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Abstract
Cardiac MRI performed while the patient is breathing is typically achieved using non-real-time
techniques such as ECG triggering with respiratory gating; however, modern dynamic imaging
techniques are beginning to enable this type of imaging in real-time. One of these dynamic imaging
techniques is based on forming a Partially Separable Function (PSF) model of the data, but the model
fitting process is known to be sensitive even when truncated SVD regularization is used. As a result,
physiologically meaningless artifacts can appear in the dynamic images when the total number of
measurements is limited. To address this issue, the dynamic imaging problem is formulated as a
generalized Tikhonov regularization problem with the PSF model as a component of the forward
data model, and a penalty function is used to introduce spatial-spectral prior information. This new
method both reduces data acquisition requirements and improves stability relative to the original PSF
based method when applied to cardiac MRI.

Introduction
The vast majority of Cardiac Magnetic Resonance (CMR) is performed using non-real-time
techniques based on either prospective or retrospective processing of physiological signals
such as using the ECG to synchronize MRI data acquisition with the cardiac phases, but real-
time CMR at high spatial resolution has long been a goal of the field. CMR has experienced
significant progress over the past 10 years largely due to the introduction of parallel imaging,
and its use is now commonplace in clinical CMR [1], [2], [3]. Parallel imaging not only speeds
up non-real-time CMR but has made it possible to achieve real-time MRI with acceptable
spatial resolution in many two dimensional CMR scenarios [1], [3].

Another contributor to real-time CMR research is known as dynamic imaging. Dynamic
imaging in MRI is fundamentally concerned with reconstructing real-time movies of patients
that are sampled insufficiently in the (k, t)-space [4]. UNFOLD and k-t SENSE are the most
well known examples of the dozens of dynamic imaging algorithms that are well suited to
CMR. These methods make use of redundancies in the data to improve the imaging speed of
MRI [5], [6].

Unfortunately, all acceleration techniques for MRI can only be pushed so far until image
artifacts destroy the reconstructions, and each method has its own unique limitations. For
example in CMR, partial Fourier methods are prone to reduced spatial resolution and ringing
artifacts; segmented acquisitions can result in temporal blurring; EPI suffers from spatial
blurring; parallel imaging is limited by spatial aliasing and noise amplification; and dynamic
imaging reconstructions are degraded by motion artifacts. The artifacts of dynamic imaging
are the ones addressed in this paper.
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An important feature of most motion artifacts in CMR is that they are relatively obvious when
viewed by someone with a background in cardiac physiology. For instance, the boundary of
the patient's body can often be determined despite image artifacts, so artifacts that extend
outside the body can often be easily identified. Also, motion artifacts can appear in areas of
low signal intensity such as the lungs or in static regions such as near the spine. Another
example is when replicas of cardiac structures appear superimposed on other organs that are
known to have much simpler spatiotemporal characteristics. Such an artifact may be obvious
to a radiologist or physician even though its existence may render the images diagnostically
useless.

Unfortunately, not all of the recently developed techniques for dynamic imaging provide a way
to incorporate practical physiological information such as: 1) the heart is inside the body, 2)
the heart is roughly within a certain spatial range, and 3) some tissues are more static than
others. The main purpose of this paper is to enable this capability while taking advantage of a
recently developed method based on the Partially Separable Function (PSF) model [7].

The potential of dynamic imaging using the PSF model has been demonstrated recently by
developing a technique based on it to perform real-time CMR in breathing rats [8]. Not only
are the spatio-temporal requirements very high for rat CMR, but the breathing motion
introduces complexity into the spectral content of the raw data. The PSF method works in many
cases, but sometimes it is very sensitive to the model fitting resulting in image artifacts.
Reducing these artifacts would improve the practical usefulness of this method of CMR.

Also, there is a need to push to even higher spatial resolutions toward the goal of three
dimensional, real-time CMR. The PSF model based method can already be used for 2D CMR
with sparse sampling along the time dimension, but even less data are available for each k-
space location in the three dimensional case (for a fixed MRI scan time). The authors propose
a new method that addresses the stability of dynamic imaging using the PSF model as well as
reduces its data acquisition requirements by reformulating the problem so that prior spatial-
spectral information about the patient can be incorporated into the dynamic image
reconstruction procedure.

This paper first introduces the theory of the new method along with its closed form solution.
A simulation created to demonstrate the method is then described and followed by dynamic
imaging reconstruction results. These results are discussed along with the usefulness of the
proposed method, and the paper ends with the conclusion and references.

Theory
Recent work in the theory of Partially Separable Functions (PSF) has shown that it is possible
to accelerate dynamic imaging to high levels of performance by allowing sparse temporal
sampling [7]. In the PSF model based approach the (k, t)-space signal, s, is modeled as

(1)

where {φℓ(t)} are basis functions estimated from measured data, and {cℓ(k)} are the unknowns
of the model. The dynamic images are found by fitting the model to the measured data by
solving
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(2)

at each point in the k-space using an energy constraint on {cℓ(k)} such as truncated SVD.
Solving (2) will be referred to as applying the existing PSF based imaging method in the
remainder of the paper.

It is unclear how to constrain the existing method to avoid physiologically incorrect
reconstructions. To make this constraint possible, the dynamic imaging problem has been
formulated as a generalized Tikhonov regularization problem [9], [10]

(3)

where s contains the measured (k, t)-space data for all coils (with a noise covariance Ψ), and
E is the forward data model for the underlying unknowns describing the object, a. λ2 is known
as the regularization parameter. a0 is an initial estimate of the unknowns, and W is a weighting
matrix. The first term in the optimization problem encourages the solution to predict the
measured data, while the second term penalizes undesirable solutions. In general, problems of
this mathematical form have the solution

(4)

The Partially Separable Function (PSF) model is incorporated by defining the general forward
data model

(5)

where Φ is a matrix of the PSF temporal basis functions whose product with a gives a vector
containing the (y, t)-space reconstruction. S represents the time-varying coil sensitivities. y
transforms its input to the (k, t)-space with the options to window the discretized spatial domain
data, represent the object using an arbitrary basis such as a pixel basis, account for magnetic
field inhomogeneities, and allow for arbitrary k-space trajectories.  is the sampling operator
that retains only those data actually acquired in the (k, t)-space.

Prior spatial-spectral information is incorporated into the imaging method by defining the W
operator as

(6)

where t is a Fourier transform over the time domain, and the entries of P define a spatial-
spectral penalty to discourage energy from being assigned to certain (y, f)-space locations
thereby reducing physiologically meaningless artifacts as well as the data acquisition
requirements.
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Methods
Experimental Conditions

All experimental data in this paper were collected using a Bruker (Billerica, MA) Avance DRX
4.7 T, 40 cm equipped with a 12 cm, 40 G/cm shielded gradient set. A 5.5 cm custom built
surface coil was used for the collections. A FLASH pulse sequence was used to acquire an
ECG triggered, respiratory gated set of cardiac images at 256 × 256 resolution over a 5 × 5 cm
Field of View (FOV) with a 2 mm slice thickness.

The animals used in the study were the same type of Dark-Agouti and Brown Norway rats as
in reference [11]. All animals received humane care in compliance with the Guide for the Care
and Use of Laboratory Animals, published by the National Institutes of Health, and the animal
protocol was approved by the Carnegie Mellon University Institutional Animal Care and Use
Committee.

Simulation
A single channel cardiac phantom was created using denoised images from the gated
acquisition. The phantom was time sequentially sampled using phase encoding with the
sampling pattern shown in Figure 1 over a time duration of 15 sec with a TR of 3 msec.

The data were then reconstructed using (2) as well as (3). The definition of P used in (4) was
(I – Ω) where I is the identity matrix, and Ω is a diagonal matrix formed from an indicator
function defining the Region of Support (ROS) in the (y, f)-space. Ω has a value of 1 when
significant energy is present and 0 when it is not, so P penalizes only those (y, f)-space locations
outside the ROS. Ω was chosen to be a coarse approximation to the true ROS that forms a cross
shape over the heart [5]. Ω was given a value of 1 over a range of y locations containing the
heart, while other spatial locations were assigned a value of 1 only near the DC frequency, and
Ω was kept constant over all x locations. λ2 = 10−7 was used, and a0 was set equal to zero.
Because phase encoding was used, the reconstruction problem was solved at each x location
separately. This means that a contains the PSF model coefficients for all y locations at each
particular x.

Results
The reconstruction in Figure 2 (a) shows a single image of the dynamic reconstruction using
the existing PSF based method. The vertical streaking artifacts are in the phase encoding
direction, and they corrupt the heart region significantly enough to render the image
diagnostically useless. These artifacts are eliminated when the proposed method is applied to
exactly the same acquired data as shown in Figure 2 (b).

Another view of the artifacts is shown in Figure 3 by plotting a column of pixels passing through
the heart (vertical axis) as a function of time (horizontal axis). Figures 3 (a) and (b) show the
reconstruction results of the existing PSF based method and the proposed method respectively.
The proposed method's reconstruction has a peak error of 7% and is nearly indistinguishable
from the gold standard.

Discussion
One interesting result in Figure 3 (b) is that these simulation results demonstrate typical artifacts
of the existing PSF model fitting when it is pushed to its performance limits. The reconstruction
artifacts take on a character that appears much like time-varying noise, and some image frames
are close to the true image while others are unintelligible. The artifacts corrupt regions of the
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image with and without signal from the body; however, the spatial-spectral penalty in the
proposed method can largely eliminate these artifacts.

Another key point is that the proposed method reduces the number of measurements needed
to reconstruct images with an allowable amount of error when compared to the existing PSF
based method. This reduction in the number of measurements is equivalent to a speed
improvement, so in the proposed method, the data acquisition resources can then be allocated
to either increase the spatial resolution or reduce the scan time as appropriate for the specific
application.

The proposed method has significant differences with other popular methods for CMR. It
makes a very different use of the (y, f)-space ROS concept when compared to UNFOLD,
TSENSE, UNFOLD-SENSE, PARADIGM, and PARADISE [5], [12], [13], [14], [15], [16].
Those methods rely on specialized sampling patterns, , that manipulate the (y, f)-space
aliasing to pack the ROS. In these methods the ROS is a well defined region that is explicitly
extracted using a linear filter, but the proposed method imposes the ROS in a soft fashion
making it robust to errors in the ROS estimate. Also, spatial-spectral overlap is allowed in these
other methods only when parallel imaging is used. In contrast, the PSF model can be used to
overcome significant spatial-spectral aliasing even without parallel imaging and is
considerably less dependent upon the choice of an optimal sampling pattern.

The proposed method's use of prior information is conceptually similar to k-t SENSE [6];
however, the direct extension of that method to take advantage of the PSF model is to use a
magnitude estimate of the PSF model coefficients to constrain the solution [17]. The spatial-
spectral penalty used here has some practical advantages since it has a very biological
interpretation and can therefore be used to constrain dynamic motion to be within the patient's
body, cardiac motion to be localized to the heart region, eliminate energy from air cavities
inside the body, and discourage dynamic content from appearing in static tissues. In contrast,
the coefficient magnitudes rarely have a physiologically meaningful interpretation since the
temporal basis functions from the PSF model are purely mathematical constructions, so the
only practical refinement to further constrain the reconstructed images is to set coefficients for
selected spatial locations to zero. An important final note in this comparison is that even though
the prior information in this demonstration has been manually defined, it can also be
automatically derived from training data.

The proposed method also differs from Compressed Sensing (CS) inspired methods for
dynamic imaging such as k-t FOCUSS, k-t SPARSE, and others [18], [19], [20]. CS assumes
that the sparse basis is independent of the patient, while the PSF model's basis is patient specific.
The proposed method is similar to already knowing the locations of the non-zero temporal
basis coefficients in CS, so some reduction in the number of measurements may be possible.

Conclusion
A new method of dynamic imaging has been proposed for use in real-time CMR. The
formulation solves the problem using generalized Tikhonov regularization and jointly uses the
PSF model, parallel imaging, and spatial-spectral prior information to both reduce data
acquisition requirements and improve stability over existing PSF model based methods. The
results in this paper have demonstrated the potential usefulness of prior spatial-spectral
information combined with the PSF model, and this new approach to dynamic imaging may
find applicability in real-time Cardiac MRI as well as other real-time imaging scenarios.
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Fig. 1.
The k-t sampling pattern used for phase encoding where the readout direction is into the page.
The open circles represent the training data, and the filled circles represent the (k, t)-space
sparse samples.
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Fig. 2.
Comparison of simulated reconstruction (a) existing PSF method and (b) proposed method
with spatial-spectral prior information.
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Fig. 3.
Comparison of simulation results for the (y, t)-space of a column of pixels through the heart:
(a) existing PSF based method, and (b) proposed method with prior spatial-spectral
information.
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