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Statistical thresholding (i.e. P-values) in fMRI research has become increasingly conservative over the past decade in an
attempt to diminish Type I errors (i.e. false alarms) to a level traditionally allowed in behavioral science research. In this article,
we examine the unintended negative consequences of this single-minded devotion to Type I errors: increased Type II errors
(i.e. missing true effects), a bias toward studying large rather than small effects, a bias toward observing sensory and motor
processes rather than complex cognitive and affective processes and deficient meta-analyses. Power analyses indicate that the
reductions in acceptable P-values over time are producing dramatic increases in the Type II error rate. Moreover, the push for a
mapwide false discovery rate (FDR) of 0.05 is based on the assumption that this is the FDR in most behavioral research; however,
this is an inaccurate assessment of the conventions in actual behavioral research. We report simulations demonstrating that
combined intensity and cluster size thresholds such as P < 0.005 with a 10 voxel extent produce a desirable balance between
Types I and II error rates. This joint threshold produces high but acceptable Type II error rates and produces a FDR that is
comparable to the effective FDR in typical behavioral science articles (while a 20 voxel extent threshold produces an actual FDR
of 0.05 with relatively common imaging parameters). We recommend a greater focus on replication and meta-analysis rather than
emphasizing single studies as the unit of analysis for establishing scientific truth. From this perspective, Type I errors are
self-erasing because they will not replicate, thus allowing for more lenient thresholding to avoid Type II errors.
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Almost every fMRI analysis involves thousands of simulta-

neous significance tests on discrete voxels in collected brain

volumes. As a result, setting one’s P-value threshold to 0.05,

as is typically done in the behavioral sciences, is sure to

produce hundreds or thousands of false positives in every

analysis. To guard against such errors, MR statisticians have

worked to develop methods that are increasingly effective at

guarding against Type I errors (i.e. false positives resulting

from noise when there is no true effect). Clusters of activity

that survive these methods are thought to reflect true effects

and thus are expected to replicate in future studies. The

benefits of preventing Type I errors with these methods is

undeniable, but precious little ink has been spilled or mental

effort spent on considering the costs of a single-minded

focus on Type I errors or whether our procedures, rather

than emulating the actual statistical practices of the behav-

ioral sciences, have considerably overshot the mark.

In this article, we focus on the primary cost of decreasing

the likelihood of Type I errors, namely the inherent increase

in another inferential error�the Type II error. The Type II

error occurs when we fail to recognize a true effect. We argue

here that in neuroimaging, relative to behavioral research,

the Type II error may be actually the more pernicious of

the two errors, because in neuroimaging, results that may

constitute Type II errors are not reported at all because they

do not meet the threshold for significance and cannot be

considered in aggregate analyses such as meta-analyses.

In addition, the measures taken to avoid Type I errors in

neuroimaging are disproportionately likely to increase the

number of Type II errors for tasks that allow for multiple

cognitive solutions to a problem (e.g. decision-making tasks)

and/or variability across trials in degree or timing of cogni-

tive processing (e.g. emotional regulation in response to a

particular stimulus).

A second focus of this article is the putative goal of MR

statisticians of emulating the P-value conventions established

and used by behavioral researchers. Although the official

statistical norm of the behavioral sciences is to use P < 0.05

corrected for the number of tests conducted, this is not the

convention used in almost any behavioral science publica-

tion. Most articles report many tests, each held to a standard
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of P < 0.05 without any correction for multiple tests. We

agree that fMRI research should emulate the standards of

behavioral research, but the standards of research as it is

actually conducted. For a young science to impose stricter

self-standards than its parent discipline, when doing so

would increase Type II errors and lead us to miss important

neural landmarks for future investigations, is not wise.

Cognitive neuroscience in general, and social and affective

neuroscience in particular, is still in an exploration phase

and thus it is more important not to dismiss possible true

effects than it is to avoid reporting false alarms. We argue

for a view of cognitive neuroscience that focuses more on

the aggregation of data across multiple studies and in

meta-analyses. From this perspective, false alarms are impor-

tant but ‘far’ from catastrophic as they will not replicate and

thus are self-erasing, but unreported Type II errors cannot be

included in the multi-study aggregation of findings and can

never be the basis for attempted replications or extensions.

AVOIDING TYPE I ERRORS
In the early days of fMRI and for quite some time, the gold

standard for analysis was to use a P-value of 0.001 at each

voxel. The thought was that in the absence of knowing what

the correct P-value should be, using one that is 50 times

more stringent than the one used by behavioral scientists is

reasonable. And why not, given that P < 0.05 was a relatively

arbitrary standard set by Fisher (1926) who wrote ‘it is con-

venient to draw the line at about the level at which we can

say: ‘‘Either there is something in the treatment, or a coin-

cidence has occurred such as does not occur more than once

in twenty trials’’’ (p. 504). Although countless classic fMRI

studies have been conducted with the P < 0.001 threshold

since the early 1990s, studies that have been replicated

time and time again (e.g. Wagner et al., 1998), increasingly

this threshold is being discarded by groups seriously con-

cerned with Type I errors. The reason seems simple: with the

number of simultaneous tests conducted in an analysis,

using P < 0.001 is still likely to produce up to 100 voxels

(assuming an extreme of 100 000 voxels tested at once)

that appear significant while in fact being false alarms.

A variety of statistical procedures have been introduced to

better cope with the multiple comparisons issue in fMRI.

One solution has been to jointly use intensity and spatial

extent thresholds in the same analysis (‘intensity/cluster

thresholding’; Forman et al., 1995). In such analyses, a

researcher specifies a P-value that a voxel must surpass to

be considered but also specifies the number of contiguous

voxels (i.e. spatial extent) that must all surpass this P-value

to be considered a significantly active cluster of voxels.

The reasoning is that voxels representing false alarms due

to noise will be randomly distributed throughout the brain

and thus are much less likely to occur in contiguous groups

of voxels than in single voxels. Using a slightly more liberal

P-value (P < 0.005) along with a 10 voxel extent threshold is

more likely to produce replicable data than a P-value of

0.001 alone, if other scanning parameters are held constant.

Recent approaches that are more conservative with respect

to Type I errors are family-wise error (FWE) correction

procedures and false discovery rate (FDR) techniques

(Genovese et al, 2002). FWE approaches based on Monte

Carlo simulation and/or Gaussian field theory using vari-

ous cluster size corrections are conceptually similar to

Bonferroni. In contrast, formal FDR analyses take the distri-

bution of P-values from an analysis into account and end up

being less conservative than FWE (yet still more likely to

avoid Type I errors than intensity/cluster thresholding).

While FWE analyses use a correction meant to result in

almost no Type I errors, FDR techniques limit the rate of

Type I errors and this difference is clearly a nod to Type II

error concerns.1

THE COSTS OF SINGLE-MINDED FOCUS ON TYPE I
ERRORS
The benefit of a nearly exclusive focus on Type I errors is

clear. Using the most conservative of these methods (FWE),

few Type I errors will occur in a given fMRI analysis and as a

result, most observed effects will reflect true population level

differences that will replicate in most sufficiently powered

fMRI samples.

The costs of this focus are less clear and certainly less often

considered. Here, we will consider four negative conse-

quences: (i) increased Type II errors, (ii) a bias toward pub-

lishing large and obvious effects, (iii) a bias against observing

effects associated with complex cognitive and affective

processes and (iv) deficient meta-analyses. Although some

of these consequences affect all fMRI studies equally, some

of these disproportionately impact social and affective

neuroscience investigations.

Increased Type II errors
Types I and II error rates are a zero-sum game for any

given sample size. Any method that protects more against

one type of error is guaranteed to increase the rate of the

other kind of error. Consider a test that returns a P-value

of 0.02. If this was one of 10 tests and we applied a

Bonferroni correction, we would conclude that the null

hypothesis could not be rejected. If all 10 tests had P-

values of 0.02, we would end up rejecting all of the

tests even though it is likely that several of the tests rep-

resent real effects. Thus, when we set increasingly

1 It is interesting to note that many researchers who used P < 0.005 (10 voxels) or P < 0.001 (no extent

threshold) for years have moved on to using FDR techniques. It is not uncommon for these researchers to

suggest that new data should not be published unless it is using FDR correction to a 0.05 level. One would

assume that such researchers would either want to retract their own previous work or at least publish

corrigenda indicating that their previous results should not be taken seriously. One rejoinder would be the

success with which the original work replicated and indeed, this demonstrates two of our main points. If their

original work had not been published due to more conservative thresholding procedures, no one might have

thought to replicate those effects. Moreover, the fact that these less conservative thresholding procedures

produced now classic replicable effects is just one more indication that these thresholds can operate

effectively. We hope it is obvious that we do not think such papers are in need of retraction or corrigenda.
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conservative P-values, we are reducing the number of false

alarms but we are also increasing the number of real

effects that are effectively being treated as spurious.

The best estimate of Type II error rates comes from power

analyses. There is no way to estimate, a priori, how many

Type II errors occurred in an existing fMRI data set.

However, power analyses do estimate the likelihood of a

Type II error in future samples given a true effect of a certain

size. Assume there is a real effect equivalent to R2
¼ 0.25,

considered a large effect in the behavioral sciences, and

a sample size of 20. If we set our P-value threshold to

0.005, our likelihood of detecting this effect is 30.7%.

In other words, given a real effect, our Type II error rate is

69.3%. Remember that this is using the liberal threshold

that is advised against by those focused on Type I errors.

Applying a P-value threshold of 0.001 and assuming the

same true effect, our Type II error rate is 86.2%, but this

threshold is still considered too liberal. Moving to a P-value

threshold of 0.0001 and assuming the same true effect, our

Type II error is 96.5%. Thus, steps taken to lower the FDR

can have devastating effects on our likelihood of detecting

sizable true effects.

Bias toward large obvious effects
Everyone knows the old story of the man who is looking for

his keys at night under the streetlight. When asked if he

dropped them under the streetlight he says ‘No, but this is

where the light is good’. As the balance of Types I and II

conventions shift, it can have a similar effect on ‘where

the light is good’ in terms of what kinds of fMRI investiga-

tions are likely to bear fruit. In the absence of constraints,

we would all run samples with n¼ 500 and the concerns

about both kinds of errors would largely vanish, but given

the expense of neuroimaging, only the most successful labs

could ever dream of running such large samples. Thus, with

the constraint that most early to mid-career investigators will

be able to scan samples of 16–20, power analyses dictate that

as P-value thresholds are made more conservative, the only

effects that can be examined with a decent likelihood of

successful detection are very large effects. Securing funding

to examine subtle effects in large samples with sufficient

statistical power presents something of a Catch-22; in

order to secure funding, one needs to present promising

pilot data, but the expense of obtaining good data for

subtle effects is precisely why the funding is needed.

Paradoxically, only those studying large effects can get the

pilot data in a small sample to secure the funding to collect

large samples, which are not actually needed to study large

effects. To be very clear about this, with n¼ 20 only effects

with a Cohen’s d of 1.85 or larger will identified as signifi-

cant using P < 0.001 (and this is now considered an overly

liberal significance threshold). Behavioral scientists all know

that very important and interesting effects occur well below

that effect size threshold.

Bias against complex cognitive and affective effects
For multiple reasons, fMRI studies examining sensory and

motor phenomena are likely to have larger effect sizes than

social and affective phenomena and thus are more resistant

to measures designed to avoid Type I errors. One reason for

this is that the regions of the brain involved in sensory and

motor phenomena are largely immune to susceptibility arti-

facts. In contrast, multiple regions associated with social and

affective phenomena such as ventromedial PFC, amygdala,

and the temporal poles are more difficult to image because of

susceptibility artifacts. Thus, just in terms of ability to extract

signal with fMRI, social and affective neurosciences are at

a disadvantage. Perhaps more significantly, there is a tighter

mapping between experimental inputs and outcomes in sen-

sory and motor domains than in the social and affective

domains. A checkerboard pattern presented multiple times

to different participants will have a very similar set of effects

from trial to trial and from person to person, greatly enhan-

cing the signal-to-noise ratio. Similarly, instructions to tap

or not tap one’s fingers will produce very reliable behavioral

outputs. Critically, in both of these cases, the experimenter

has precise timing information in terms of visual inputs

or motor outputs that allows for precise modeling of the

neural events. Given how central the notion of subjective

construal is to social and affective phenomena, there is

greater inherent trial-to-trial and person-to-person variabil-

ity in these domains (Griffin and Ross, 1991). Forming a

judgment of another person or reappraising one’s emotions

can invoke a variety of different processes and recruit differ-

ent representational content depending on a perceiver’s cur-

rent and chronically accessible constructs, associations, and

expectations (see Ochsner, 2007). Moreover, it is essentially

impossible to gain the same precision timing over when the

reappraisal process is occurring. This makes it a fundamen-

tally noisier process to model. Over time, one would natu-

rally want to be able to assess the different sources of

variability (at least those that can be assessed) and examine

the neural correlates of different kinds of responses, but

if correction procedures are sufficiently severe, it might be

difficult to ever find initial neural landmarks worth investi-

gating further.

Deficient meta-analyses
One can debate the merits of adjusting our Type I focus for

any of the previous costs described. One can reasonably

argue that these are simply crosses that social and affective

neuroscience must bear if they want to be at the table with

the ‘big boys’. But the final cost of a single-minded

focus on Type I errors concerns anyone who uses fMRI. In

behavioral science papers, t-values are typically reported

whether the associated P-value is significant or not, whereas

in typical fMRI papers, t-values (or their equivalent) are

only reported if the P-value meets the criteria set for

significance.
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Meta-analyses serve a number of different purposes. First,

any science is a cumulative endeavor and the results from

any particular study need to be seen in light of similar

studies. For example, if a result is seen only once, this par-

ticular finding (even if FDR corrected) will be disregarded to

the extent that it does not replicate. Thus, Type I errors are

defended against through the accumulation of data across

studies and labs. Second, perhaps more relevant to the issue

of Type II errors, meta-analyses are commonly used to detect

effects that may not meet conventional significance levels in

individual studies but are real and emerge when the studies

are considered together in the aggregate. In other words,

meta-analyses can compensate for the low power to detect

subtle but real effects in small sample studies by leveraging

their combined sample sizes. If the true effect size for a

behavioral effect is r¼ 0.10, sample sizes of 30–40 will only

rarely detect this as significant at P < 0.05. Nevertheless, as

long as the t- or P-value is reported in each study, despite its

within study non-significance, when 20 or more similar stu-

dies are combined meta-analytically, the effect may well

emerge as significant.

Because typical fMRI studies only report significant

effects, an underpowered statistical effect is much less

likely to be detected when studies are combined meta-

analytically. In other words, not only are small effects

likely to be missed in individual studies, but if the data are

not reported in individual studies as is typically the case, the

combined sample sizes cannot be leveraged in meta-analyses.

These real effects will be lost to meta-analyses. Moreover,

when considering multiple papers in conjunction for deter-

mining a particular effect, Type II errors may conceptually

overcorrect the literature if a finding is disregarded because

follow-up studies are not permitted to report ‘near signifi-

cant’ findings. It is important to remember that if one finds

a P¼ 0.05 (corrected) effect, and then conducts an ‘identi-

cal’ replication (and assuming the effect size in study 1 is

representative), there is only a 50% chance of significant

replication (0.049 is in, 0.051 is not)!

WHAT SHOULD WE BE CORRECTING FOR?
It is conventional wisdom that it is more important for fMRI

researchers to correct for multiple comparisons than for

behavioral researchers to do so because fMRI researchers

conduct so many more tests than behavioral researchers.

Although there is no question that fMRI researchers conduct

more tests than behavioral researchers in any given study,

it is not clear why this is a criterion for who should be

correcting and under what circumstances. How many behav-

ioral science papers report dozens of statistical tests without

any correction for multiple comparisons? If we are going to

be serious about Type I errors, should not the number of

tests reported in any paper be corrected for? While lip service

is always given to P < 0.05 corrected for multiple compari-

sons, this in no way reflects the actual conventions of behav-

ioral scientists. A randomly selected issue of Journal of

Personality and Social Psychology (JPSP, August, 2000), a

high-profile journal of the American Psychological Associa-

tion, contained an average of 93 statistical tests per paper

(range: 32–145 tests), excluding one paper that reported

no statistical tests at all.2

If the goal of the push to avoid Type I errors in fMRI is

to achieve a similar FDR as that observed in behavioral

research, then we should be trying to match actual behav-

ioral science research practices. As a first approximation,

we used AlphaSim (Cox, 1996) to estimate the FDR for

papers with 93 tests and then determined what cluster size,

used in conjunction with an intensity threshold of P < 0.005

would produce the same FDR.3 In the fMRI simulation,

we assumed a 64� 64� 25 matrix with a mask applied to

include only voxels inside the brain (total voxels included:

39 838). We assumed voxel dimensions of 3.5 mm�

3.5 mm� 5 mm and a smoothing kernel of 6 mm full-width

half-maximum. Based on one million simulations, we

observed that P < 0.005 with a cluster size of 8 voxels

achieves the same FDR as a 93 test study and a cluster size

of 18 voxels achieves a FDR of 0.05.4 We also compared the

fMRI simulations to the JPSP paper with the least number of

tests in the selected issue. To achieve the same FDR as a

behavioral study with 32 tests, a P-value of 0.005 with a

9 voxel extent threshold is needed.

Whole-brain analyses using P < 0.005 with a 10 voxel

extent threshold may not be equivalent to an FDR of 0.05

(though, P < 0.005 with a 20 voxel extent using the other

scanning parameters we described does), but it is quite con-

sistent with the FDR conventions used in actual behavioral

research that fMRI researchers aim to emulate. If neuroima-

ging was already using inferential procedures as conservative

with respect to Type I errors as actual practices in the behav-

ioral sciences, why go further and further with methods that

ensure an increasing number of Type II errors? We are not

trying to suggest that P < 0.005 with a 10 voxel extent should

be reified as a ‘gold standard’ criterion. The complexity of

neuroimaging analyses suggests that a variety of standards

might be appropriate in different contexts. We are focusing

on this standard because it has been used so frequently in the

past and is now being treated as an unacceptable criterion.

In contrast, we think this is one of many different reasonable

criteria for significance.

2 We chose JPSP because this is one of the behavioral journals most relevant to social and affective

neuroscientists. Looking at one journal is not meant to suggest this is the average or range for all journals,

but we suspect the conclusions we draw will be relevant to other behavioral science journals as well. For

instance, we looked at an issue of Journal of Experimental Psychology: General (November, 2009) and found

that the mean number of statistical tests per paper was 49 (range: 15–82 tests).
3 We are using FDR here in the generic sense of how frequently false alarms will be expected with a given

set of parameters. We are not using the formal FDR methods as described by Genovese et al. (2002).
4 It should be noted that others have run simulations suggesting that much larger cluster sizes are

necessary (Vul et al., 2009; c.f. Lieberman et al, 2009), but these analyses included all of the voxels that

are outside of the brain which are never actually tested. Thus, such analyses represent inaccurate assessments

of the true FDR. It is also the case that these values will change with different voxel sizes and smoothing

kernels, however the conceptual implications of these simulations remain the same.
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One might respond that we should be correcting behav-

ioral papers for the number of tests reported (i.e. we should

change our statistical practices in the behavioral sciences to

match Type I focus in the neuroimaging community).

In that case, the articles in JPSP should have been using

a per-test P-value threshold of 0.0005 and all that would

have been left is the one article that did not report any

tests. But if we are serious about correction, there is no log-

ical reason to stop there. If the goal is to prevent Type I

errors, perhaps each journal should require a correction

for the number of tests reported in an entire issue of the

journal (P < 0.00005). The selected issue of JPSP reported

932 tests; perhaps that should be the basis of correction

because surely, some of those 932 tests will be significant

as a result of chance alone. Perhaps there should be a cor-

rection for all the tests reported in a year of a journal

(P < 0.000005) or perhaps for all the journals covering the

same area (social psychology, emotion, memory) in a given

month. This might be too difficult to decide on, so perhaps,

instead of focusing on journals, we should focus on investi-

gators and their labs. Perhaps a lab should have to correct for

the total number of published results in a given year or

maybe an investigator should have to continually update

their correction factor based on the total number of results

that they have published in their careers, with early career

submissions having a more liberal correction factor and

those in the National Academy of Science who have run

countless tests, needing the most impressive results for

them to qualify as significant (and, they would of course

have to retract papers as their career progressed, finding

that previous tests in old papers are no longer significant

in light of their success and, ironically, contribution to

the field).

The previous paragraph was meant to be hyperbolic in

order to make an important point. As with just about every-

thing else in our statistical analyses, corrections for multiple

comparisons are about conventions and the conventions

are arbitrary as long as they do not seriously offend our

intuitions. There is no right way to correct for multiple

comparisons that actually prevents Type I errors from

being made. This is not how statistics operate and our

attempt to treat statistics this way leads to serious under-

reporting of true effects that are likely to replicate. In any

event, behavioral scientists have figured out a convention

that works. They do not correct for multiple comparisons

in actual practice, which assuredly produces Type I errors,

but Type I errors that are not likely to replicate across

multiple studies.

SOLUTIONS
Sample size
When money is no issue, increasing sample size is the surest

within study method of reducing Types I and II errors.

Unfortunately, with fMRI typically costing upwards of

$500 per subject, money is very much an issue. This issue

is likely to be exaggerated for new researchers and new

research areas. We could limit fMRI research to a few elite

labs, but this would likely undermine creativity and innova-

tion in the field.

Replication and meta-analysis
The practical solution to addressing Types I and II errors

within fMRI research is replication with systematic

meta-analyses once a sufficient number of studies have

been run. If the appropriate effects are reported in each

paper, effects that would be too subtle to survive more con-

servative correction methods could still be examined in

meta-analyses, which will help to prevent Type II errors.

Similarly, if meta-analyses are taken seriously, Type I

errors within individual papers cease to matter very much.

False alarms will occur in individual studies no matter what

precautions are taken, however, those false alarms should

be randomly distributed spatially and thus not emerge as

reliable effects in meta-analyses.

CONCLUDING SUMMARY
The press toward avoiding Type I errors is understandable.

Humans desire certainty and conservative thresholding tech-

niques help us to feel more certain that only real effects are

being reported. But this analysis is flawed on two accounts:

within-study P-values never guarantee that a false alarm has

not occurred and thus there is no real certainty, but increas-

ingly conservative thresholding techniques are absolutely

certain to lead us to overlook real effects in the form of

Type II errors.5 Such effects are disproportionately likely

to impact social and affective neuroscience studies and if

such effects go unreported, meta-analyses will never have

the data they need to find subtle effects that cannot be

observed easily in individual studies. Moreover, FDR correc-

tions end up being far more conservative than what is

actually done in the behavioral sciences in which articles

commonly report dozens of statistics at P < 0.05 uncorrected

for multiple tests. We recommend placing a greater emphasis

on replication and meta-analysis to determine which effects

are real, and less emphasis on trying to determine the final

truth from individual studies. With such an approach,

Type I errors within individual studies matter far less

because they are self-erasing, allowing for less conservative

thresholding and fewer Type II errors.

5 The companion piece by Bennett et al. (this issue) references a study in which a single dead salmon was

the ‘subject’ in an fMRI scanner and active clusters were observed at P < 0.005 with a three voxel extent,

pointing to a false alarm due to noise (rather than a true effect due to paranormal activity). This is used as a

cautionary tale to argue in favor of using FDR correction techniques (which did not produce any false alarms).

Given that FDR does allow for a 5% false alarm rate, FDR certainly could have produced a significant effect

and yet had this happened, few would take that as an argument against FDR correction. More importantly, we

think this example demonstrates the value of our own viewpoint quite clearly. They found a 3 voxel cluster in

one fish, a Type I error no doubt. This same false alarm would not be present in the same location if 16 dead

fish were all scanned and thus a group level analysis would not show this effect. And if an effect did emerge

in a group analysis of 16 fish, it would not emerge in the same location in the next sample of 16 fish.

Through data aggregation, false alarms are self-correcting but data that are never reported cannot be

aggregated and thus Type II errors in fMRI are not self-correcting.

Types I and II error concerns in fMRI research SCAN (2009) 427



REFERENCES
Cox, R.W. (1996). AFNI: Software for analysis and visualization of func-

tional magnetic resonance neuroimages. Computers and Biomedical

Research, 29, 162–73.

Fisher, R.A. (1926). The arrangement of field experiments. Journal of the

Ministry of Agriculture of Great Britain, 33, 503–13.

Forman, S.D., Cohen, J.D., Fitzgerald, M., Eddy, W.F., Mintun, M.A.,

Noll, D.C. (1995). Improved assessment of signiEcant activation in func-

tional magnetic resonance imaging (fMRI): use of a cluster-size threshold.

Magnetic Resonance in Medicine, 33, 636–47.

Genovese, C.R., Lazar, N.A., Nichols, T.E. (2002). Thresholding of statistical

maps in functional neuroimaging using the false discovery rate.

Neuroimage, 15, 870–8.

Griffin, D.W., Ross, L. (1991). Subjective construal, social inference, and

human misunderstanding. Advances in Experimental Social Psychology, 24,

319–59.

Lieberman, M.D., Berkman, E.T., Wager, T.D. (2009). Correlations in social

neuroscience aren’t voodoo: a reply to Vul et al. Perspectives on

Psychological Science, 4, 299–307.

Ochsner, K. (2007). How thinking controls feeling: a social cognitive neu-

roscience approach. In: Jones, E.H., Winkielman, P., editors. Social

Neuroscience: Integrating Biological and Psychological Explanations of

Behavior. New York, NY: Guilford Press, pp. 106–36.

Vul, E., Harris, C., Winkielman, P., Pashler, H. (2009). Puzzlingly high

correlations in fMRI studies of emotion, personality, and social cognition.

Perspectives on Psychological Science, 4, 274–90.

Wagner, A.D., Schacter, D.L., Rotte, M., et al. (1998). Building memories:

remembering and forgetting of verbal experiences as predicted by brain

activity. Science, 281, 1188–91.

428 SCAN (2009) M.D.Lieberman andW. A.Cunningham


