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STDP „spike-timing-dependent synaptic plasticity… is thought to be a synaptic
learning rule that embeds spike-timing information into a specific pattern of
synaptic strengths in neuronal circuits, resulting in a memory. STDP consists of
bidirectional long-term changes in synaptic strengths. This process includes
long-term potentiation and long-term depression, which are dependent on the
timing of presynaptic and postsynaptic spikings. In this review, we focus on
computational aspects of signaling mechanisms that induce and maintain STDP
as a key step toward the definition of a general synaptic learning rule. In addition,
we discuss the temporal and spatial aspects of STDP, and the requirement of a
homeostatic mechanism of STDP in vivo. [DOI: 10.2976/1.3137602]
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Activity-dependent persistent
changes in the strength of synaptic
transmission (synaptic strength) are be-
lieved to refine neural connections and
mediate learning and memory (Hebb,
1949). STDP (spike-timing-dependent
synaptic plasticity) has emerged ex-
perimentally as a form of such changes
in synaptic strength (Magee and
Johnston, 1997; Markram et al., 1997;
Bi and Poo, 1998; Zhang et al., 1998a).
STDP consists of bidirectional long-
term changes in synaptic strength, de-
pending on the timing of presynaptic
and postsynaptic spikings (prespiking
and postspiking). STDP incorporates
both persistent increases in synaptic
strength [LTP (long-term potentiation)]
[Fig. 1(A)] and persistent decreases in
synaptic strength [LTD (long-term de-
pression)] [Fig. 1(B)]. STDP may serve
as a synaptic learning rule that embeds
spike-timing information into a specific
pattern of synaptic strengths in a neu-
ronal circuit. As such, it has attracted

the attention of experimental research-
ers as well as computational modelers.

Although there are several forms of
STDP that vary depending on the types
of synapses and neurons involved (for
reviews, see Abbott and Nelson, 2000;
Caporale and Dan, 2008), here we fo-
cus on the canonical form of STDP be-
cause it has been the most extensively
studied. The canonical form of STDP is
induced by 60–100 repetitive pairings
of prespiking and postspiking events at
a rate of 0.2–5 Hz (for a review, see Ca-
porale and Dan, 2008). tLTP (spike-
timing-dependent LTP) is induced
when a presynaptic spike is followed by
a postsynaptic spike [Fig. 1(A)]. Con-
versely, tLTD (spike-timing-dependent
LTD) is induced when a postsynaptic
spike is followed by a presynaptic spike
[Fig. 1(B)]. The amplitude of both tLTP
and tLTD exhibits bidirectional expo-
nential decay as a function of the inter-
val between the prespiking and
postspiking events. The range of the
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spike interval that leads to tLTP and tLTD is referred to as the
“critical timing window” of STDP [Fig. 1(C)]. Hereafter,
prespiking preceding postspiking is denoted as prespiking
→postspiking, and postspiking preceding presynaptic spik-
ing as postspiking→prespiking.

The canonical form of STDP has been widely observed
in the excitatory glutamatergic synapses of the following
types of cells: neurons in the visual cortex (Sjostrom et al.,
2001; Froemke and Dan, 2002), neurons in the somatosen-
sory cortex (Feldman, 2000; Bender et al., 2006), neurons in
the corticostriatum (Pawlak and Kerr, 2008), cultured hip-
pocampal neurons (Bi and Poo, 1998), hippocampal CA3
neurons (Debanne et al., 1998), neurons in the dorsal co-
chlear nucleus (Tzounopoulos et al., 2004), neurons in the
retinotectal projection of the Xenopus laevis tadpole (Zhang
et al., 1998a), and neurons in the olfactory system of the lo-

cust Schistocerca americana (Cassenaer and Laurent, 2007).
Moreover, plasticity involving a similar critical timing win-
dow has been observed in hippocampal CA1 neurons, but
with distinct features (Pike et al., 1999; Wittenberg and
Wang, 2006; Carlisle et al., 2008). In these cells, it has been
found that a distinct form of tLTD can be induced by
prespiking→postspiking pairings with a 20 ms interval, and
postsynaptic bursting is required to induce tLTP. In addition,
STDP has been shown to contribute to acquired brain func-
tions such as direction selectivity in the visual system of the
Xenopus laevis tadpole (Engert et al., 2002; Mu and Poo,
2006) and the synchronous flow of olfactory information in
the locust Schistocerca americana (Cassenaer and Laurent,
2007).

STDP is regulated by signaling mechanisms that consist
of electrophysiological and biochemical activities. The sig-
naling mechanisms of STDP constitute a synaptic learning
rule. The synaptic learning rule is a mathematical description
of synaptic plasticity, describing when and what neural ac-
tivities are able to induce changes in synaptic strength and
explaining how altered synaptic strengths are stabilized. Be-
cause the synaptic learning rule governs the changes in syn-
aptic strengths in a neural circuit that represent learning and
memory, a complete description of the synaptic learning rule
is essential for understanding the representation of learning
and memory in the brain. Biophysical modeling and phe-
nomenological modeling are two approaches to describe the
synaptic learning rule. Biophysical modeling is a mathemati-
cal description of the signaling mechanisms of STDP, which
consist of electrophysiological and biochemical processes.
Phenomenological modeling of STDP is a mathematical de-
scription of its characteristics as an observed phenomenon,
without reference to signaling mechanisms.

STDP can be temporally divided into two processes: in-
duction and maintenance. Induction is a process in which
prespiking and postspiking initiate signaling events, result-
ing in changes in synaptic strengths. Maintenance occurs af-
ter induction, and is the process by which changes in synap-
tic strengths are stabilized. In this review we describe
signaling mechanisms underlying the induction and mainte-
nance of STDP. In addition, we discuss temporal and spatial
aspects of STDP. In vitro experiments examining STDP typi-
cally involve stimulation with spiking events at regular inter-
vals. However, neurons in vivo are known to fire spikes ir-
regularly (e.g., Softky and Koch, 1993), and it is unclear how
STDP is induced in vivo under natural conditions. Further-
more, the form of STDP differs depending on the location of
dendrites (Froemke et al., 2005; Letzkus et al., 2006), and
STDP depends on an interaction between multiple presynap-
tic inputs located at different parts of dendrites (Golding et
al., 2002; Letzkus et al., 2006; Sjostrom and Hausser, 2006).
Such spatiotemporal aspects must be considered in any real-
istic discussion of synaptic plasticity in vivo.

Figure 1. A canonical form of STDP. Reprinted by permission,
from Macmillan Publishers Ltd: Nature �Froemke and Dan, 2002�,
copyright �2002�. �A� Repetitive pairings of prespiking→post-
spiking within a 20 ms interval �20 ms�Tpost−Tpre�0 ms� at 0.2
Hz lead to persistent increase In synaptic strength �LTP�. �B� Repeti-
tive pairings of postspiking→prespiking within a 40 ms interval �
−40 ms�Tpost−Tpre�0 ms� at 0.2 Hz lead to persistent decrease
in synaptic strength �LTD�. �C� The critical timing window of STDP.
Circles and triangles indicate experimental data �triangles: high Ca2+

and Mg2+ with bicuculline�, and solid lines are exponential fits to the
data. The data are taken from layer II/III neurons in the visual cortex
�Froemke and Dan, 2002�.
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A number of reviews have been published on the experi-
mental aspects of STDP (Linden, 1999; Zucker, 1999; Bi and
Wang, 2002; Sjostrom and Nelson, 2002; Johnston et al.,
2003; Lisman and Spruston, 2005; Dan and Poo, 2006; Du-
guid and Sjostrom, 2006; Kampa et al., 2007; Letzkus et al.,
2007; Caporale and Dan, 2008; Larkum and Nevian, 2008;
Sjostrom et al., 2008) as well as the computational aspects
involved (Abbott and Nelson, 2000; Worgotter and Porr,
2005; Morrison et al., 2008; see also reviews in Biol. Cy-
bern. 87 (5–6), 2002). At present, however, few reviews have
considered both experimental and computational features of
STDP together (see Abbott and Nelson, 2000 for one excep-
tion). As such, in this review we focus on the intersection
between experimental investigations and computational
modeling of the signaling mechanisms of STDP.

I. SIGNALING MECHANISMS OF INDUCTION
Signaling mechanisms of induction of STDP include a spike-
timing detector, which is a signaling function that directly
detects the timing between prespiking and postspiking
events. Many signaling activities have been identified as es-
sential for STDP, but not all would be expected to be in-
volved in spike-timing detection. Although several candidate
spike-timing detectors have been proposed (for a review, see
Caporale and Dan, 2008), the mechanism underlying this
spike-timing detection remains to be elucidated. Because the
properties of a spike-timing detector would determine the
form of STDP, its characterization is required for a complete
description of STDP as a synaptic learning rule.

A. Signaling mechanisms of induction of tLTP
As described above, tLTP is induced by repetitive pairings
of prespiking→postspiking events within a 20 ms interval.
Prespiking triggers neurotransmitter release from presynap-
tic terminals, whereas postspiking triggers a bpAP (back-
propagating action potential) that travels back into the
dendrites (Spruston et al., 1995). Glutamate, which is a neu-
rotransmitter released in response to prespiking, activates
N-methyl-D-aspartate receptors (NMDARs), and mediates a
Ca2+ influx to postsynaptic spines via the channel activity of
NMDARs. Because of the timing of prespiking
→postspiking, the activation of the NMDARs coincides
with a bpAP. The simultaneous bpAP removes the voltage-
dependent Mg2+ block of the NMDAR channels, and NM-
DAR activation leads to a larger Ca2+ influx via NMDAR
channels than would be induced by prespiking alone
(Koester and Sakmann, 1998; Schiller et al., 1998). There-
fore, the NMDAR possesses properties, which enable it to
function as a detector for the timing of prespiking
→postspiking. In the spines, Ca2+ binds to calmodulin, pro-
ducing Ca2+/calmodulin. Ca2+/calmodulin activates multiple
kinases including CaMKII (Ca2+/calmodulin-dependent pro-
tein kinase II, see below; Wang et al., 2005; Tzounopoulos et
al., 2007) and PKA (protein kinase A) via Ca2+-dependent

adenylyl cyclase (Seol et al., 2007). These kinases regulate
�-amino-3-hydoxy-5-methyl-4-isoxazolepropionic acid re-
ceptors (AMPARs) (Seol et al., 2007) by increasing AMPAR
conductance (Benke et al., 1998), and/or the delivery of AM-
PARs to postsynaptic sites (Hayashi et al., 2000). Computa-
tional models of tLTP induction have been developed based
on the signaling mechanisms described above (Karmarkar
and Buonomano, 2002; Shouval et al., 2002).

The timing detection of prespiking→postspiking by
NMDARs involves several mechanisms. The voltage-
dependent removal of the Mg2+ block of NMDAR channels
is facilitated by a boost in the amplitudes of bpAPs induced
by stimulation with prespiking→postspiking (Hoffman et
al., 1997; Magee and Johnston, 1997; Watanabe et al., 2002;
Sjostrom and Hausser, 2006) occurring within a 20 ms inter-
val (Migliore et al., 1999; Stuart and Hausser, 2001). This, in
turn, leads to a larger Ca2+ influx, leading to a timing window
in the response range of tLTP (20 ms). The boost of bpAP is
mediated by fast Na+ channels in the neocortex (Stuart and
Hausser, 2001), and by A-type K+ channels in hippocampal
CA1 neurons (Hoffman et al., 1997; Watanabe et al., 2002).
Mg2+, in addition to providing a voltage-dependent block,
also reduces the affinity of the NMDAR for glutamate and
reduces the open probability of the NMDAR channels. This
also contributes to producing the timing window of tLTP
within a 20 ms interval (Kampa et al., 2004). Together, these
mechanisms could lead to a consistently larger Ca2+ influx
via NMDARs by causing prespiking→postspiking within a
20 ms interval (see also Fuenzalida et al., 2007). The func-
tion of these mechanisms, however, may vary depending on
the dendritic branching pattern and dendritic location in-
volved. These have been demonstrated by computer simula-
tions (Schaefer et al., 2003; Urakubo et al., 2004). Experi-
mental work has shown that pairings of prespiking→single
postspiking events at some synapses do not induce tLTP and
that a burst of postspiking is required (Pike et al., 1999; Sjos-
trom et al., 2001; Watanabe et al., 2002; Kampa et al., 2006;
Nevian and Sakmann, 2006; Wittenberg and Wang, 2006).
This may be because a burst of postspiking is sufficient to
remove the Mg2+ block of NMDAR channels for tLTP,
whereas single postspiking is not (Nevian and Sakmann,
2006).

B. Signaling mechanisms of induction of tLTD
The signaling mechanisms of the induction of tLTD are rela-
tively unclear in comparison with those of tLTP, but evidence
has emerged suggesting that at least two alternative signaling
mechanisms are involved in its induction. This results in two
forms of tLTD: a form of postsynaptic NMDAR-dependent
tLTD (Froemke and Dan, 2002; Corlew et al., 2007; Ura-
kubo et al., 2008) and a form of postsynaptic NMDAR-
independent tLTD (Sjostrom et al., 2003; Bender et al.,
2006; Nevian and Sakmann, 2006; Corlew et al., 2007;
Rodriguez-Moreno and Paulsen, 2008). These two distinct
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signaling mechanisms of tLTD induction depend on the de-
velopmental stage involved (Corlew et al., 2007) and are
likely to depend on the types of synapses (Tzounopoulos et
al., 2007; Brasier and Feldman, 2008) and neurons involved
(for a review, see Corlew et al., 2008). Biophysical models
have been proposed to explain the mechanisms of both the
postsynaptic NMDAR-dependent form (Karmarkar and
Buonomano, 2002; Shouval et al., 2002; Rubin et al., 2005;
Kubota and Kitajima, 2008; Urakubo et al., 2008) and the
postsynaptic NMDAR-independent form of tLTD (Kar-
markar and Buonomano, 2002).

Postsynaptic NMDAR-dependent tLTD. tLTD occurs at
synapses in layer II/III in the visual cortex and is dependent
on postsynaptic NMDAR activity (Froemke et al., 2005;
Corlew et al., 2007; Urakubo et al., 2008). Within a 40 ms
postspiking→prespiking interval, the preceding bpAP
caused by postspiking suppresses subsequent NMDAR acti-
vation caused by prespiking (Froemke et al., 2005). The sup-
pression of NMDAR activation leads to a reduced Ca2+ in-
flux via NMDAR channels, compared with when prespiking
occurs alone (Koester and Sakmann, 1998; Nevian and Sak-
mann, 2004). This reduced Ca2+ influx activates phos-
phatases such as calcineurin (Wang et al., 2005) and PP1
(protein phosphatase 1) (for a review, see Lisman (2001))
without activating kinases. Evidence has emerged that the
activation of phosphatases can lead to the induction of
postsynaptically-expressed tLTD (Seol et al., 2007; Pawlak
and Kerr, 2008) via the following processes: a decrease in
AMPAR conductance via dephosphorylation (Lee et al.,
1998; Banke et al., 2000), removal of AMPARs from the
postsynaptic sites (Ashby et al., 2004), and internalization of
AMPARs by endocytosis (Beattie et al., 2000; Lee et al.,
2002; for a review, see Cousin and Robinson, 2001).
Postsynaptic NMDAR-dependent tLTD has been modeled
on the basis of these signaling mechanisms (Urakubo et al.,
2008).

The amplitude of postsynaptic NMDAR-dependent tLTD
is correlated with the suppression of NMDAR activation
(Froemke et al., 2005). This suggests that the detection of
postspiking→prespiking timing for postsynaptic NMDAR-
dependent tLTD is achieved by NMDAR suppression. This
suppression requires the activity of postsynaptic Ca2+,
voltae-gated calcium channels (VGCCs), and calcineurin
(Froemke et al., 2005). Ca2+ binds to calmodulin and acti-
vates calcineurin. The Ca2+/calmodulin and active cal-
cineurin then interact with the intracellular domains of NM-
DARs, which negatively regulate NMDAR activation (Tong
et al., 1995; Ehlers et al., 1996; Zhang et al., 1998b; Krupp et
al., 1999; Umemiya et al., 2001; Rycroft and Gibb, 2002,
2004). Importantly, the decay time-course of the Ca2+ influx
via VGCCs is consistent with the timing window of tLTD
(for a review, see Helmchen, 2002). Therefore, the detection
of postspiking→prespiking timing for tLTD can be achieved
by the following signaling cascade: VGCC activation leads to

an increase in intracellular Ca2+ and a subsequently in-
creased level of active calmodulin/calcineurin, which sup-
presses NMDAR activation.

We modeled the mechanism by which Ca2+/calmodulin,
produced by Ca2+ influx via VGCCs, suppresses NMDARs
(Urakubo et al., 2008) and found that both prespiking and
postspiking induce a Ca2+ influx via both NMDARs and
VGCCs, respectively. Ca2+ influx via both NMDARs and
VGCCs similarly suppresses NMDARs, and changes in syn-
aptic strengths are the same regardless of spike timing (Ura-
kubo et al., 2008). This indicates that an additional mecha-
nism is required for timing detection, by which a Ca2+ influx
from VGCCs (but not from NMDARs) suppresses NM-
DARs. We have proposed that an allosteric kinetics of NM-
DARs, in which glutamate binding and calmodulin binding
differ depending on the order of their binding, provides such
a mechanism [see Urakubo et al., 2008 and Fig. 2(A)]. We
supposed that a Ca2+ influx suppresses glutamate-unbound
NMDARs, but not glutamate-bound NMDARs. This would
mean that a Ca2+ influx via VGCCs, but not via NMDARs,
could suppress NMDARs with the timing of postspiking
→prespiking. This would lead to a reduced Ca2+ influx via
NMDAR channels, and thus to tLTD. In the model incorpo-
rating the allosteric kinetics, NMDARs were successfully
suppressed only by postspiking→prespiking within a 40 ms
interval, but not by other timing intervals [Figs. 2(B) and
2(C)]. This leads to a timing window in the response range of
tLTD, and our model successfully reproduced the canonical
form of STDP observed experimentally (Froemke and Dan,
2002) [Fig. 2(D)]. Surprisingly, without parameter tuning,
our model was also able to precisely reproduce synaptic plas-
ticity induced by complex spike patterns, such as spike trip-
lets, spike quadruplets, spike bursts, and spike pairs with
various frequencies [Figs. 2(E) and 2(F)] (Urakubo et al.,
2008). Moreover, the changes in the kinetics of NMDARs
induced by postspiking→prespiking stimulation observed
in experimental studies is consistent with the allosteric kinet-
ics of NMDARs in our model (Urakubo et al., 2008). Over-
all, the results of our model indicate that the allosteric kinet-
ics of NMDARs (or similar mechanisms) can function as a
spike-timing detector in STDP.

The proposal that the mechanism of tLTD involves the
allosteric kinetics of NMDARs still requires additional ex-
perimental support, and there are several caveats to the hy-
pothesis. First, the allosteric kinetics of NMDARs have not
been tested experimentally. Second, the hypothesis involves
the assumption that timing detection depends on postsynap-
tic Ca2+. Although there is evidence that postsynaptic Ca2+ is
required for the suppression of NMDARs, we cannot exclude
the possibility that postsynaptic Ca2+ is merely a prerequisite
condition for NMDAR suppression by postspiking (Froemke
et al., 2005). Third, although the partial blockage of NM-
DAR activation by pharmacological agents induces LTD, the
suppression of NMDARs via postspiking→prespiking may
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not be related to tLTD (Froemke et al., 2005; Urakubo et al.,
2008). Further study is necessary before we can conclude
that the mechanism of postspiking→prespiking timing de-
tection in tLTD involves the allosteric kinetics of NMDARs.
However, the finding that our model was able to make accu-
rate predictions about synaptic plasticity induced by com-
plex spike patterns implicates this mechanism, or one that is
functionally similar, as a timing detection mechanism in
tLTD.

A similar hypothesis for postsynaptic NMDAR-
dependent tLTD has been proposed in biophysical models of
STDP for hippocampal CA1 neurons (Karmarkar and

Buonomano, 2002; Shouval et al., 2002). These models cap-
ture the characteristics of tLTD in hippocampal CA1 neu-
rons, including the additional tLTD induced by the pairings
of prespiking→postspiking with a 20 ms interval (Nish-
iyama et al., 2000; Wittenberg and Wang, 2006). However,
one study has shown that tLTD in hippocampal CA1 neurons
is insensitive to NMDARs but is sensitive to mGluRs (me-
tabotropic glutamate receptors) (Normann et al., 2000). Fur-
ther experiments are required to determine whether tLTD in
hippocampal CA1 neurons is dependent on postsynaptic
NMDAR activity.

Figure 2. Allosteric kinetics of NMDARs and synaptic plasticity induced by spike triplets. ��A�, �C�, �D�, and �E�� Adapted with
permission of the Society for Neuroscience �Urakubo et al., 2008�, copyright �2008�. �A� Hypothesis of the allosteric kinetics of NMDARs as
a spike-timing detector �Urakubo et al., 2008�. Ca2+/calmodulin binds to a glutamate-unbound NMDAR more rapidly or strongly than to a
glutamate-bound NMDAR. �B� Ca2+ time courses by prespiking→postspiking �left, black� and postspiking→prespiking �right, black� with the
allosteric kinetics. Ca2+ increase is given primarily by Ca2+ influx via NMDAR channels and secondarily by Ca2+ influx via VGCCs. Gray traces
indicate Ca2+ time courses by prespiking alone. �C� Spike-timing dependency of mean and maximum Ca2+ concentration with the allosteric
kinetics. Ca2+ increase is primarily given by Ca2+ influx via NMDAR channels. �D� The critical timing window of STDP with the allosteric
kinetics. Synaptic plasticity induced by spike triplets �E� in the model with the allosteric kinetics �Urakubo et al., 2008� and �F� in experiments
�Froemke and Dan, 2002�. Reprinted by permission, from Macmillan Publishers Ltd: Nature �Froemke and Dan, 2002�, copyright �2002�. In
the left panels �pre-1 and post-2 triplets�, t1 indicates the spike interval of the first postspiking event and the prespiking event, and t2 indicates
the spike interval of the second postspiking event and the prespiking event. In the right panels �pre-2 and post-1 triplets�, t1 indicates the spike
interval of the first prespiking event and the postspiking event, and t2 indicates the spike interval of the postspiking event and the second
prespiking event.
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Postsynaptic NMDAR-independent tLTD. At some other
glutamate synapses, including those in the somatosensory
cortex (Bender et al., 2006; Nevian and Sakmann, 2006;
Rodriguez-Moreno and Paulsen, 2008) and the visual cortex
(Sjostrom et al., 2003; Corlew et al., 2007), it has been found
that tLTD is insensitive to postsynaptic NMDARs. Such
postsynaptic NMDAR-independent tLTD is sensitive to
mGluRs (Bender et al., 2006; Nevian and Sakmann, 2006),
VGCCs (Bender et al., 2006), cannabinoid receptors (Sjos-
trom et al., 2003; Bender et al., 2006; Nevian and Sakmann,
2006), and presynaptic NMDARs (Rodriguez-Moreno and
Paulsen, 2008). At these synapses, prespiking leads to
mGluR activation, and mGluRs activate G-protein coupled
signaling mechanisms, resulting in PLC (phospholipase C)
and IP3R (inositol trisphosphate receptors) activations
(Bender et al., 2006; Nevian and Sakmann, 2006). Postspik-
ing, in turn, leads to a Ca2+ influx via VGCCs, and Ca2+ posi-
tively regulates PLC and IP3R activations (Hashimotodani et
al., 2005; Bender et al., 2006; Nevian and Sakmann, 2006).
The activation of these molecules leads to the release of ret-
rograde messengers (e.g., endocannabinoids) from postsyn-
aptic to presynaptic neurons (Sjostrom et al., 2003; Bender
et al., 2006; Nevian and Sakmann, 2006). This retrograde
signal decreases the probability of presynaptic neurotrans-
mitter release in concert with presynaptic NMDA autorecep-
tors (Rodriguez-Moreno and Paulsen, 2008), resulting in
tLTD (Sjostrom et al., 2003; Bender et al., 2006; Corlew et
al., 2007). In the somatosensory cortex, tLTD is induced by
the pairings of postspiking→prespiking, even when the Ca2+

influx exceeds the threshold for tLTP (Nevian and Sakmann,
2006). This may be because tLTD counteracts tLTP under
these conditions. Endocannabinoids (Sjostrom et al., 2003)
and PLC� (Hashimotodani et al., 2007) have both been pro-
posed as possible spike-timing detectors for postsynaptic
NMDAR-insensitive tLTD. Further study is necessary to ad-
dress how these molecules discriminate the timing between
prespiking and postspiking.

II. SIGNALING MECHANISMS OF MAINTENANCE
Although stimulation for STDP is transient, changes in syn-
aptic strengths such as postsynaptic AMPAR accumulation
and increased neurotransmitter release probability are main-
tained over hours. This indicates that mechanisms of mainte-
nance must exist by which the changed synaptic strengths are
stabilized. The maintenance of plasticity can be generally
categorized into early and late phases (for reviews, see
Malenka and Bear, 2004 and Blitzer, 2005). The late-phase
of maintenance requires gene transcription and protein syn-
thesis. The early phase of maintenance, where the amplitude
of changed synaptic strengths initially becomes stable, is
likely to be regulated by signaling molecules. Because sig-
naling mechanisms of STDP maintenance have not been ex-

tensively investigated, here we focus on the signaling mecha-
nisms of the maintenance of conventional LTP and LTD,
which may be similar to those of STDP.

An additional important question regarding the signaling
mechanisms of STDP maintenance is whether the amplitude
of tLTP and tLTD are graded or binary. The characteristics of
graded and binary responses differ substantially; graded re-
sponses are continuous and fragile against noise, whereas bi-
nary responses are discrete and robust against noise. The ca-
nonical form of STDP observed experimentally suggests that
tLTP and tLTD must be graded. Some experimental results,
however, suggest that LTP is binary (Petersen et al., 1998;
O’Connor et al., 2005). This inconsistency may be recon-
ciled if the amplitudes of graded tLTP and tLTD consist of an
ensemble of binary tLTP or tLTD. This issue is important be-
cause the different characteristics between graded and binary
responses would be expected to lead to substantial differ-
ences in the way that memory is stored in the brain. Here, we
summarize a possible mechanism of the early phase of main-
tenance and discuss whether tLTP and tLTD are graded or
binary.

A. Signaling mechanisms and binary or graded
features of maintenance
The persistent phosphorylation of CaMKII, which leads to
persistent changes in synaptic strength, has been proposed as
one of the mechanisms of the early phase of maintenance of
LTP (Okamoto and Ichikawa, 2000; Zhabotinsky, 2000; Lis-
man and Zhabotinsky, 2001). In this theory, the persistent
phosphorylation of CaMKII results from the bistablity of
CaMKII phosphorylation. CaMKII is a holoenzyme com-
posed of 12 subunits, and Ca2+/calmodulin-bound subunits
cooperatively phosphorylate adjacent subunits [Fig. 3(A)].
This autophosphorylation of the CaMKII holoenzyme gen-
erates two stable steady states: a predominantly unphospho-
rylated state and an almost fully phosphorylated state [Fig.
3(B)]. If LTP induction stimulation triggers a Ca2+ increase
and Ca2+ exceeds a certain threshold, CaMKII is changed
from an unphosphorylated state to an almost fully phospho-
rylated state and remains persistently phosphorylated after
the stimulation is removed [Fig. 3(C)]. Moreover, evidence
has emerged suggesting that the bistable phosphorylation of
CaMKII could be an underlying mechanism of depotentia-
tion, which is the reversible transition of a synapse from a
potentiated state to a naïve state by LTD stimulation (Hesse
and Teyler, 1976; Lee et al., 2000; Huang et al., 2001; Zhou
et al., 2003; Graupner and Brunel, 2007; Pi and Lisman,
2008). The modest Ca2+ increase induced by LTD stimula-
tion leads to PP1 activation. PP1, in turn, transiently erases
the upper stable steady state of CaMKII phosphorylation.
This causes the transition of CaMKII phosphorylation from
the almost fully phosphorylated state to the unphosphory-
lated state, resulting in depotentiation. The results of the ex-
periments regarding CaMKII bistability are equivocal. Some
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experiments support the bistability of CaMKII (Fukunaga et
al., 1993; Barria et al., 1997; Sanhueza et al., 2007), whereas
others do not (Malinow et al., 1989; Otmakhov et al., 1997;
Lee et al., 2009). Further study is necessary to draw firm
conclusions about the existence and role of CaMKII bistabil-
ity in the early phase of the maintenance of LTP.

Although a single holoenzyme of CaMKII can show
bistable phosphorylation, an entire population of CaMKII
holoenzymes in a postsynaptic spine can show either bistable
or graded phosphorylation. The results of a recent experi-
ment suggest the existence of interholoenzyme autophos-
phorylation of CaMKII (Rose et al., 2009). This autophos-
phorylation between holoenzymes results in the bistable
phosphorylation of an entire population of CaMKII mol-
ecules. On the other hand, other experiments have not found
interholoenzyme autophosphorylation of CaMKII to occur
(Hanson et al., 1994). If interholoenzyme autophosphoryla-
tion does not take place, the phosphorylation state of each
holoenzyme could be different, resulting in the graded phos-

phorylation of a population of CaMKII molecules in a spine.
Note that CaMKII phosphorylation is known to be ultrasen-
sitive to Ca2+ stimulation (Bradshaw et al., 2003). Therefore,
even without interholoenzyme autophosphorylation, a popu-
lation of CaMKII molecules can show binary (all-or-none)
phosphorylation. Therefore, if LTP does indeed rely on
CaMKII phosphorylation (for a review, see Lisman et al.,
2002), LTP is likely to be binary.

As another possible mechanism of the early phase of the
maintenance of LTP and LTD, a computational model has
demonstrated that an interaction between AMPARs associ-
ated with PSD (postsynaptic density) and free AMPARs can
produce graded and stable AMPAR accumulations at the
PSD (Shouval, 2005). In this model, the PSD is assumed to
be a simple lattice space, which can anchor AMPARs. AM-
PARs are inserted into vacant grids of the lattice at a rate that
follows a function in which the insertion rate of an AMPAR
into a grid in the vicinity of other AMPARs is larger than that
for a grid isolated from other AMPARs [Fig. 3(D)]. The in-

Figure 3. The possible roles of CaMKII and AMPAR clustering in maintenance of LTP and LTD. ��A�–�C�� CaMKII bistability �Lisman and
Zhabotinsky, 2001�. �A� CaMKII is composed of 12 subunits, and the subunits that bind to Ca2+/calmodulin can phosphorylate neighboring
Ca2+/calmodulin-bound subunits �1�. Once a subunit is phosphorylated, the subunit can phosphorylate neighboring Ca2+/calmodulin-bound
subunits regardless of whether the subunit binds to Ca2+/calmodulin �2�. The phosphorylated subunits are dephosphorylated by PP1 �3�. �B�
The cooperative phosphorylation mechanism makes three balanced states in rates of phosphorylation �red line� and dephosphorylation �blue
line�. One is unstable �open circle� and two are stable �filled circles�. �C� Transient increase �40 s� of Ca2+/calmodulin as LTP stimulation
�arrow� leads to transition of CaMKII from the unphosphorylated stable steady state to the fully phosphorylated stable steady state, depending
on the amplitudes of the stimulation. The simulation is based on the simple CaMKII model by Dupont et al. �2003�. ��d� and �e�� AMPAR
clustering �Shouval, 2005�. Reproduced with permission, Proceedings of National Academy of Sciences, U.S.A., copyright �2005�. �D�
Insertion rate of new AMPARs to grids in a lattice space �right panel� is computed from present occupation state of AMPARs �gray, left panel�
and the probability of inserting a new AMPAR around an AMPAR-occupied grid �center panel�. In the center panel, white grids denote the
higher probability of inserting a new AMPAR. Convolution operator ��� denotes that the insertion probability of an AMPAR �center panel� is
applied to all AMPAR-occupied grids �right panel�. �E� The AMPAR dynamics keeps the AMPAR number stable after an increase and decrease
by transient stimulation, which corresponds to LTP and LTD �left and right, respectively�. One unit time is the mean dwell time of an AMPAR
in the lattice space.
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serted AMPARs are removed from the grids at a constant
rate. With these assumptions, the AMPAR number is kept
stable even after an increase or decrease in the AMPAR num-
ber caused by transient stimulation [Fig. 3(E)]. The AMPAR
number at the PSD is constant regardless of dynamic AM-
PAR trafficking, and AMPARs are transiently trapped by the
PSD. Both of these features of the model are consistent with
experimental observation (Ehlers et al., 2007). According to
this model, LTP and LTD can be graded.

Several additional hypotheses for the maintenance of
LTP or LTD have been proposed. A modeling study has sug-
gested that a two-step kinase and phosphatase cycle of AM-
PARs can result in bistability in AMPAR number at the PSD.
This would lead to binary LTD (Hayer and Bhalla, 2005).
Another modeling study has revealed that a kinase and phos-
phatase cycle can enable the maintenance of graded LTP and
LTD, if the kinase and phosphatase are activated by stimula-
tion with high Hill coefficients ��4�, and if the reactions are
negligible in the basal state (Delord et al., 2007). In addition,
one modeling study has revealed that autophosphorylation of
PP2A (protein phosphatase 2 A) can function as a bistable
switch that could underlie LTD (Pi and Lisman, 2008). The
existence of this switch would allow binary LTD to take
place.

Recent experiments have revealed that synaptic plasticity
is associated with structural plasticity of postsynaptic spines.
Changes in spine structure are bidirectional, with stimuli that
induce LTP causing spine enlargement (Matsuzaki et al.,
2004; Nagerl et al., 2004; Okamoto et al., 2004; Yang et al.,
2008) and with stimuli that induce LTD causing spine
shrinkage (Nagerl et al., 2004; Okamoto et al., 2004; Zhou et
al., 2004; Wang et al., 2007). Spine enlargement occurs in a
graded manner (Okamoto et al., 2004) and seems to be nec-
essary for LTP induction (Matsuzaki et al., 2004; Okamoto
et al., 2007; Yang et al., 2008). Spine shrinkage shares
mechanisms with LTD induction (Zhou et al., 2004) but
seems to have less of a direct causal link to LTD induction
(Yang et al., 2008).

No biophysical models have been proposed for the main-
tenance of presynaptically expressed LTP and LTD, because
the underlying molecular mechanisms are poorly under-
stood. The mechanisms of maintenance of presynaptically
expressed LTP and LTD may involve actin polymerization
and depolymerization (for a review, see Cingolani and Goda,
2008). There are currently no experiments that provide an
answer to the question of whether presynaptically expressed
synaptic plasticity is binary or graded. Further study is re-
quired to explore the mechanisms of maintenance of presyn-
aptically expressed LTP and LTD and to examine whether
such LTP or LTD is binary or graded.

B. Additional features of maintenance
Additional features of the maintenance of STDP must be
taken into account for an STDP model to provide a synaptic

learning rule. Our model operates on the assumption that a
synapse has three strength states: LTP, LTD, and naïve states.
If synaptic strength operated in a binary fashion, however,
then synapses would possess only two strength states, and
LTP and LTD would be determined simply by the ratio of the
numbers of unpotentiated and potentiated synapses. How-
ever, in calcineurin A� knockout mice, LTD can be induced
even though depotentiation is not observed (Zhuo et al.,
1999). This finding is in accord with the notion that synaptic
connections have three stable strength states, rather than just
two binary states.

Spontaneous spiking after induction of tLTP or tLTD
leads to depotentiation or de-depression, respectively, and
causes potentiated or depressed synapses to return to their
naïve states (Zhou et al., 2003). Moreover, after the induc-
tion of LTP and LTD by repetitive prespiking, hippocampal
CA1 neurons return to their naïve states more easily relative
to other states (Mulkey et al., 1993; Heynen et al., 2000;
Krucker et al., 2002). Conversely, in the retinotectal projec-
tion of the Xenopus tadpole, LTP is stabilized by repetitive
stimulation with 5 min intervals that causes the induction of
tLTP (Zhou et al., 2003) and is also stabilized over 15 min
after induction in hippocampal CA1 synapses (Staubli and
Chun, 1996). In addition, the depressed synapses may be
eliminated (Montgomery and Madison, 2002; Luthi et al.,
2004; Bastrikova et al., 2008).

Some theoretical studies have suggested that the applica-
tion of random synaptic inputs to a neuron with STDP as a
synaptic learning rule eventually leads to a bimodal distribu-
tion of synaptic strengths (Song et al., 2000; Cateau and Fu-
kai, 2003). The predicted bimodal distribution, however, is
inconsistent with the unimodal distribution of synaptic
strengths observed in in vivo experiments (van Rossum et al.,
2000). This bimodal distribution of synaptic strengths can
become unimodal if the same spike pairings induce weaker
tLTP at the stronger synapses (van Rossum et al., 2000). Fur-
thermore, an alternative explanation can be provided by ad-
ditional features of maintenance. Even if the distribution of
synaptic strengths, which are stable during maintenance, be-
comes bimodal, the synapses that are associated with the
weaker peak of the bimodal distribution may be subjected to
elimination, resulting in a unimodal distribution of the re-
maining synapses that are associated with the stronger peak.

III. TEMPORAL AND SPATIAL ASPECTS OF STDP
In the methodology of many in vitro STDP experiments, the
intervals between prespiking and postspiking pairings are
constant and are applied to the same dendritic site. However,
as mentioned earlier, neurons in vivo are known to fire spikes
at irregular intervals (Softky and Koch, 1993). Moreover,
multiple synaptic inputs occur at different sites along den-
drites (for a review, see Spruston, 2008). Here, we review
STDP taking into account temporal features involving com-
plex spike patterns and spatial features involving the interac-
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tion of multiple synaptic inputs at different sites along the
dendrites.

A. Temporal aspects of STDP
In the canonical form of STDP, the repetitive pairings of pre-
spiking and postspiking can be separated into interactions of
potentiation effects of prespiking→postspiking and depres-
sion effects of postspiking→prespiking. The linear summa-
tion of these potentiation and depression effects reproduces
the canonical form of STDP with spike pairs but is not able
to reproduce the results observed when synaptic plasticity is
induced by spike triplets (a set of three spiking events includ-
ing either two prespiking and one postspiking events, or one
prespiking and two postspiking events) in layer II/III neurons
of the visual cortex (Froemke and Dan, 2002) and cultured
hippocampal neurons (Wang et al., 2005). This indicates that
there is a nonlinear interaction between spikes in STDP.

Although the canonical form of STDP elicited by pair-
ings of a single prespiking event with a single postspiking
event are similar between layer II/III neurons (Froemke and
Dan, 2002) and cultured hippocampal neurons (Bi and Poo,
1998), synaptic plasticity induced by spike triplets differs
substantially between these two types of neurons [see Fro-
emke and Dan, 2002 and Wang et al., 2005, and also Figs.
2(F), 4(A), and 4(B)]. The amplitude of synaptic plasticity
induced by spike triplets is a function of two variables �t1 , t2�,
where t1 represents the relative timing of the first prespiking
event to the postspiking event (two prespiking and one
postspiking) or the timing of the prespiking event to the first
postspiking event (one prespiking and two postspiking), and
t2 represents the relative timing of the second prespiking
event to the postspiking event (two prespiking and one
postspiking) or the timing of the prespiking event to the sec-
ond postspiking event (one prespiking and two postspiking)
[Figs. 2(F), 4(A), and 4(B)]. In layer II/III neurons of the vi-
sual cortex, synaptic plasticity induced by spike triplets can
be phenomenologically explained by nonlinear interactions
of two independent spike pairs [Figs. 2(F) and 4(A)] (Fro-
emke and Dan, 2002). The nonlinear interactions of two in-
dependent spike pairs can be formalized as a summation of
independent spike pairs with a multiplication of spike effi-
cacy, which is transiently “decreased” by the preceding spike
in a presynaptic and a postsynaptic neuron [Fig. 4(A)] (Fro-
emke and Dan, 2002; Froemke et al., 2006). Similarly, in cul-
tured hippocampal neurons, synaptic plasticity induced by
spike triplets has been found to show nonlinear interactions
between two independent spike pairs. However, synaptic
plasticity induced by spike triplets is different from that in
layer II/III neurons of the visual cortex [Fig. 4(B)] (Wang et
al., 2005). For example, by postspiking→prespiking
→postspiking pairings (−5 ms, 5 ms), tLTP is induced in
cultured hippocampal neurons, whereas tLTD is induced in
layer II/III of the visual cortex [Fig. 4(B)]. Also, by
prespiking→postspiking→prespiking pairings (5 ms, −5

Figure 4. Difference of synaptic plasticity induced by spike trip-
lets in layer II/III neurons and cultured hippocampal neurons.
�A� Synaptic plasticity induced by spike triplets in a phenomenologi-
cal model for layer II/III visual cortex �Froemke et al., 2006�. Defini-
tion of t1 and t2 and the corresponding experimental data are shown
in Fig. 2�F�. Red line in the left panel corresponds to a red line in �C�,
which shows the timing window of STDP with pairings of a prespik-
ing event and two postspiking events, the latter of which have a 10
ms interval. �B� Synaptic plasticity induced by spike triplets in a phe-
nomenological model for cultured hippocampal neurons �Pfister and
Gerstner, 2006�. Colored circles indicate experimental data �Wang
et al., 2005�. �C� The timing windows of STDP with single prespiking
and postburst spiking in the phenomenological models �Wang et al.,
2005; Froemke et al., 2006�. �t indicates the interval between the
prespiking event and the first postspiking event. Black lines show
the conventional STDP induced by pairings of a single prespiking
event and a single postspiking event; red lines show synaptic plas-
ticity induced by pairings of a single prespiking event and two
postspiking events, the latter of which have a 10 ms interval; and
blue lines show synaptic plasticity induced by pairings of a single
prespiking event and three postspiking events, the latter of which
have 10 ms intervals.
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ms), no plasticity is induced in cultured hippocampal neu-
rons, whereas tLTP is induced in layer II/III of the visual cor-
tex [Fig. 4(B), right, circles]. In cultured hippocampal neu-
rons, synaptic plasticity induced by spike triplets can also be
phenomenologically formalized as a summation of the ef-
fects of two independent spike pairs with a multiplication of
spike efficacy. However, unlike in layer II/III of the visual
cortex, spike efficacy in cultured hippocampal cells is tran-
siently “increased” by the preceding spike in presynaptic and
postsynaptic neurons [Fig. 4(B)] (Pfister and Gerstner,
2006). Both phenomenological models in layer II/III of the
visual cortex and cultured hippocampal neurons can explain
synaptic plasticity induced by complex spike patterns (Fro-
emke and Dan, 2002; Froemke et al., 2006; Pfister and Ger-
stner, 2006). This implies that there are distinct signaling
mechanisms for STDP in each of these two types of neurons.

These phenomenological models explain the distinct
characteristics of STDP in layer II/III neurons in the visual
cortex and cultured hippocampal neurons. In particular, they
describe the effects of a prespiking event on postburst spik-
ing, which is a series of multiple postspiking events. For ex-
ample, consider synaptic plasticity induced by spike triplets
with a single prespiking event and two postspiking events,
where the interval of the latter is 10 ms [Figs. 4(A) and 4(B),
red lines]. In layer II/III of the visual cortex, because the syn-
aptic efficacy is transiently decreased by the preceding spik-
ing, the effect of a second postspiking event is decreased by
the first postspiking event. Therefore, the first postspiking
event always becomes dominant compared with the follow-
ing postspiking event in postburst spiking, so that the timing
between the first postspiking event and the prespiking event
determines the change in synaptic strength [Fig. 4(C), left].
By contrast, in cultured hippocampal neurons, because syn-
aptic efficacy is transiently increased by the preceding spik-
ing, the effect of the second postspiking event is increased by
the first postspiking event. Therefore, the last postspiking
event always becomes dominant compared with the preced-
ing postspiking event in postburst spiking. This means that
the timing between the last postspiking event and the pre-
spiking event determines the resultant change in synaptic
strength [Fig. 4(B), right]. Because burst-spiking is often ob-
served in vivo (for a review, see Steriade, 2004), the first and
last postspiking events on synaptic efficacy are likely to be
physiologically dominant in layer II/III and hippocampal
neurons, respectively. This suggests that distinct signaling
mechanisms underlie each of these types of synaptic plastic-
ity. Thus, the description of synaptic plasticity induced by
spike triplets in phenomenological models highlights spe-
cific features of synaptic plasticity in layer II/III and hippoc-
ampal neurons. This modeling is an important first step to-
ward understanding how synaptic plasticity is induced by
natural firing patterns in vivo and toward describing a general
synaptic learning rule.

Biophysical models of signaling mechanisms of synaptic
plasticity have been proposed for both layer II/III of the vi-
sual cortex (Urakubo et al., 2008) and for cultured hippoc-
ampal neurons (Rubin et al., 2005). Models for both of these
cell types have been found to reproduce synaptic plasticity
induced by spike triplets. In the biophysical model for layer
II/III neurons, synaptic plasticity by spike triplets has been
explained by a suppression of NMDAR activation by preced-
ing prespikes or postspikes (Urakubo et al., 2008). This NM-
DAR suppression by postspiking is similar to the transient
decrease in synaptic efficacy by the preceding spiking in the
phenomenological model for layer II/III neurons (Froemke
and Dan, 2002; Froemke et al., 2006). In the biophysical
model for cultured hippocampal neurons, synaptic plasticity
induced by spike triplets is explained by the detection of the
postsynaptic Ca2+ time-course via downstream signaling
molecules (Rubin et al., 2005). However, the signaling
mechanisms responsible for causing transient increases in
synaptic efficacy in response to the preceding spiking are not
simple or obvious in this biophysical model.

B. Spatial aspects of STDP
Because bpAPs do not typically propagate into distal apical
dendrites, prespiking→postspiking pairings fail to induce
tLTP at distal apical synapses (Golding et al., 2002; Sjostrom
and Hausser, 2006). However, tLTP is induced by
prespiking→postspiking pairings at distal apical synapses
when excitatory inputs are added to proximal apical den-
drites in the neocortex (Letzkus et al., 2006; Sjostrom and
Hausser, 2006). This appears to be due to the boosting of
bpAPs by simultaneous excitatory inputs at proximal apical
dendrites, which propagate into distal apical synapses (Hoff-
man et al., 1997; Magee and Johnston, 1997; Stuart and
Hausser, 2001). Thus, excitatory inputs from proximal apical
synapses can act as a “gate signal” for tLTP at distal apical
synapses by prespiking and postspiking. Such bpAP boost-
ing has been observed in vivo as a supralinear Ca2+ influx in
dendrites (Waters and Helmchen, 2004).

In addition, LTP at distal apical synapses can be induced
by cooperative synaptic inputs, which lead to local dendritic
spiking (Golding et al., 2002). Similarly, LTP at distal basal
synapses is also induced by cooperative prespiking rather
than simple prespiking→postspiking pairings. Cooperative
prespiking has been found to lead to local NMDAR spikes,
in the presence of BDNF (brain-derived neurotrophic factor)
(Gordon et al., 2006; but see Holthoff, 2004). Thus, LTP at
distal synapses depends not only on the timing of prespiking
and postspiking, but also on the spike timing between mul-
tiple prespiking events.

Moreover, there is evidence that the features of STDP dif-
fer depending on the location of dendrites. In layer II/III of
the visual cortex, the tLTP amplitude at middle apical syn-
apses is lower than that at proximal apical synapses, and the
tLTD timing window at middle apical synapses is broader
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than that at proximal apical synapses (Froemke et al., 2005).
In the somatosensory cortex, STDP exhibits the canonical
form at proximal apical synapses, whereas STDP exhibits
the reversed form at distal apical synapses where tLTP and
tLTD are induced by postspiking→prespiking and
prespiking→postspiking, respectively (Letzkus et al.,
2006).

Incorporating these spatial features of STDP into bio-
physical models will allow us to explore the complex inter-
action between the spatial and temporal information in-
volved in spiking.

IV. REQUIREMENT OF A HOMEOSTATIC MECHANISM
OF STDP IN VIVO
STDP shows a similar canonical form both in vitro and in
vivo (Zhang et al., 1998a; Yao and Dan, 2001; Wolters et al.,
2003; Celikel et al., 2004; Yao et al., 2004; Meliza and Dan,
2006; Cassenaer and Laurent, 2007). This makes sense if the
membrane potential of neurons in vivo is maintained around
the resting membrane potential, in conditions similar to
those of neurons in vitro (Zhang et al., 1998a). However,
membrane potentials of neurons in vivo are likely to fluctuate
because of excitatory and inhibitory inputs from other neu-
rons (Yao and Dan, 2001; Wolters et al., 2003; Celikel et al.,
2004; Yao et al., 2004; Meliza and Dan, 2006; Cassenaer and
Laurent, 2007). Membrane potential fluctuations affect NM-
DAR and VGCC activities (which are dependent on mem-
brane potential), and thereby change the Ca2+ influx, which
is a major determinant of tLTP and tLTD (see above). There-
fore, under conditions of membrane potential fluctuation,
STDP in vivo is likely to differ from STDP in vitro, even with
the same spike pairings. In particular, membrane potentials
of neurons in vivo sometimes hover near a spiking threshold
because of ongoing excitatory inputs (for a review, see Des-
texhe et al., 2003), and under these conditions, lessening the
voltage-dependent Mg2+ block of the NMDAR would lead to
a larger Ca2+ influx via NMDAR channels. According to the
present biophysical models of STDP, tLTP is induced regard-
less of spike timing in these synapses, because the large Ca2+

influx exceeds the threshold for tLTP induction (Karmarkar
and Buonomano, 2002; Shouval et al., 2002; Rubin et al.,
2005; Urakubo et al., 2008). In contrast, uncorrelated pair-
ings of prespiking and postspiking induce no plasticity in
STDP in vivo (Celikel et al., 2004; Meliza and Dan, 2006;
Cassenaer and Laurent, 2007). Despite the theoretical effects
of membrane potential fluctuations, experimentally STDP
has been found to show a similar canonical form both in vitro
and in vivo. This suggests the existence of homeostatic
mechanism in vivo, which compensates for fluctuations of
membrane potential. Taken together, these findings demon-
strate the utility of biophysical models for extending theoret-
ical knowledge of the mechanisms underlying synaptic plas-
ticity.

V. CONCLUDING REMARKS
STDP has been robustly observed in vivo in many species,
including Xenopus laevis tadpoles (Zhang et al., 1998a),
Schistocerca americana locusts (Cassenaer and Laurent,
2007), rats (Celikel et al., 2004; Meliza and Dan, 2006; Ja-
cob et al., 2007), ferrets (Dahmen et al., 2008), cats (Schuett
et al., 2001; Yao and Dan, 2001; Fu et al., 2002; Yao et al.,
2004), and humans (Yao and Dan, 2001; Fu et al., 2002;
Wolters et al., 2003). In particular, STDP in vivo has been
well studied in the cat visual cortex (Schuett et al., 2001; Yao
and Dan, 2001; Yao et al., 2004), rat somatosensory cortex
(Celikel et al., 2004; Jacob et al., 2007), and the retinotectal
projection of the Xenopus laevis tadpole (Zhang et al.,
1998a; Engert et al., 2002; Zhou et al., 2003; Mu and Poo,
2006; Vislay-Meltzer et al., 2006). Nevertheless, some au-
thors are critical of STDP in vivo (for a review, see Lisman
and Spruston, 2005). They have pointed out that tLTP is not
unconditionally induced by prespiking→postspiking pair-
ings, but only occurs in the presence of sufficient depolariza-
tion such as that caused by large excitatory postsynaptic
potentials (EPSPs) (Sjostrom et al., 2001). Furthermore,
some authors have also pointed out that LTP and LTD in vivo
depend not only on precise timing between prespiking and
postspiking, but also on the timing between prespiking and
other postsynaptic depolarization events, such as dendritic
spikes induced by prespiking (Golding et al., 2002; Sjostrom
et al., 2004; Hardie and Spruston, 2009). Despite this, bio-
physical models can potentially provide a framework for uni-
fying various types of synaptic plasticity, describing plastic-
ity that depends not only on precise timing between
prespiking and postspiking, but also plasticity dependent on
the timing between prespiking and other postsynaptic depo-
larization. We propose that biophysical models can be ap-
plied to both of these types of synaptic plasticity.

The signaling mechanisms of STDP are mediated by a
number of signaling molecules, and STDP depends not only
on the temporal interaction of prespiking and postspiking
events, but also on spatial interaction at the dendrites. Thus,
STDP involves multiple layers of complexity. One possible
approach to handling the complex nature of STDP is detailed
biophysical modeling that can explicitly incorporate experi-
mental findings by basing features of the model on biophysi-
cal mechanisms. The accumulation of experimental evidence
makes it possible to construct realistic electrophysiological
and morphological models of neurons as well as kinetic
models of intracellular biochemical reactions (e.g., Bhalla
and Iyengar, 1999; Kuroda et al., 2001; Poirazi et al., 2003;
Schaefer et al., 2003). While these models may have limita-
tions in their mechanics and parameters, they have neverthe-
less been proved useful for prediction. Biophysical modeling
is a powerful technique, particularly in cases where rich ex-
perimental data are available. A biophysical model that is
sufficiently constrained by experimental data can provide
quantitative verification of experimentally proposed mecha-
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nisms and can facilitate experimental studies by proposing
potential mechanisms to fill gaps in the experimental evi-
dence. For example, the involvement of allosteric kinetics of
NMDARs was logically predicted by a biophysical model
and was subsequently found to be consistent with experi-
mental data (Urakubo et al., 2008).

We note that phenomenological models of STDP, which
are based on experiments in vitro, may not reliably predict
STDP in vivo, because of membrane potential fluctuations
(Sjostrom et al., 2001; Froemke and Dan, 2002; Froemke et
al., 2006; Pfister and Gerstner, 2006). Phenomenological
models are based on the principle of “Occam’s razor,” which
holds that simpler models are better than complex ones and
that fewer parameters are better than more. This modeling
approach, generally used for statistical models, is effective in
making inferences about synaptic plasticity under conditions
where experimental data are available but is not suitable for
making predictions in novel environments. To predict synap-
tic plasticity in a novel environment, phenomenological
models first require experimental data from tests in that en-
vironment. In contrast, biophysical models are based on not
only experimental data but also on prior knowledge of sig-
naling mechanisms and are therefore more powerful for the
prediction of synaptic plasticity in novel environments. Once
a detailed biophysical model is described, it can be simplified
by pruning redundant mechanisms in a way that preserves its
fundamental framework. By extracting the essential parts of
the model, we are able to interpret the functional roles of
synaptic plasticity in neuronal circuits in vivo more realisti-
cally.

The brain can be considered to be a memory-driven sys-
tem. Unlike a computer, the brain stores memory as a pattern
of synaptic strengths associated with neurons as simple com-
putational units. Input signals through synapses allow neu-
rons to process information and to further modify synaptic
strengths. Differently modified synapses guide input signals
to the neuron in different ways to enable more efficient infor-
mation processing. Although the activity-dependent modifi-
cation of synaptic strengths cannot be easily described by a
simple synaptic learning rule due to the complex signaling
machinery involved, the biophysical modeling approach has
the potential to bridge the gap between the phenomenologi-
cal and mechanistic aspects of synaptic changes, and may
potentially lead to a complete understanding of synaptic
plasticity in neuronal circuits.
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