synchrony of their
input, we made intracellular recordings from a set of KCs (n=20, all morphologically identified
by dye injection and subsequent confocal imaging).

During odor presentations, the membrane potentials of KCs revealed pronounced sub-threshold
fluctuations that were tightly coupled to simultaneously-recorded LFP oscillations. In our four
recordings from KCs that revealed sub-threshold activity, peaks of the membrane potential
oscillations reliably occurred during falling phases of the LFP oscillation (Figure 3A,B; see
Experimental Procedures). Further, odor-evoked spikes in KCs were phase-locked to the falling
phases of LFP oscillations during fast (117.1° ± 12.2°; 329 spikes) and slow (125.7° ± 5.8°;
706 spikes) oscillations (Figure 3C). The spike phase distributions for KCs, like those of PNs
and LNs, were significantly different from uniform distributions (Rayleigh test, p<0.05).

We found that the timing of spikes in PNs, LNs and KCs became more precise (less jitter around
the preferred phase) as the oscillation frequency decreased (Figure S4). Together, these results
indicated that oscillations strongly influence the timing of spikes in the KCs.
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Oscillation frequency remains constant over a wide range of odor concentrations
We had observed that long odor pulses elicited oscillations that shifted dramatically in
frequency. What causes this shift? We found that, during long odor pulses, EAGs decreased
in amplitude with timing roughly matching that of the frequency shift in the LFP (Figure 1B).
The decrease in EAG amplitude was probably caused by sensory adaptation within the ORNs
(Kaissling et al., 1987), a mechanism that reduces the intensity of response to an ongoing
stimulus. The nearly parallel changes in ORN output intensity and oscillation frequency
suggested to us that the intensity of the stimulus may determine oscillation frequency.

To test this, we delivered a wide range of concentrations of three odors (hexanol, octanol and
geraniol), expecting to find that higher concentrations elicited more intense responses from
ORNs and perhaps faster oscillations in the LFP. Indeed, the range of odor concentrations we
used elicited a wide range of responses in the EAG (Figure 4A,B) and in the LFP (Figure S5)
from small, near-basal fluctuations to deep, saturating deflections; thus, the range of odor
concentrations we used effectively elicited a wide range of response intensities from the
population of ORNs. Lower odor concentrations evoked weaker LFP oscillations; higher
concentrations evoked stronger oscillations (Figure 4C). However, we found that the initial
LFP oscillation frequency remained almost constant across five or more orders of magnitude
of odor concentration (Figure 4D). Together, these results appeared contradictory: decreasing
drive from ORNs appeared to result in dramatically reduced oscillation frequency, yet
experimentally changing the intensity of the input to ORNs had little or no such effect.

The ORN population encodes odor concentration spatially and temporally
The EAG aggregates the responses of many ORNs in the antenna. Thus, we next characterized
the responses of individual ORNs on the moth antenna while delivering odor pulses of different
concentrations (Figure 5; n=37 ORNs from 9 preparations; see Experimental Procedures). We
found that individual responsive ORNs revealed a small dynamic range, firing at rates that
varied only within narrow spans of concentration. ORNs responding to moderate odor
concentrations (e.g. 0.01%-1% of hexanol; see Experimental Procedures) showed firing rates
that quickly saturated (Figure 5F green lines) or even decreased (Figure 5F red lines) as odor
concentration increased. And, ORNs that initially responded vigorously to an odor presentation
(e.g. with firing rates >40 Hz) quickly slowed their firing (Figure 5B,C). This sensory
adaptation was evoked by all odors tested and all concentrations whenever the initial firing
rate exceeded ~40 Hz (Figure 5D,E). Faster-firing ORNs underwent greater adaptation (Figure
5E), suggesting ORNs better-tuned for a given odor would adapt more. Thus, we found that
each ORN fired at a rate tightly constrained by adaptation and saturation.

To quantify the dynamic range of individual ORNs relative to that of the population, we fit
concentration response curves with the Hill equation (Figure 5F,G; Firestein et al., 1993;
Wachowiak and Cohen, 2001; Koulakov et al., 2007). In our sample of ORNs and odors we
found response thresholds were widely distributed across concentrations spanning about 6
orders of magnitude (C10, Figure 5H). Consistent with this, increasing numbers of ORNs
participated in the response as odor concentrations increased (Figure 5F,H). And, most ORNs
had Hill coefficients greater than 1 (mean = 1.1269; median = 0.802), corresponding to a
dynamic range spanning less than 2 orders of magnitude (Figure 5I,J; Koulakov et al., 2007).
The 2 orders of magnitude encoded by individual ORNs corresponded to only about 2/6, or
33% of the dynamic range provided by the whole ORN population. Further, we found that the
firing rates in the ORN population fit Gaussian distributions (Figure 5K). As odor concentration
increased, the width of the distribution (number of responsive ORNs) broadened but the height
of the distribution (firing rate) remained about the same (Figure 5K). These results indicate
that, in the moth, the great majority of olfactory dynamic range is encoded as changes in the
size of the population of responsive ORNs.
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Firing rate adaptation in ORNs determines oscillation frequency
Our analysis of individual ORNs revealed that the frequency transition in LFP oscillations
followed a temporal profile closely matching that of the adaptation rate of the most active
ORNs (Figure 5L; Figure S6). Yet, experimentally changing the intensity of input to the ORNs
(odor concentration) had little if any such effect. To explain these apparently contradictory
findings and to understand how oscillation frequency is determined, we incorporated our
physiological measurements into a full-scale, map-based model (reduced type, Rulkov et al.,
2002; Rulkov et al., 2004; Rulkov and Bazhenov, 2008) of the moth AL (Figure 6A). We
simulated input to the AL network as synaptic currents applied to odor- and concentration-
specific populations of PNs and LNs (Assisi et al., 2007; see Experimental Procedures). In our
model, as in vivo, this input caused the population of PNs to spike and to synchronize through
feedback inhibition mediated by LNs (Figure 6B). Synchronized spiking in the model AL was
manifest as periodic oscillations of the LFP (Figure 6B, top; calculated as the average activity
of all PNs).

We had found that the adaptation of ORN firing rates followed a temporal profile matching
that of the frequency transition in LFP oscillations (Figure 5L; Figure S6). How does adaptation
influence the dynamical properties of the AL network? To simulate activation and adaptation
of the odor responses of ORNs, we drove our network model with a rapidly rising and then
slowly decaying input (Figure 6B, bottom) with the size of the AL population receiving external
stimulation (input “width”) held constant. During the simulated odor’s onset, the rapid increase
in input intensity quickly entrained the network to generate ~40 Hz oscillations (Figures 6B,C).
The subsequent decrease in stimulus amplitude initially led to a reduction in the LFP amplitude,
signaling a decrease in the synchrony of spiking across the population of responsive PNs. But
as the input intensity continued to decrease, synchrony suddenly resumed, although now at
~20 Hz. During this transition the inter-spike interval (ISI) distributions of both PNs and LNs
(Figure 6C,D) lengthened. Our intracellular recordings from PNs and LNs had revealed
qualitatively similar changes in ISI distribution (Figure S7). In our model, a 40-50% decrease
in stimulus intensity caused a frequency shift (Figure 6B) matching what we had observed in
vivo (Figure 1D,F). This result suggested that a change in stimulus intensity similar to what
occurs in vivo, and not the size of the responsive ORN population, could explain much of the
change in oscillation frequency. Other factors such as the strengths and the time constants of
synaptic currents could influence oscillation frequency as well (Figure S8).

We next analyzed the steady-state network dynamics of our model as a function of input
intensity. Throughout these stimulations we held constant both the size of the AL population
receiving external input and the amplitude of the input; in separate experiments we
systematically changed the input amplitude to explore a broad space of parameters. Our model
showed that the AL network could generate oscillations with a wide range of frequencies,
including 20-40 Hz, depending on the net intensity of its input (Figure 6E, left panel). Further,
individual PNs and LNs could change average firing rate as a function of excitatory and
inhibitory input intensity (Figure 6E middle and right panels). In our model, inhibitory LNs
almost always spiked at the frequency of the LFP oscillations; notably, excitatory PNs could
fire faster with either one or two spikes during each oscillatory cycle (Figure 6C,D). These
results match those of our intracellular recordings (Figure S7).

How do changes in odor concentration influence the dynamical properties of the AL network?
Our model had shown that, for a network with a fixed number of responsive neurons, increasing
the amplitude of external stimuli led to a progressive increase in oscillation frequency (Figure
6E). But, our recordings from ORNs had shown that, as the concentration of an odorant
increased, more types of receptors began to respond (Figure 5K; see also Stewart et al.,
1979; Duchamp-Viret et al., 2000; Wachowiak and Cohen, 2001; Hallem and Carlson, 2006).
To simulate this effect of changing odor concentration we varied the proportion of the PN and
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LN populations (parameter σ, width of the curve in Figure 7A; compare to Figure 5K) driven
by external excitatory input. We found that varying the size of the stimulated neuronal
population only slightly varied the frequency of oscillations (Figure 7B-D). When driven by
very low odor concentrations (“narrow” input, i.e. σ=0.2), the frequency of LFP oscillations
increased slowly upon odor onset (Figure 7C left); several oscillatory cycles were required to
engage all the neurons in oscillatory dynamics. Our model suggested that the main effect of
varying the size of the responsive neuronal population was to vary the coherence of the moth
AL network, but not its frequency.

Our results showed that when sensory input underwent adaptation, two factors changed: 1)
active PNs decreased their firing rates; and 2) the size of the active PN population decreased
(Figure 6 B,C). To test which factor most directly underlies the oscillator’s frequency shift, we
provided our model a simplified square input profile rather than a realistic Gaussian input
profile; the simplified input drove all stimulated PNs and LNs identically and gave zero input
to all non-stimulated PNs and LNs, thus holding the size of the active PN population constant
over time even as the input adapted. With this constrained input, adaptation still caused the
oscillatory frequency to decrease (Figure S9A). In contrast, decreasing the size of the
stimulated AL population (to model a decrease in odor concentration) did not affect oscillation
frequency (Figure S9B). Consistent with this result, an even simpler model consisting of only
a single PN and a single LN, reciprocally-coupled (Fig 7D), showed that changing the intensity
of the input caused a shift in oscillation frequency (Figure 7E). Taken together, these models
suggest that input intensity regulates the firing frequency of active PNs, which directly
determines the network oscillatory frequency.

A subset of strongly activated PNs regulates oscillatory frequency
To test the robustness of our results and to gain a more intuitive understanding of the mechanism
that underlies the oscillatory response transition in the AL, we designed an additional,
simplified “firing rate” version of our more realistic map-based model of the AL network (see
Experimental Procedures).

To test whether the oscillatory frequency of the AL network is determined by the firing rates
of activated PNs, we systematically varied the threshold required to activate PNs, effectively
removing weakly-activated ORNs from the network (Figure 8A). Even though this
manipulation (like decreasing odor concentration) greatly decreased the size of the active
population of neurons and caused the overall input to the network to change dramatically
(Figure 8B), the oscillatory frequency remained constant (Figure 8C). Next, we simulated the
effect of sensory adaptation by altering the response intensity of the most strongly activated
PNs (Figure 8D). This manipulation, which kept the number of active neurons constant but
reduced overall input to the network (compare Figure 8B and 8E), greatly altered oscillatory
frequency (Figure 8F), consistent with results we obtained with our map-based model and with
our physiology experiments.

Further, our simplified rate model showed that adaptation of the ORNs was sufficient to shift
the oscillatory frequency of the AL network (Figure 8G-H); a version of the model lacking
adaptation showed no shift in frequency (Figure 8I-J). These results, combined with those of
our physiological recordings and map-based model show that, for any given odor or
concentration, oscillation frequency is controlled by a small subset of ORNs and PNs, those
that are most highly responsive.

In summary, our computational models (Figures 6-8) demonstrated that the shifts in LFP
frequency we observed in vivo during lengthy odor stimulations can be explained by gradual
changes in the intensity of output from a stable group of ORNs to the AL. This intensity level
is determined mainly by the adaptation and saturation of the peripheral receptor neurons
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(ORNs) rather than by the intensity of the environmental stimulus (odor concentration). Our
results show that, in the periphery, the great majority of the olfactory system’s dynamic range
is encoded by the size of the responsive receptor population rather than by its firing rate. Our
results also resolve an apparent contradiction, that oscillation frequency follows the intensity
of the net receptor output (amplitude of the EAG) but not the concentration of the odor. These
findings are summarized in Figure 9.

Discussion
Odor elicited oscillations in the moth

In the moth Manduca sexta, our intracellular recordings from PNs, LNs and KCs together with
recordings of the LFP from the MB and AL (Figures 1-3) revealed that moths employ
essentially the same neural mechanism as that characterized in the locust and Drosophila:
oscillations are generated in the AL via GABAA-type inhibition (Figure S3), build up gradually
over repeated odor presentations (Figure S1; Stopfer and Laurent, 1999) and influence the fine
spike timing of downstream KCs (Laurent, 2002;Perez-Orive et al., 2002,Assisi et al.,
2007;Tanaka et al., 2009).

This result contradicts several earlier reports. Previously, in the moth, pulses of pheromone
were found to induce highly localized LFP oscillations only within the AL, with spikes in
pheromone-sensitive PNs phase-locked to the AL-LFP oscillations (Heinbockel et al., 1998).
However, such stimuli were described as never producing coherent LFP oscillations between
the MB and the AL (Christensen et al., 2003). Further, in a multi-unit recording experiment
(Christensen et al., 2000) and a double intracellular recording experiment (Lei et al., 2002),
cross-correlation analyses detected no sustained oscillatory synchrony between pairs of PNs
but rather only brief, stimulus-locked, non-oscillatory synchrony. These observations led to
the proposal that, in Manduca, only transient, non-oscillatory synchronous activity among PNs
supports odor coding, likely by promoting coincidence detection by downstream elements
(Lei et al., 2002). Our experiments employed general, non-pheromonal odors, such as host
plant volatiles and common food blends at a wide range of concentrations. The differences in
our results from those reported earlier probably arise both from our focus on the general
olfactory system rather than the pheromone system, and from differences in recording
techniques (likely the electrode’s shape and internal solution; see Experimental Procedures).
The moth pheromone system, which, within the AL, consists of three specialized glomeruli
anatomically separate from the ~60 glomeruli of the general odor system (Rospars and
Hildebrand, 1992), may not provide an ideal model for all aspects of general olfaction.

Indeed, our results show that, to a remarkable extent, odor coding mechanisms in Manduca
are similar to those of other species, including Drosophila (Tanaka et al., 2009), honeybee
(Stopfer et al., 1997), and locust (Laurent and Naraghi, 1994; MacLeod and Laurent, 1996;
Perez-Orive et al., 2002). This was perhaps unexpected because these species differ in details
of olfactory anatomy and physiology. The ~60 ordinary glomeruli in the AL of Manduca
compare roughly in number to many other insects (Anton and Homberg, 1999), and the great
majority of its PNs are uniglomerular (Homberg et al., 1989). By contrast, in the locust, the
AL is organized into ~1000 microglomeruli (Ernst et al., 1977) which are heavily
interconnected through multiglomerular PNs (each visiting 12-24 glomeruli), and extensively
arborized LNs (MacLeod and Laurent, 1996). In Manduca LNs generate full-size sodium
spikes. But in the locust, LNs produce graded calcium potentials rather than all-or-none spikes.
Because of its microglomerular structure and extensive multiglomerular connectivity, the
locust olfactory system has sometimes been described as atypical (Hansson and Anton,
2000). Nevertheless, our results strongly suggest that, despite substantial differences in
anatomical detail, the olfactory systems of these species function in a remarkably similar
fashion.
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Despite the striking similarities in odor coding mechanisms in locust and moth, we found small
differences. The oscillatory phase relationship between spikes in PNs and LNs is slightly
different in the two animals, possibly because of differences in the timing of spikes in LNs. In
the locust the population of PNs spikes with the greatest synchrony upon odor onset (Mazor
and Laurent, 2005) probably because the strong, non-adapted input can activate many LNs
which coordinate the spike timings of PNs (Assisi et al., 2007). In the moth, we found that
odor inputs were strongest at the odor onset as well (Figure 5C,D). However, both across LNs
and PNs, synchrony increased gradually over the course of a response (Figure S4). This is
probably because, in the moth, oscillation frequency at the odor’s onset shifted too quickly to
permit full entrainment of the oscillatory network. Indeed, frequency shifts we observed in the
moth over the course of a stimulus were typically greater than those in the locust (Figure S2;
see also Perez-Orive, 2004). Our simplified rate model suggests this difference could be
explained by greater net inhibition in the locust: we found that if we slightly increased the
strength of inhibition in our simplified model of the moth AL, the model then produced
frequency shifts similar to those observed in the locust (Figure S10). We speculate that,
compared to the moth, the balance of net excitation and inhibition is slightly shifted toward
stronger inhibition in locust.

Adaptation and saturation of ORN firing rate determine the oscillation frequency
Our recordings revealed that additional ORNs were recruited into the responsive population
as odor concentration increased (Figure 5), a result consistent with a fundamental property of
receptors: they become less selective as the concentrations of ligands increase. Yet, we found
the range of response intensity of these ORNs was sharply constrained. Long odor pulses
caused the most highly responsive ORNs to rapidly adapt their firing rates, with a time course
similar to that of the shift in oscillation frequency (Figure 5L). Further, the firing rates of the
most precisely tuned ORNs saturated when stimulated by low to moderate odor concentrations
(Figure 5C-F).

Our electrophysiological and computational approaches allowed us to compare the relative
contributions of the size of the responsive population and its response intensity. We found that
in the periphery, coding of odor concentration was heavily dominated by the size of the set of
responsive ORNs rather than by the intensity of the response of the ORNs. At low odor
concentrations, only those receptors most precisely tuned to the odor responded; as the
concentration increased, the precisely-tuned ORNs continued to fire, but quickly adapted and
saturated, and thus displayed strictly constrained increases in response intensity. However,
additional, less well tuned ORNs began to participate in the response, thus encoding the
concentration of the odor.

Several lines of evidence indicate that information about odors is encoded by a population of
ORNs in a combinatorial fashion (Buck, 1996). A recent comprehensive study of all the
receptor types on the Drosophila antenna (Hallem and Carlson, 2006) showed that the firing
rates of ORNs often saturated at moderate concentration, that some ORNs decreased their firing
rates at extremely high concentrations, and that, at high concentrations, individual ORNs
tended to respond broadly to many odors. Studies using 2-deoxyglucose labeling, c-fos and
calcium images have shown that the spatial pattern of glomerular activation can expand as odor
concentration increases (for review see Buck, 1996). Further, several studies suggest that ORNs
can respond within a narrow dynamic range (Firestein et al., 1993; Stewart et al., 1979;
Koulakov et al., 2007). Indeed, a theoretical study of the locust olfactory system predicted that
an intensity coding scheme like that shown here could explain the invariant frequency of odor-
evoked oscillations over a wide range of stimulus intensity (Asissi et al., 2007). These results
are consistent with our quantitative finding that odor intensity is encoded mainly by the size
of active ORN population rather than by firing rates.
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We incorporated our findings in the moth into two types of computational models to determine
how sensory input to an oscillatory circuit influences its frequency. Our models robustly
mimicked the frequency transition we observed between fast and slow oscillatory states as
input intensity gradually decreased (Figures 6-8, S10). Further, our models demonstrated that
recruiting additional, but less well-tuned, ORNs could simulate responses to higher odor
concentrations while causing only minimal changes in oscillation frequency (Figures 7,8),
similar to what we observed in vivo (Figures 4-5). Our models also demonstrated how
oscillation frequency can shift between fast and slow states (Figures 6,8), depending mainly
upon the varying output intensity of rapidly saturating and adapting receptors, rather than upon
odor concentration.

In agreement with earlier work in locust (Stopfer et al., 2003) our results show that increases
in odor concentration led to large increases in the coherence of the odor-triggered oscillatory
synchrony of PNs (Figure 4C). This large increase in coherence was accompanied by only
small changes in the frequency of oscillation (Figure 4D), and was caused mainly by increasing
the size of the activated ORN population. Our results show that, in the moth AL, the coherence
and the firing rate of the PN ensemble are determined independently (for a discussion of theory
see Salinas and Sejnowski, 2001). This independence enables an efficient strategy for
dynamically matching the firing properties of PNs to the coincidence detection-based decoding
properties of KCs (Perez-Orive et al., 2002; 2004).

What are the implications of this transition during an odor response? A comparison of the jitter
in spike timing relative to the LFP before and after the frequency transition revealed an increase
in spike time precision in LNs, PNs and KCs (Figure S4). Because little is known about how
the output of KCs is decoded by cells that follow them, potential benefits of this increase in
spike precision are not immediately apparent. One possibility is that the increase in the
synchrony of input to the KCs might help sustain highly specific firing in these cells even
though the output of PNs decreases when ORNs adapt.

A similar frequency transition from gamma to beta oscillations has been noted in the rat
olfactory bulb (Neville and Haberly, 2003), but the mechanism underlying the transition is
quite different from that shown here. In the rat, oscillations of different frequency are generated
by different neural circuits: odor-evoked gamma oscillations in the olfactory bulb arise locally,
but beta oscillations require the participation of the olfactory cortex (Neville and Haberly,
2003).

It is well established that shifts in the balance of excitation and inhibition (Brunel and Wang,
2003) or changes in excitatory drive (Whittington et al., 1995; Traub et al., 1996) can influence
the oscillation frequency of a neural network. However, sensory systems characterized in
vivo often generate oscillations of invariant frequency when driven by a wide range of stimulus
intensities (Bringuier et al., 1997; Stopfer et al., 2003; Schadow et al., 2007). Our results
suggest the extent to which oscillation frequency is sensitive to stimulus intensity depends at
least in part on the properties (such as adaptation and saturation) of the neurons that provide
inputs to the oscillatory network. In the retina, for example, some classes of ganglion cells have
been shown to increase their firing rates as the velocity of a moving visual stimulus increases
(Cleland and Harding, 1983); concomitantly, the frequency of gamma oscillations in the visual
cortex monotonically increases (Gray and Prisco, 1997). On the other hand, in cortical areas
responsive to the orientation or direction of a visual stimulus, oscillation frequency remains
constant (Gray and Singer, 1989), likely because changing these stimuli only changes the
population of active cells. That many primary sensory neurons display tuning, saturation and
adaptation characteristics may help explain why invariant oscillation frequency is often
observed in sensory systems (Bringuier et al., 1997; Stopfer et al., 2003; Schadow et al.,
2007).
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Oscillatory dynamics and fast-firing principal neurons
Fast 20-60 Hz synchronized oscillations are common in neuronal circuits. In one form of
gamma oscillations (Interneuron Network Gamma, ING) a network of mutually inhibiting
interneurons exclusively establishes the rhythm; pyramidal cells are simply entrained to it, and
their low firing rates have little or no effect on network oscillations (Whittington et al, 2000;
Wang and Buzsaki 1996). But in our models oscillations failed when synaptic input from PNs
to LNs was blocked (data not shown). This suggests odor triggered oscillations in the moth
AL are not entirely mediated by an ING-type inhibitory network but rather require the active
participation of excitatory PNs to drive LNs (indeed, we observed that moth PNs fired slightly
before LNs; Figure 2C) which in turn synchronized PNs through feedback inhibition. In this
respect, odor triggered oscillations in the moth AL are similar to the persistent/transient forms
of gamma oscillations (Pyramidal-Interneuron Network Gamma, PING) in the vertebrate
cortex and hippocampus.

Our intracellular recordings from the AL network revealed, however, an unusual situation:
most active PNs fired faster than the oscillation frequency (Figure S7). More typically, as in
the case of transient gamma oscillations induced by tetanic stimulation of the hippocampus
(Traub et al., 1996; Whittington et al., 1997), fast spiking interneurons and pyramidal cells
both fire at the oscillation frequency. Also, during persistent gamma activity in CA3 (Fisahn
et al., 1998) and neocortex (Buhl et al., 1998), interneurons fire on every cycle or every other
cycle; pyramidal cells fire at much lower rates. Notably, our model demonstrated that stable
oscillations can nevertheless emerge from a network with fast-firing PNs (Fig 6B-D), a
condition thought to be unstable since excessive excitatory feedback from PNs to LNs could
potentially disrupt the rhythmic LN network.

The stability of the regime we observed in the moth could be explained by the combination of
high-rate excitation and relatively low-efficiency GABAA-mediated inhibition revealed by our
recordings and our models. The overall weak inhibition we found in the moth AL (Figure S10)
could also explain the relatively weak dependency of the network oscillation frequency upon
the decay time constant of inhibition. Indeed, if fast, GABAergic inhibition were strong enough
to prevent excitatory cells from firing, oscillatory frequency would depend strongly on the time
constant of inhibition (Whittington et al., 1995; Buzsáuki and Chrobak, 1995; Brunel and
Wang, 2003; Bazhenov et al., 2008), something we did not observe here (Figure S8B,C). In
moth, the net impact of inhibition seems restricted to influencing the timing of spikes in
excitatory neurons, thus enabling periodic network rhythms. However, this inhibition appears
too weak to prevent excitatory cells from firing, enabling them to maintain firing frequencies
that exceed the network oscillation frequency. The oscillatory regime revealed here may be
common, particularly in insects; unlike pyramidal cells, PNs in the AL of honeybee (Stopfer
et al., 1997), locust (Stopfer et al., 2003), and Drosophila (Olsen et al., 2007) can respond to
stimuli with high firing rates.

Experimental Procedures
Olfactory stimulation

Odor stimulation was modified from Brown et al (2005). Briefly, the odorized headspace in
60-ml glass bottles above mineral oil-diluted odorant solution (10 mL) was pushed by a
controlled volume of humidified air (0.1 L/min) into an activated carbon-filtered, humidified
air stream (0.75 L/min) flowing continuously across the antenna. The longest stimulus we used
(4-s) would deplete only about 13% of the vapor in the headspace, making it likely that each
odor pulse varied little in concentration throughout each stimulus. All chemicals were
purchased from Sigma-Aldrich (St. Louis, MO) unless otherwise noted. Odorants were
benzylalcohol, benzaldehyde, (+)-β-citronellene (Fluka Chemika, Buchs, Switzerland),
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cyclohexanone, geraniol, hexanol, cis-3-hexenyl acetate, (±)linalool (Aldrich Chemical
Company Inc, Milwaukee, WI), methyl salicylate, methyl jasmonate, 1-octanol (Fluka
Chemika, Buchs, Switzerland), trans-2-hexenal, trans-2-hexen-1-ol, oil extracts (strawberry,
cinnamon, peach, lime, jasmine, Balducci’s, Bethesda, MD), thyme (Thyme Red, Saidel Inc.,
Renton, WA), and wintergreen (Wagner’s). Odorant solutions were diluted (vol/vol) to 1% in
mineral oil (J.T. Baker, Phillipsburg, NJ) unless otherwise noted.

Electrophysiology
Physiological data were obtained from 145 adult moths (Manduca sexta) of both sexes reared
from eggs (purchased from the NCSU Insectary, Raleigh, NC) in our laboratory on an artificial
diet (Bell and Joachim, 1976), under a long-day photoperiod at 26 °C, and at more than 70%
relative humidity. Adults 1 d post-eclosion or older were dissected as described previously
(Ito et al., 2008). The head capsule was superfused with moth physiological saline (Christensen
and Hildebrand, 1987) at room temperature.

EAGs were recorded using Ag/AgCl wire (127 μm o.d.) inserted into the distal tip of the
antenna; the reference wire was inserted into the contralateral compound eye. Signals were
amplified with a DC amplifier (Model 440; BrownLee Precision, San Jose, CA).

LFPs were recorded using saline-filled glass micropipettes with a long-shank (o.d. ~3 μm, 4-10
MΩ), amplified and low-pass filtered (>100 Hz) by a DC amplifier (Brown-Lee Model 440).
The long-shank could be inserted deep into the calyx of the MB where axons of PNs and the
dendrites of followers Kenyon cells make synaptic contacts. This technique allowed us to
record LFP oscillations more robust than those we could detect by the method we use in locust
(a blunt ended glass electrode with a short shank placed on the cell body layer of the MB; see
Brown et al., 2005).

Extracellular recordings of ORNs from were made from sensilla in either isolated antennae cut
at their bases or intact antennae of restrained animals (both methods yielded identical results).
The antenna was stabilized with epoxy glue carefully applied to leave the leading surface
(where sensilla are located) accessible. An electrochemically-sharpened tungsten wire was
inserted into the sensillar base under a stereomicroscope (Leica MZ7.5). For isolated antenna
preparations, Ag/AgCl wires were placed in the cut ends. The proximal cut end was immersed
in a drop of saline or sensillum lymph (Kaissling, 1995) which was covered with wax to prevent
evaporation. For intact antenna preparations, Ag/AgCl wires were placed in the distal end of
the antenna and the contralateral compound eye. Signals were amplified by a differential
amplifier (P55, GRASS Instrument; Telefactor, W. Warwick, RI) and sampled at 15 kHz
(LabView software, PCI-MIO-16E-4 DAQ cards, National Instruments).

Intracellular recordings, subsequent fluorescent dye injection, histological steps and confocal
imaging were made using sharp glass micropipettes as described previously (Ito et al., 2008).

Full scale AL network model
The AL model included 820 PNs and 360 LNs (Homberg et al., 1989) simulated using a reduced
neuron model written in the form of difference equations (map; Rulkov 2002; Rulkov et al.
2004; Bazhenov et al. 2005; Rulkov and Bazhenov, 2008). The time evolution of membrane

voltage Vn was described as nonlinear map , where In is a slow
dynamical variable describing the effects of slow conductances, fα is nonlinear function and
n is a discrete time step (~0.5 ms). The model’s properties and parameters are shown in Figure
S11. This model, despite its low intrinsic dimensionality, produces a rich repertoire of dynamics
and is able to mimic the dynamics of Hodgkin-Huxley type neurons both at the single cell level
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and in the context of network dynamics (Rulkov et al, 2004; Bazhenov et al, 2005; Rulkov and
Bazhenov, 2008).

For synaptic connections, we used conventional first order kinetic models of fast synaptic
conductances (Rulkov et al. 2004; Bazhenov et al. 2005) (see Fig. S11). All intrinsic
connections (LN-LN, LN->PN, PN->LN) were random with 0.5 probabilities. Maximal
conductances (in dimensionless units; see Rulkov et al., 2004) denoting the total excitation and
inhibition received by a given cell were set in most of the simulations to GACh(PN-LN) =
0.00015, GGABA(LN-PN) = 0.00035, GGABA(LN-LN) = 0.00015.

The intensity (amplitude) of external (to mimic odor) stimuli to PNs and LNs followed a
Gaussian distribution truncated at 0.1 to avoid stimulating all PNs (see Figure 7A). Which PNs
and LNs received input with a particular intensity was determined randomly. The proportion
of LNs receiving non-zero input was approximately one third that of PNs receiving non-zero
input. For simplicity, we assumed that all ORNs (not only the best tuned ones) undergo sensory
adaptation. To mimic data obtained in vivo, the temporal variation of the stimulus was
approximated by the experimentally-measured function shown in Figure 5L.

Simplified firing rate model
This simplified model contained 80 PNs and 30 LNs; qualitatively similar results were obtained
with a version of the model containing 800 PNs and 300 LNs. The dynamics of each neuron
in the network was modeled as a difference equation:

where vk is the out firing rate of neuron k, τ is the membrane time constant of neuron (τ = 10
ms) and φ is a non-linear logistic function ( ; a1 = 10, a2 = 0.6).
Ij is the input from ORN type j to PNj. LNs did not receive direct input from ORNs. The
connectivity matrix W included 50% connection probability: PN->LN (WPN_LN = 0.125) and
LN->PN (WLN_PN = −0.2). No PN->PN or LN->LN connections were included. The
integration step size (dt) was set to 1 ms. The model LFP was computed by filtering summed
PN activity (V). Since the number of PNs was reduced in this model, LFP traces shown appear
noisy.

Each ORN response was modeled after our physiological recordings. The initial response from
baseline to peak amplitude followed t·exp(−t/τrise). Subsequently, ORN responses were
reduced to reach an adapted state set at 60% of the peak amplitude following exp(−t/τadapt) .
Finally, after the odorant was removed, ORN responses returned back to baseline following
exp(−t/τfall) . τrise, τadapt, τfall for all 80 ORNs were set to 100 ms, 200 ms and 250 ms,
respectively. For any odor 40% of PNs received non-zero ORN input. Peak ORN response
amplitude was uniformly, randomly distributed between [0,1]. Model EAG responses (Figure
8G,I) were computed by summing individual ORN firing-rate responses.

Data analysis
All analyses except for spike sorting were performed using custom programs in MATLAB
(MathWorks Inc., Natick, MA). For experiments examining the effect of odor pulse duration
on oscillation frequency, 10 pre-trials (4 s) were first delivered to elicit short-term “fast
learning” response plasticity (Stopfer and Laurent, 1999), and then 100, 250, 500, 750, 1000,
1500 ms duration pulses were examined in a pseudorandom sequence; this set was repeated 3
times in each animal. Spectrograms (500 ms sliding Hamming window with 90% overlap)

Ito et al. Page 12

Neuron. Author manuscript; available in PMC 2010 December 10.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



were normalized by the maximum value in the last pre-trial. Results from 18 trials each from
3 animals of either sex (each animal tested with 2 odors) were averaged.

We used a magnitude squared coherence measure in Figure 1F to compare LFPs recorded in
the AL and the MB; this approach allowed us to minimize the effect of small variations in
phase we found in AL recordings caused by differences in electrode placement. We calculated
the magnitude squared coherence using an overlapping sliding Hamming window (0.25 s with
80% overlap) for fast (0.25-1 s) and slow (1-4 s) oscillations. For Figure 3B, which did not
require phase comparisons across brain structures, we used the more standard cross-correlation
measure.

We computed the phase of each spike relative to MB oscillations for fast (0.3-0.8 s) and slow
(0.8-4 s) oscillations as described elsewhere (Mazor and Laurent, 2005) but modified as
follows. LFP signals were acquired through an analog low-pass filter (>100 Hz) of a DC
amplifier (BrownLee Model 440), which imposed a 7 ms delay, which we compensated for in
MATLAB. For the phase analysis, LFP signals were then digitally filtered (5-55 Hz,
Butterworth; zero phase distortion by filtfilt command in MATLAB).

We measured the frequencies of LFP oscillations evoked by different concentrations of three
odors, each tested in blocks of 10 trials that were given in a randomized order. Power spectra
were computed using the time series in the first 0.5 s of odor responses as well as in the 1 s
before the odor responses (basal activity) and then averaged across 10 trials. The oscillation
frequency was determined as the frequency with the maximum power in 14-54 Hz band in the
average power spectrum.

Spike sorting of sensillum recordings was performed offline using Spike-o-Matic software
(Pouzat et al., 2002) implemented in Igor Pro (Wavemetrics, Lake Oswego, OR). In ORNs,
spike amplitude can change somewhat as ORNs adapt to odors; to accommodate small changes
in spike amplitude we allowed each cell cluster to include events with varying amplitudes as
long as different sorted clusters remained well-separated (by at least 5 times noise standard
deviation), and, within a cluster, an appropriate inter-spike interval distribution was maintained
throughout an experiment. For the population firing rate analysis shown in Figure 5D,E, in
addition to well-sorted units, we included unsorted data as multiunit activity from a single
sensillum. All other panels in Figure 5 include only well-sorted ORNs.

To fit the concentration responses of ORNs, we first counted the number of spikes in the first
1 s of odor response (same analysis bin as F1 in Figure 5D) and averaged over 10 trials for
each concentration. Similarly, the baseline activity was measured from the 2 s just before the
odor onset. ORN-odor combinations not showing odor-elicited changes in spiking (<5 spikes/
response) were not included in this analysis.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Odors evoked LFP oscillations in the moth MB and AL
(A) Recording site for LFP: center of the calyx in the MB. MB, mushroom body; mnsc, medial
neurosecretory cells; OL, optic lobe; AL, antennal lobe.
(B) LFP oscillations (black traces) with simultaneously-recorded electroantennogram (EAG,
green traces) evoked by different pulse durations of 1% benzyl alcohol, a plant volatile. Black
horizontal bars: odor pulses. Color bars: time windows (500 ms) used to calculate the power
spectra in [D].
(C) Brief odor pulses evoked fast oscillations; lengthy pulses evoked first fast, then slow
oscillations. Normalized, average spectrograms from 18 trials obtained from 6 animals with 3
trials each (see Experimental Procedures). Black horizontal bars above each spectrogram: odor
pulses.
(D) Power spectra of oscillatory LFP responses averaged from 22 moths and 8 odors, total of
820 trials. Color brackets: 14 Hz-wide bands used to calculate the total oscillatory powers of
fast (red, 30-44 Hz) and slow (blue, 10-24 Hz) oscillations in [E].
(E) Total oscillatory power of fast and slow LFP shifted significantly over lengthy odor pulses.
Twenty trials tested for each odor were averaged before pooling, mean±SE. n=41; 2-way
ANOVA: fwindow(2)=26.62, P<0.0001 (fast oscillations); fwindow(2)=9.09, P<0.0003 (slow
oscillations). Asterisks: significant differences (Tukey-Kramer multiple comparisons).
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(F) LFP oscillations in the AL and MB were highly coherent. Left: Example of odor-evoked
LFP oscillations recorded simultaneously in the AL and MB; odorant: 1% cyclohexanone (4
s). Areas a and b are expanded in insets. Horizontal red (0.25-1 s) and blue (1-4 s) bars: times
used for coherence analysis at right. Right: Magnitude squared coherence between the AL and
MB. Thin black line: coherence of the response shown. Thick black and dotted lines: average
coherence and its one standard deviation range (5 AL-MB combinations in 4 preparations, 20
trials each of 2 odorants), respectively.
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Figure 2. PN and LN responses were strongly phase-locked to the LFP
(A) Example simultaneous intracellular recordings from PN and LN, with LFP recorded in the
MB. First 2 s after the odor onset shown; brackets: portions expanded beneath. Odorant: 1%
benzyl alcohol.
(B) Subthreshold oscillations: 5-trial average sliding-window cross-correlograms show
reliable LFP and subthreshold membrane potential oscillations for the PN (top) and LN
(bottom) in [A]. Spikes were clipped. Vertical bars: odor pulses.
(C) Spike-LFP phase relationships: Polar histograms show phase position, relative to LFP, of
spikes recorded in PNs (n=14) and LNs (n=30) for fast and slow oscillations. Concentric circles:
firing probability. Black arrows: mean direction.
(D) All recorded neurons were filled with dye and later morphologically identified. Example
of PN and LN morphology. An Alexa-fluor-633 (red) filled PN and an Alexa-fluor-568
(yellow) filled LN are shown. Scale bar: 50 μm. AN: antennal nerve.
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Figure 3. Spiking in KCs is sparse, odor specific, and tightly phase-locked to the LFP
(A) KCs showed odor-elicited subthreshold membrane potential fluctuations that were tightly
correlated with LFP oscillations. Example: top, gray: LFP; bottom, black: simultaneous
intracellular record of a KC. Bottom: details of fast and slow periods during oscillatory
response. Odor: 4 s, 1% benzyl alcohol. Gray broken line: resting potential.
(B) Cross-correlations between LFP oscillations and KC subthreshold activity. Cross-
correlation was calculated for times bracketed in [A]. Black lines: correlation for the trial shown
in [A]; gray lines: 21 other trials from this cell. All 8 KCs showing subthreshold oscillations
revealed similarly-shaped correlation functions, 3 with coefficients >0.3.
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(C) Polar histograms show strong phase-locking between spikes in KCs and the LFP
oscillations. Histograms show spikes recorded from 20 KCs during fast and slow oscillations.
Arrows: mean phase position.
(D) Example of KC morphology; posterior view of MB; KC filled with Alexa Fluor 633. Scale
bar: 50 μm. Arrow: soma; CaM: medial calyx; CaL: lateral calyx.
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Figure 4. Odor concentration determines oscillation coherence, not frequency
(A) EAG traces revealed total ORN output increased with odor concentration. Example from
one antenna; horizontal bar: 4 s.
(B) Summary. EAG amplitude (first 1 s, see bracket in [A]) evoked by a range of odor
concentrations. Mean±SE; n=8; 2-way ANOVA: fodor_concentration=16.84, p<0.0001.
(C) Higher concentrations of odor evoked stronger LFP oscillations. Initial portions of the odor
response are shown. Scale bar: 50 ms.
(D) The frequency of fast oscillation changed not at all or only slightly across a broad range
of odor concentrations. All results are shown (dots); bar graph shows means, n=9. Leftmost
bars: basal oscillatory power in absence of odorant. Hexanol: 2-way ANOVA:
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fhexanol_concentration=6.16, p<0.001; post hoc Tukey-Kramer tests found small but significant
differences between three highest and two lowest concentrations (p<0.05). Octanol:
foctanol_concentration=4.98, p<0.001; post hoc tests: significant differences between highest two
and lowest two concentrations of octanol (p<0.05); Geraniol: 2-way ANOVA:
fgeraniol_concentration=1.4, p>0.25, ns.
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Figure 5. Saturation and adaptation constrained the ORN firing rates
(A) Example extracellular recordings from a sensillum on the antenna show responses to odor
pulses (4 s) of 10% hexanol (top) and jasmine oil extract (bottom). Two ORNs were recorded
in this sensillum, one with short spikes and sustained firing, and one with large, transiently
firing spikes (marked by *). Tan bars: odor pulses.
(B) Spike rasters of three ORNs tested with a wide range of concentrations of hexanol. Blocks
of 10 trials for each concentration were tested in random order. Tan bars: odor pulses (4 s).
(C) Instantaneous firing rates of a representative ORN. Spikes were binned (100 ms); spike
count in each bin averaged over 10 trials.
(D) The most active ORNs quickly adapted. Instantaneous population firing rate; firing rate
averaged over 10 trials for each odor-sensillum combination; 1,011 odor-sensillum
combinations (32 sensilla tested with up to 20 odors each). Responses to odor-sensillum
combinations were divided into 2 groups based on initial peak firing frequency (>40 Hz: light
gray; <40Hz: dark gray). Brackets: 1 s analysis bins used to calculate initial (F1) and late peak
(F2) frequencies. For this analysis multiunit activity was included.
(E) Relationship between peak frequencies F1 and F2. Dots under the diagonal line indicate
adaptation. Almost all odor-sensillum combinations showing initial spike frequency >40 Hz
(F1) underwent adaptation during the stimulus.
(F) Concentration tuning curves for 22 ORNs. Mean firing rates of most ORNs saturated after
the odor onset. Red traces: ORNs with firing rates that decreased after the peak concentration;
Green traces: ORNs with firing rates that saturated after the peak concentration.
(G) ORN concentration response curves were fit with the Hill equation. Example: ORN22,
tested with different concentrations of hexanol. Parameters (C10, C90, Hill coefficient, Fmax)
in panels H-J were obtained from this fitting.
(H) Lack of correlation between maximum firing rates (Fmax) and the thresholds (C10) of
individual ORNs. Response thresholds (C10) spanned about 6 orders of magnitude, indicating
our sample of ORNs, as a population, offered a wide dynamic range. Only responsive odor-
ORN combinations (n=25, >5 Hz change in mean firing rate during odors) were included in
this analysis.
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(I) Hill coefficient (red) and dynamic range (blue) as function of threshold. ORNs responding
to low concentrations typically showed low Hill coefficients and relatively wide dynamic
ranges.
(J) Histogram of Hill coefficients. Most ORN-odor combinations showed Hill coefficients >1,
indicating a dynamic range <2 orders of magnitude.
(K) Firing rates in the ORN population followed Gaussian distributions. The numbers of spikes
in the first 1 s of odor responses (indicated by colored dots) were counted in 37 ORNs tested
with hexanol. The ORN firing rates were fit with Gaussian distributions (colored lines). As the
odor concentration increased, the width of the distribution (sigma) broadened but the height
of the distribution remained about the same. All odor concentrations evoked responses with
Gaussian distributions.
(L) Frequency of MB-LFP oscillations changed in parallel to the odor input (1% hexanol) to
the AL network. Odor input: firing rate of the most active ORN (at each 50 ms time slice across
22 ORNs). Power spectrogram: average of 9 preparations.
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Figure 6. Odor evoked oscillations in model of moth AL
(A) Full-scale, map-based model included randomly connected populations of 820 PNs and
360 LNs. Odor pulse input was simulated by external currents delivered to a subset of neurons.
(B) Amplitude of the input was set to resemble the EAG (bottom). LFP (top) and neuronal
(middle) responses resembled those recorded in vivo. The input to the model was tuned to
match results of our physiological recordings and corresponded to points ‘1’ and ’2’ in the
parameter space shown in [E].
(C) Raster plots show spikes in all PNs (top) and all LNs (bottom) evoked by one odor pulse
(applied from 500-2500 ms).
(D) Interspike interval (ISI) distributions during fast and slow phases of LFP oscillations. Many
PNs fired two spikes in a single oscillatory cycle (ISI < 25 ms during fast and ISI < 50 ms
during slow phase); LN frequency was typically limited to the LFP frequency.
(E) Frequency of LFP, PN and LN oscillations as a function of input from ORNs to PNs and
LNs. Sweeping the points between ‘1’ and ‘2’ in parameter space mimicked the ISI distribution
(compare [D] and Figure S7) and the abrupt change in oscillatory frequency (compare [B] and
the Figure 1C) we observed in vivo.
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Figure 7. Effect of odor concentration upon LFP frequency in moth AL model
(A) Odor input to the network was simulated by synaptic currents applied to an odor-specific
population of PNs and LNs. The size of stimulated population (defined by a Gaussian
distribution with width σ; see Figure 5K was varied to simulate different odor concentrations.
(B) Examples of LFP oscillations elicited by three odor concentrations. As in vivo, during
lengthy odor stimuli the network shifted from fast to slow oscillatory states. LFP was band-
pass filtered (5-50 Hz).
(C) Spectrograms of LFP oscillations (those shown in B) for three odor concentrations.
(D) Minimal network consisting of a single PN and LN.
(E) Frequency of oscillations in the minimal network increased sub-linearly as a function of
input amplitude.
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Figure 8. Simplified firing-rate model of the moth AL
(A-C) Varying the width of the distribution of responsive PNs (simulating changes in odor
concentration, see Figures 5K and 7A) had no effect on oscillation frequency. (A) Width was
varied by adjusting the threshold level for activating PNs. (B) Adjusting the threshold greatly
altered overall input to the modeled AL network. (C) The oscillation frequency remained
constant despite simulated changes in odor concentration.
(D-F) Varying the height of the distribution of responsive PNs (simulating adaptation in ORNs)
caused changes in oscillation frequency. (D) Height was altered by scaling the response
intensity of activated PNs. (E) Adjusting the intensity greatly altered overall input to the
modeled AL network, as in [B]. (F) The frequency of LFP oscillations decreased when
adaptation of ORNs was simulated.
(G-H) Model EAG (green) and LFP response (black) when ORNs are permitted to adapt.
Adaptation alone is sufficient to shift the oscillatory frequency (power spectra for early and
late oscillations shown in H).
(I-J) Model EAG (green) and LFP response (black) when ORNs are not permitted to adapt.
Without adaptation oscillation frequency remains constant (power spectra in J).
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Figure 9. Summary of the mechanism to determine oscillation frequency
(A1) Long odor pulses cause ORNs to undergo sensory adaptation.
(A2) When odor exposure is lengthy, active ORNs adapt, decreasing their firing rates.
(A3) The lower ORN firing rates reduce excitatory drive to PNs.
(A4) As each PN receives less intense input, its firing rate decreases and oscillations slow.
(B1) When odor concentration is reduced, smaller populations of ORNs respond.
(B2) However, the responsive ORNs continue to fire at high rates.
(B3) Thus, the most active PNs continue to receive strong input from responsive ORNs…
(B4) and oscillation frequency remains stable across broad ranges of odor concentration.
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