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A reward or punishment can seem better or worse depending on what else might have happened. Little is known, however, about
how neural representations of an anticipated incentive might be influenced by the available alternatives. We used event-related
FMRI to investigate the activation in the nucleus accumbens (NAcc), while we varied the available alternative incentives in
a monetary incentive delay task. Some task blocks included only uncertain gains and losses; others included the same uncertain
gains and losses intermixed with certain gains and losses. The availability of certain gains and losses increased NAcc activation
for uncertain losses and decreased the difference between uncertain gains and losses. We suggest that this pattern of activation
can result from reference point changes across blocks, and that the worst available loss may serve as an important anchor for
NAcc activation. These findings imply that NAcc activation represents anticipated incentive value relative to the current context
of available alternative gains and losses.
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INTRODUCTION
The subjective value of a gain or loss can depend on the

availability of other incentives. These changes in value are

reflected both in behavioral preferences (Luce, 1992;

Simonson and Tversky, 1992) and in neural regions where

activation is sensitive to subjective value (Knutson et al.,

2001a; Montague et al., 2006; O’Doherty, 2004; Schultz,

2006). For example, human functional magnetic resonance

imaging (FMRI) studies have found that value-sensitive

areas such as the medial prefrontal cortex, amygdala,

striatum and posterior cingulate are more activated by the

same monetary outcome (e.g. 50 pence or $0) when it is the

best possible outcome predicted by a cue than when it is

the worst (Knutson et al., 2003; Nieuwenhuis et al., 2005;

Elliott et al., 2008).

These studies suggest that neural representations of value

are relative to at least one other possible outcome on that

trial. However, three specific questions have not been

addressed by previous research. First, earlier studies of

relative value have focused on alternatives within a trial

(i.e. was this outcome the best or worst that could have

happened in this trial?). Alternatives, though, could also be

viewed in a larger context, such as a block of trials (i.e. was

this incentive the best or worst incentive that could have

been presented in this block?).

Little is known about whether or how this broader context

might influence neural representations of value. One

possibility is a ‘range’ hypothesis that suggests neural repre-

sentations of value expand or contract in range so that the

best available incentive (regardless of its actual magnitude)

elicits maximal activation, while the worst elicits minimal

activation. According to this account, changing the value

of the best and worst alternatives should expand or contract

the range of activation for all alternative incentives. Another

possibility is an ‘anchor’ hypothesis that neural representa-

tions of a value are relative to either the best or the worst

possible incentive. According to this account, changing

the value of the best and worst alternatives should shift

activation for all alternative incentives in a single direction.

This account does not necessarily specify which of the best or

worst would serve as an anchor, but one possibility is that a

large potential loss might be a more attention-getting anchor

than a gain of equal size (Tversky and Kahneman, 1992).

Second, earlier studies of relative value have only focused

on neural responses to neutral outcomes or monetary gains,

rather than losses. Many studies suggest that value-sensitive

brain areas represent losses differently than gains (Breiter

et al., 2001; Bayer and Glimcher, 2005; Seymour et al.,

2007; Tom et al., 2007). Changes in alternative available

incentives might thus affect the representations of

anticipated losses differently than gains. For example,

many studies using monetary incentive delay (MID) tasks

have demonstrated greater anticipatory nucleus accumbens

(NAcc) activation for gains than for losses (Knutson et al.,

2001a; Bjork et al., 2004; Knutson et al., 2005; Guyer et al.,

2006). A recent study, however, found that when uncertain

gains and losses were presented in blocks of trials that also

included certain gains and losses, the NAcc was not
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differentially activated for uncertain gains vs losses, suggest-

ing that activation for losses was sensitive to the available

certain incentives (Cooper and Knutson, 2008). This study,

though, did not manipulate available alternative incentives

within individuals.

Third, earlier studies of relative value have focused on

neural responses to receiving outcomes within a trial.

Different brain areas, however, may represent value before

compared with after an incentive is received (Knutson et al.,

2001b; Knutson and Greer, 2008). For example, the NAcc is

more active during reward anticipation than in response to

reward outcomes, and plays a key role in promoting

approach behavior (Ikemoto and Panksepp, 1999; Breiter

et al., 2001; Knutson and Cooper, 2005). The influence of

changing available incentives on representations of value

during anticipation (rather than in response to outcomes)

is still unexplored.

To address the questions of whether changing available

alternative incentives could change anticipatory neural

responses within individuals, and of whether that change

would differ between gains and losses, we scanned partici-

pants as they performed a modified MID task. Participants

faced two sets of available incentives in alternating blocks.

In one set, uncertain $5.00 gains and losses were the best

and worst available outcomes, respectively. In the other set,

identical uncertain $5.00 gains and losses were mixed with

certain $5.00 gains and losses, respectively. Using certain

gains and losses as the alternative incentives provided

a link to studies that have examined neural representations

of subjective value using gambles that combine certain and

uncertain outcomes (Preuschoff et al., 2006; Bjork and

Hommer, 2007; Seymour et al., 2007). More broadly,

whether the availability of certain outcomes affects the repre-

sentations of uncertain outcomes is important for

understanding how the brain encodes value in mixed

gambles, a commonly used choice format in economics,

psychology and neuroscience.

Because of our focus on anticipation, analyses targeted the

NAcc. We compared anticipatory NAcc activation to gain

and loss cues between blocks with different available

alternative incentives. The range hypothesis predicted that

when better (certain $5.00 gains) and worse (certain $5.00

losses) incentives were available, activation for uncertain

gains should decrease, and activation for uncertain losses

should increase. In contrast, the anchor hypothesis predicted

that when better and worse incentives were available, activa-

tion for uncertain gains and losses should both increase

(if the worst incentive was the anchor) or both decrease

(if the best incentive was the anchor). Based on earlier find-

ings (Cooper and Knutson, 2008) and findings based on loss

aversion, we predicted that the worst available incentive

would serve as the anchor, and hence that anticipatory

NAcc activation for both uncertain gains and uncertain

losses would increase when better and worse incentives

were available.

MATERIALS AND METHODS
Participants
Twelve right-handed healthy volunteers, with no history

of neurological or psychiatric diagnosis, participated (six

women, aged 18–28 years). Participants gave informed

consent for a protocol following the Declaration of

Helsinki, and the study was approved by the Institutional

Review Board of the Stanford University School of Medicine.

Two participants were given incomplete post-experimental

questionnaires, and so retrospective affect ratings were only

available for 10 participants.

Experimental design and task
We combined two MID task versions from Knutson et al.

(2001a) and Cooper and Knutson (2008; Figure 1). In each

trial of the task, participants first saw a shape (the ‘cue’;

2000 ms) that indicated the experimental condition.

The cue then disappeared during a delay (randomized

between 1500 and 2500 ms). A triangle target then appeared

briefly (variable between 150 and 470 ms), and participants

attempted to ‘hit’ the target with a button press while it was

on-screen. After another delay (variable between 1030 and

2350 ms), participants saw the amount they earned on that

trial and the total amount they had earned in that block

(the ‘outcome’; 2000 ms). Trial length was 8000 ms.

Target speed was adjusted during the experiment by

an adaptive timing algorithm that attempted to maintain a

constant hit rate for each condition. This algorithm sped up

or slowed down the target for each condition if that condi-

tion’s hit rate exceeded or fell <66%. All conditions began

with 250-ms target duration. Mean target duration over all

participants and conditions was 235.7 ms (s.e.m. 4.3 ms).

Participants faced the two incentive sets in separate blocks

in the experiment, each with unique cues. The ‘uncertain-

only’ (UNC-ONLY) set mimicked the most common version

of the MID task (Knutson et al., 2001a). This set contained

four conditions, all with uncertain outcomes, that crossed

two levels of magnitude (high or low) with two types of

incentive valence (gain or loss). Each condition was signaled

by a unique cue (e.g. two vertical lines). On high-gain trials,

hitting the target earned $5.00, but misses earned $0.00

(i.e. no change). On low-gain trials, hits earned $0.05, but

misses earned $0.00. On high-loss trials, hits earned

Fig. 1 Trial structure and available incentives. Conditions were distinguished by
different cues. During UNC-ONLY blocks, four cues were used; during CERT-UNC
blocks, eight different cues were used. Outcome amounts were given both for the
current trial and the total earned within the current block.
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$0.00 (i.e. they avoided a loss), but misses lost $5.00.

On low-loss trials, hits earned $0.00, but misses lost $0.05.

The ‘certain and uncertain’ (CERT-UNC) set mimicked

the modified version of the MID task used in Cooper and

Knutson (2008). This set had eight conditions that crossed

two levels of magnitude (high or low) with two types of

incentive valence (gain or loss) and two levels of certainty

(uncertain or certain). Each condition was signaled by

a unique cue (e.g. an empty black square, a white circle

within a circle). The four uncertain conditions (uncertain

high-gain, uncertain low-gain, uncertain high-loss and

uncertain low-loss) were identical to the conditions in the

UNC-ONLY set; for example, on uncertain high-gain trials,

hitting the target earned $5.00, but misses earned $0.00.

In the four certain conditions, though, both hits and

misses earned the same amount. On certain high-gain

trials, both hits and misses earned $5.00. On certain low-

gain trials, both hits and misses earned $0.05. On certain

high-loss trials, both hits and misses lost $5.00, and on

certain low-loss trials, both hits and misses lost $0.05.

Thus, in the UNC-ONLY set, the best cue signaled

an uncertain chance of gaining $5.00, while the worst cue

signaled an uncertain chance of losing $5.00. In the

CERT-UNC set, participants faced cues for identical

incentives as the UNC-ONLY set, intermixed with an even

better gain cue (signaling a certain $5.00 gain) and an even

worse loss cue (signaling a certain $5.00 loss). The cues for

uncertain $5.00 gains therefore had identical absolute value

across sets but higher relative value in the UNC-ONLY

set (when they were the best possible cue), while cues for

uncertain $5.00 losses had identical absolute value across

sets but lower relative value in the UNC-ONLY set (when

they were the worst possible cue).

Participants played two blocks of each set in the experi-

ment for four total blocks. Sets alternated between each

block, with the initial set counterbalanced across participants

(e.g. CERT-UNC/UNC-ONLY/CERT-UNC/UNC-ONLY).

Each block was scanned in a separate scanner run.

Participants were informed as to which set they would

face at the beginning of each block. All UNC-ONLY and

CERT-UNC blocks had eight trials per condition, for a

total of 16 trials per condition. Because there were twice as

many CERT-UNC conditions as UNC-ONLY conditions,

CERT-UNC blocks took 8.5 min and UNC-ONLY blocks

took 4.3 min. Conditions within a block were presented in

pseudorandom order individualized for each participant.

Before scanning, participants received instruction on both

sets and the meaning of each cue, followed by a 10-min

training version of the task including both sets and all

conditions. Participants were then shown the cash they

could win. Participants were told that they would play two

blocks of each set, but were not told how many trials they

would face or about the adaptive timing algorithm.

After the experiment, participants rated how they felt

during the experiment about each cue on two affective

dimensions, arousal and positivity (Russell, 1980). Each

rating was made on 7-point Likert scale; the arousal scale

ranged from not aroused to very aroused, while the positivity

scale ranged from negative to neutral to positive. Scores were

converted such that higher scores represented increasing

arousal and increasing positivity. Participants were then

paid their total winnings in cash from either the

CERT-UNC or the UNC-ONLY set, determined randomly

after the experiment. These winnings were added to a parti-

cipation fee (that ranged from $45 to $53, depending on the

length of the scan). Total payment thus ranged from $51 to

$88 (mean $73.58, s.e.m. $3.09). Care was taken to ensure

that participants regarded the two sets as separate.

In addition to paying the winnings for only one set, all

instructions referred to the sets as two different games

and the cues for each set were distinct from the other

set’s cues.

Behavioral data were analyzed with SPSS 14.0 and

Microsoft Excel 2003 for Windows. In earlier studies, antici-

patory NAcc activation for cues correlated with a combina-

tion of arousal and positivity ratings for the cue, or ‘positive

arousal’ (Knutson et al., 2001a; Bjork et al., 2004; Knutson

and Peterson, 2005). We therefore calculated positive arousal

(PA) scores for each condition within each participant.

PA scores were calculated for each condition by subtracting

the participant’s mean arousal or positivity over conditions

from that condition’s arousal or positivity, summing the

mean-deviated arousal and positivity scores, and multiplying

by sin(458). This transformation represents a diagonal

rotation of the arousal and positivity axes to a single PA

axis (Watson et al., 1999). Reaction times were transformed

with the natural logarithm function before analysis to

account for their skew. Differences for behavioral measures

were tested with repeated-measures ANOVA over both sets

using condition as a single within-participant factor (using

the Huynh–Feldt correction for non-sphericity, denoted

as PH–F). The t-tests were used to investigate significant

effects post hoc.

Imaging
Participants were scanned with a General Electric 1.5 T Signa

scanner using the standard head coil. Stimuli were presented

with E-Prime 1.1 and projected on a mirror mounted on the

coil. Participants were fitted with a bite bar and padding

to minimize head motion. Functional images covered the

whole brain and consisted of 24 contiguous 4-mm

thick axial slices (TR¼ 2000 ms, TE¼ 40 ms, flip¼ 908,
3.44� 3.44 mm in-plane resolution, 64� 64 matrix),

collected using a T2*-sensitive spiral in/out pulse sequence

that minimizes dropout in ventral frontal and medial tem-

poral regions (Glover and Law, 2001; Preston et al., 2004).

One hundred and thirty-three images were collected in

each UNC-ONLY run, while 261 images were collected in

each CERT-UNC run, for a total of 788 images; the first

five images of each run were discarded to allow for
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magnetic equilibration. An in-plane structural image was

acquired before the functional runs (24 contiguous 4-mm

thick axial slices; TR¼ 14 ms; TR¼ 400 ms, 0.94� 0.94 mm

in-plane resolution, 256� 256 matrix), and a high-

resolution structural was acquired after the functional runs

(3D acquisition; T1-weighted SPGR sequence; 0.86� 0.86�

1.5 mm voxel size; 256� 256� 116 matrix).

Region of interest data analysis
The specific hypotheses for this study concerned NAcc acti-

vation, and so they were tested using a region of interest

(ROI) approach. ROI masks for the NAcc were based on

each participant’s individual anatomy (Supplementary

Figure S1; Breiter et al., 1997); this method avoids biasing

the ROI specification with the functional data (Devlin and

Poldrack, 2007; Kriegeskorte et al., 2009). Left and right

NAcc ROIs were located on each participant’s high-

resolution structural scan by placing 8-mm diameter spheres

at a starting point of x/y/z/¼�12/10/–2 mm and shifting

them to ensure each sphere sampled only gray matter. No

sphere was adjusted for >7 mm in any direction. Marsbar

was used to process ROI data (Brett et al., 2002).

Functional data were extracted, averaged across all voxels

in each ROI and filtered with a high-pass filter (cut-off

90 s). The time course of responses to each cue in each

ROI was then modeled with a finite impulse response

model (averaging over both blocks of each incentive set)

and estimated using restricted maximum likelihood, correct-

ing for temporal autocorrelation with an AR(1) model.

Time courses were converted to percent signal change

from the experiment mean in each ROI and averaged

across participants. We first analyzed left and right NAcc

time courses with repeated measures ANOVA including

hemisphere (left or right), condition (12 levels) and time

point (six levels from 0 to 10 s) as factors. Hemisphere

showed no main effect or interactions (all F ’s < 1), so we

combined left and right time courses into a single bilateral

NAcc time course for all further analyses. Because our

hypotheses specifically concerned anticipatory activation in

response to the cue, repeated measures ANOVA and planned

t-tests at the expected hemodynamic response peak of 4 s

after cue onset were used to investigate significant differences

between conditions (see supplementary results for similar

tests at 6 s and of parameter estimates).

Whole-brain data analysis
Whole-brain imaging data were preprocessed and modeled

with SPM2 (Wellcome Department of Imaging

Neuroscience). Functional images were corrected for slice

timing and realigned to the first image in the run. In-plane

and high-resolution scans were co-registered to the mean

functional image and normalized to the MNI avg152

template brain using standard parameters (a first pass of

12-parameter affine normalization, followed by non-linear

transformation with discrete cosine transform basis

functions, using a 25-mm cut-off and 16 non-linear itera-

tions). Functional images were normalized with the in-plane

parameters, interpolated to 2� 2� 2-mm voxels, and

smoothed with a 4-mm FWHM Gaussian filter. A high-

pass filter (cut-off 90 s) was applied within runs to remove

low-frequency noise.

Experimental effects were modeled within each participant

using a general linear model. Each model included regressors

for each condition’s cue and outcome events (with 1 at event

onsets and 0 otherwise). We also included a first-order

parametric modulator at each cue weighted with reaction

time on that trial to account for trial-to-trial variation in

motor response (Knutson et al., 2005). All regressors of

interest and the reaction time modulator were convolved

with a single gamma function model of the hemodynamic

response (Cox, 1996). Six regressors modeling residual head

motion (x, y, z and pitch, roll, yaw) and a constant term

within each run were also included. Restricted maximum

likelihood estimation was used to create whole-brain

�-weight images, correcting for temporal autocorrelation

with an AR(1) model. The �-weight images were combined

with appropriate weights to form contrast images for each

participant. Group effects for each contrast were then tested

with one-sample t-tests over all participants’ contrast images.

Significant voxels were identified with a voxelwise threshold

of P < 0.001 and a cluster size threshold of greater than

16 voxels (128 mm3), providing whole-brain protection

against false positives at P < 0.05 according to AlphaSim

(Ward, 2002). Peak activations are reported in MNI

coordinates, as in SPM2.

RESULTS
Behavior
Participants responded on almost all trials (mean response

rate¼ 93.7%, s.e.m.¼ 0.01%) and there were no signi-

ficant differences between conditions in response rate

[F(11, 121)¼ 0.70, P > 0.73]. Hit rates also did not signifi-

cantly differ between conditions [mean hit rate¼ 65.9%,

s.e.m.¼ 0.01%, F(11, 121)¼ 0.18, P > 0.99], confirming

that the adaptive timing algorithm controlled hit rates.

Mean reaction time was 199.99 ms (s.e.m.¼ 3.88 ms), but

reaction times did significantly differ across conditions

[F(11, 121)¼ 2.50, PH–F < 0.05]. The t-tests indicated that

these differences were largely due to relatively faster

responses for the uncertain high-magnitude conditions

(Table 1). No uncertain condition’s reaction time differed

between contexts.

Retrospective affect ratings also differed by condition

[arousal: F(11, 99)¼ 9.30, PH–F < 0.001; positivity:

F(11, 99)¼ 14.70, PH–F < 0.001]. For arousal, t-tests

indicated that these differences were due to higher arousal

for high-magnitude than low-magnitude trials, especially for

uncertain high-magnitude trials (Table 2). For positivity,

differences were driven by greater positivity for gains than

losses, especially for high-magnitude trials. No uncertain
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conditions differed between UNC-ONLY and CERT-UNC

sets in either arousal or positivity. PA scores also differed

by trial condition [F(11, 99)¼ 11.76, PH–F < 0.001]; t-tests

indicated these differences were due to greater PA in high-

gain trials (both uncertain and certain) than in high-loss or

low-magnitude trials. Uncertain high-loss trials also had

slightly higher PA in the UNC-ONLY set than in the

CERT-UNC set [t(9)¼ 2.40, P < 0.05].

ROI analyses
In order to test our hypotheses about anticipatory NAcc

activation, we estimated average percent signal change time

courses in the NAcc for all conditions. We then analyzed

activity in the uncertain trials (which were present in

both contexts) at 4 s following the cue for effects of available

incentive set (UNC-ONLY or CERT-UNC), valence (gain or

loss) and magnitude (high or low; Figure 2 and Table 3).

There were significant main effects of set [F(1, 11)¼ 10.01,

PH–F < 0.01] and magnitude [F(1, 11)¼ 7.29, PH–F < 0.05], a

significant interaction between valence and magnitude

[F(1, 11)¼ 5.31, PH–F < 0.05] and a significant three-way

interaction of set, valence and magnitude [F(1, 11)¼ 10.50,

PH–F < 0.01].

We investigated the effect of available incentive set

with planned t-tests between uncertain high-magnitude

gains and losses in each set. These trials had identical

absolute values but differing relative values across sets. In

the CERT-UNC set compared with the UNC-ONLY set,

uncertain gains had lower relative value, while uncertain

losses had higher relative value. Uncertain high-loss trials

had significantly greater activation in the CERT-UNC than

in the UNC-ONLY set [t(11)¼ 4.89, P < 0.001]. Uncertain

high-gain trials had a trend toward greater activation in

the CERT-UNC set than in the UNC-ONLY set [t(11) ¼

1.96, P¼ 0.076, two tailed]. Among other uncertain

trials, no low-magnitude trial differed from any other

in either set, and they had lower activation than most

high-magnitude trials.

The valence by magnitude interaction was evident

primarily in the UNC-ONLY set, where uncertain

high-gain trials elicited greater activation than uncertain

high-loss trials [t(11)¼ 3.53, P < 0.01]. This difference

was not present in the CERT-UNC set [t(11)¼ 1.25,

P > 0.23], which accounted for the three-way

interaction.

In summary, anticipatory NAcc activation for a given

incentive was significantly influenced by which alter-

native incentives were available. In the CERT-UNC set,

activation was greater for uncertain losses, and the

difference between gains and losses was significantly

reduced.

As this study aimed to investigate the effects of

incentive set, we did not focus the analyses on certain

trials, which appeared only in the CERT-UNC set.

Exploratory analyses revealed a few differences from

other conditions (Table 3). In particular, NAcc activation

on certain high-gain trials did not differ from any

other condition. NAcc activation on certain high-loss

trials, however, was lower than uncertain high-gain trials

in both the UNC-ONLY [t(11)¼ 3.09, P < 0.05] and

CERT-UNC [t(11)¼ 4.21, P < 0.01] sets, as well as lower

than uncertain high-loss trials in the CERT-UNC set

[t(11)¼ 3.55, P < 0.01] and certain low-gain trials

[t(11)¼ 3.19, P < 0.01].

Similar results were found for activation at 6 s following

cue onset and parameter estimates of activation in response

to cues (Supplementary Results).

Table 1 Reaction time by condition

Condition Reaction time (s.e.m.)

UNC-ONLY
Uncertain high-gain 192.5a,b,c (3.7)
Uncertain low-gain 198.7a,c,d,e,f (4.9)
Uncertain low-loss 197.9a,b,c,d,e (7.0)
Uncertain high-loss 194.0b,g (4.8)
CERT-UNC
Uncertain high-gain 193a,b,c,e (4.6)
Uncertain low-gain 202.2c,f,g (5.7)
Uncertain low-loss 208a,b,c,f (7.3)
Uncertain high-loss 192.8a,b (3.7)
Certain high-gain 204.8d,f (5.3)
Certain low-gain 203.3a,b,c,d,e (8.3)
Certain low-loss 207f (4.4)
Certain high-loss 205.6e,f (4.4)

Note: Data are mean reaction time in milliseconds. Reaction times were
log-transformed for statistical comparison; original reaction times are reported
here for clarity. The s.e.m. are calculated within condition. Data points that share
subscripts do not differ at P < 0.05 (two tailed).

Table 2 Cue affect ratings by condition

Condition Arousal (s.e.m.) Positivity (s.e.m.) PA (s.e.m.)

UNC-ONLY
Uncertain high-gain 6.4a (0.2) 5.8i,j (0.2) 2.1r (0.2)
Uncertain low-gain 4.1c,d,e,f (0.5) 4.5k,l (0.4) �0.4u,v,z (0.4)
Uncertain low-loss 4.0c,d,e,f (0.4) 3.5m,n (0.3) �1.2x,z (0.2)
Uncertain high-loss 6.1a (0.3) 2.5o,p (0.3) �0.4t,v,x,y (0.3)
CERT-UNC
Uncertain high-gain 5.4a,b,c (0.5) 5.3j,k (0.3) 1.6r,s (0.5)
Uncertain low-gain 3.8d,f (0.4) 4.3k,m (0.3) �0.3u,w,y (0.3)
Uncertain low-loss 4.3b,e (0.4) 3.3l,m,o (0.4) �0.6w,x,z (0.3)
Uncertain high-loss 5.9a (0.3) 2.8n,o,p (0.4) 0.1s,u,w (0.4)
Certain high-gain 4.9b,d (0.5) 6.0i (0.3) 1.7r (0.4)
Certain low-gain 3.9c,e,f (0.5) 4.6k (0.3) 0.0t,w (0.3)
Certain low-loss 3.7e,f (0.4) 3.0n,o,p (0.3) �1.3z (0.2)
Certain high-loss 4.5b,c (0.4) 2.3p (0.4) �1.2y,z (0.3)

Note: Data are mean retrospective affect ratings (n¼ 10) of each condition’s cue on
7-point Likert scales for arousal and positivity. PA was calculated from arousal
and positivity (see text for formula). The s.e.m. are calculated within condition.
Data points within a column that share subscripts do not differ at P < 0.05
(two tailed).
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Whole-brain analyses
Although this study was designed to specifically focus on

NAcc activation, we also performed whole-brain analyses

of anticipatory activation to cue onset between conditions

(see Supplementary Tables S3–S5 for full activation list and

Supplementary Figure S3 for image). In both the UNC-

ONLY and CERT-UNC sets, uncertain high-gain trials

compared with uncertain low-gain trials activated a wide

network of medial and anterior frontal, striatal and parietal

areas commonly associated with motivation and valuation

(Knutson and Cooper, 2005; Montague et al., 2006; Schultz,

2006). As well, in both sets, uncertain high-loss trials

compared with uncertain low-loss trials activated a smaller

but partially overlapping network of brain areas, including

dorsal and posterior cingulate and dorsal striatal areas

(Seymour et al., 2007).

Across incentive sets, uncertain high-gain trials elicited

more activation in the UNC-ONLY set compared with

the CERT-UNC set in anterior prefrontal cortex and in the

temporal pole. In the CERT-UNC compared with the

UNC-ONLY set, uncertain high-gain trials elicited more

activation in inferior frontal gyrus. No clusters were differ-

entially active between incentive sets for uncertain high-loss

trials.

DISCUSSION
The current findings demonstrate that in the NAcc, a

crucial human substrate for representing anticipated

reward, anticipatory activation for an incentive is modulated

by the available alternative incentives. Using event-related

fMRI and a version of the MID task (Knutson et al.,

2001a) incorporating two different sets of incentives, we

compared NAcc activation to cues for uncertain $5 gains

and losses when their relative (but not absolute) value

differed. Specifically, uncertain gains and losses were the

best and worst incentives in one set (UNC-ONLY), but the

second-best and second-worst in another set (CERT-UNC).

For the first time, we observed that NAcc activation

differed during anticipation of losses (and to a weaker

extent gains) that were identical in absolute magnitude,

probability, expected value and uncertainty. The losses and

gains differed only in which other incentives were available

during that block of trials. When uncertain gains and losses

were the best and worst incentives, NAcc activation was

significantly greater for uncertain gains than for uncertain

losses. However, when the same uncertain gains and losses

were not the best and worst incentives, NAcc activation

for uncertain losses increased, and the difference between

activation for uncertain gains and losses was reduced. This

effect was present by 4 s following cue onset, but similar

patterns for activation at 6 s and for parameter estimates of

the hemodynamic response function indicated the effect

extended throughout the anticipation period.

The set of available alternative incentives, then, modulated

a key neural representation of anticipated incentive value in

accordance with the anchor hypothesis as opposed to the

range hypothesis. Activation for uncertain losses increased

when they were not the worst outcome, while activation for

uncertain gains also showed a trend toward an increase.

Since choice for consumer products can be predicted with

NAcc activation (Knutson et al., 2007), these findings imply

that preference reversals across different incentive sets

Fig. 2 Percent signal change in NAcc. Points represent mean percent signal change
from the experiment mean in bilateral NAcc at 4 s following cue onset. Error bars
represent standard errors within participants. Only uncertain trials are shown, and
only between-set differences for the same incentive are indicated. See Table 3 for
data and all pairwise comparisons. ***P < 0.001.

Table 3 Peak NAcc activation by condition

Condition Percent signal change (s.e.m.)

UNC-ONLY
Uncertain high-gain �0.065a,b,c (0.05)
Uncertain low-gain �0.22e (0.05)
Uncertain low-loss �0.18c,d,e (0.05)
Uncertain high-loss �0.20d,e (0.06)
CERT-UNC
Uncertain high-gain 0.029a (0.07)
Uncertain low-gain �0.12b,c,d,e (0.06)
Uncertain low-loss �0.17d,e (0.05)
Uncertain high-loss �0.027a,b (0.05)
Certain high-gain �0.11a,b,c,d,e (0.05)
Certain low-gain �0.091b,c,d (0.05)
Certain low-loss �0.16b,c,d,e (0.04)
Certain high-loss �0.19e (0.04)

Note: Data are activation in the NAcc 4 s following the cue for a condition, in units of
percent signal change from the experiment mean in that ROI. The s.e.m. are
calculated within condition. Data points that share subscripts do not differ at
P < 0.05 (two tailed).
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(Tversky and Simonson, 1993) may relate to changes in the

NAcc representation of anticipated value.

Although this study focused on NAcc activation, we also

conducted whole-brain analyses both within and across

incentive sets. Within each set, we found that common

networks involved in motivation and value were recruited

for high-gain and high-loss trials, including medial frontal,

striatal and parietal areas. Across sets, a few clusters were

differently active for uncertain high-gain trials (but none

for uncertain high-loss trials): right anterior PFC and tem-

poral pole were more active in the UNC-ONLY set, while

inferior frontal gyrus was more active in the CERT-UNC set.

Importantly, the small set of brain areas differentially active

between incentive sets suggest that differences in the NAcc

cannot be explained by an overall increase in activation

across the whole brain.

These findings go beyond existing studies of context on

activation in the NAcc, to directly test competing hypotheses

of how relative value is represented. Earlier studies (Knutson

et al., 2003; Nieuwenhuis et al., 2005; see also Tobler et al.,

2005; Elliott et al., 2008) suggested that value-sensitive areas

may represent the value of an outcome ranked relative to

other available outcomes. In this study, both better and

worse incentives were added in the CERT-UNC set.

The range hypothesis suggested that activation for uncertain

gains would decrease and activation for uncertain losses

would increase in this set, as they could now be judged

relative to both better (certain gain) and worse (certain

loss) alternatives. The anchor hypothesis, though, suggested

that uncertain gains and losses would both be judged relative

to only one of the new incentives, and hence that activation

for both uncertain gains and losses would increase or

decrease.

These findings support the anchor hypothesis (specifically

for an anchor at the worst possible incentive). Activation for

uncertain losses, and to a lesser extent uncertain gains,

increased after adding a worse and a better incentive to

a block of trials. This suggests that in the CERT-UNC set,

anticipatory NAcc activation was influenced more by the

availability of a certain loss than by a certain gain of the

same magnitude, and hence activation for both uncertain

incentives was increased. The fact that the worst available

incentive, as opposed to the best, seemed to serve as the

anchor is consistent with the loss-aversion observation that

losses can have a greater impact than gains of the same

magnitude.

An additional possibility is that NAcc representations of

uncertain losses might be more affected by other available

incentives because the NAcc represents anticipated gains dif-

ferently from anticipated losses (Breiter et al., 2001; Knutson

et al., 2001a). This account is supported by the weaker

increase in activation for uncertain gains. It is also consistent

with the difference in PA for losses (but not gains) across

incentive sets, since NAcc activation correlates with PA

(Knutson and Greer, 2008). However, other factors might

also explain this pattern. For example, expected value for

uncertain losses is closer to zero than for uncertain gains

(about –$1.67 vs $3.33), and the influence of available alter-

native incentives might be larger for small incentives.

As well, activation for uncertain gains is already relatively

high in the UNC-ONLY set, and so physiological ceiling

effects might also more simply account for the weaker

change for gains. The current design cannot distinguish

between these accounts, but further research should explore

how incentive magnitude in particular might affect the

influence of other available incentives.

The findings have a final implication for interpreting

the neural representations of value during decisions with

multiple available incentives, especially mixed certain and

uncertain incentives (as is the case for many gambles).

The current results suggest that the availability of alternative

certain incentives can influence the neural representations

of uncertain incentives with similar magnitude. Represen-

tations of an uncertain incentives in a decision involving

certain incentives, then, might differ from representations

of that same incentive in a decision involving only uncertain

incentives. This argues for a note of caution when comparing

decisions with different kinds of incentives; the mere

availability of certain incentives may qualitatively change

how the brain represents the value of uncertain incentives.

The present design controlled for several potential

confounds between contexts, but also had some limitations.

One important limitation is the fixed inter-trial interval,

which raises the possibility that the end of the previous

trial might have influenced the time course of activation in

response to a cue (see Supplementary Figure S2 for full time

course data). This may have decreased NAcc activation at the

beginning of each trial, so that most of our measures of

activation began below the experimental mean. The initial

decrease makes it difficult to identify the onset of contextual

differences in time. However, the decrease did not vary by

condition or incentive set, perhaps since anticipatory NAcc

activation is not strongly influenced by prior outcomes in

the MID task (Knutson et al., 2001b). The decrease in NAcc

activation at trial onset is consistent with earlier studies

(Larkin et al., 2007), suggesting that the main conclusions

were not distorted by potential activation carryover from

trial to trial.

In summary, this study demonstrated that in the NAcc,

anticipatory representations of an incentive can be modu-

lated by the mere availability of alternative incentives.

Specifically, anticipatory NAcc activation for uncertain

losses (and to a lesser extent gains) increased when both

certain gains and losses were available. The pattern of effects

was most consistent with the idea that participants used

certain losses (but not gains) as an anchor when they were

available. This anchor account highlights the flexible nature

of value representations. Neural systems can alter how

they represent the environment from second to second.

Understanding and predicting these changes requires
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innovative experimental designs and incremental research.

One important future direction might involve varying the

available incentives in an event-related fashion, to capture

how representations might change from trial to trial.

To further understand how the brain anticipates incentives

in a changing world, studies may profitably use designs and

analyses that honor its dynamic flexibility.
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Supplementary data are available at SCAN online.
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