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ABSTRACT

Communities of interdependent microbes, found in diverse natural contexts, have recently attracted
the attention of bioengineers. Such consortia have potential applications in biosynthesis, with metabolic
tasks distributed over several phenotypes, and in live-cell microbicide therapies where phenotypic diversity
might aid in immune evasion. Here we investigate one route to generate synthetic microbial consortia and
to regulate their phenotypic diversity, through programmed genetic interconversions. In our theoretical
model, genotypes involve ordered combinations of DNA elements representing promoters, protein-
coding genes, and transcription terminators; genotypic interconversions are driven by a recombinase
enzyme that inverts DNA segments; and selectable phenotypes correspond to distinct patterns of gene
expression. We analyze the microbial population as it evolves along a graph whose nodes are distinct
genotypes and whose edges are interconversions. We show that the steady-state proportion of each
genotype depends on its own growth advantage, as well as on its connectivity to other genotypes. Multiple
phenotypes with identical or distinct growth rates can be indefinitely maintained in the population, while
their proportion can be regulated by varying the rate of DNA flipping. Recombinase-based synthetic
constructs have already been implemented; the graph-theoretic framework developed here will be useful
in adapting them to generate microbial consortia.

MICROBES typically live in interdependent multi-
phenotypeormultispeciescommunities(Wingreen

and Levin 2006; Brown and Buckling 2008).
Metabolic tasks are often distributed over distinct
species, as has been observed in cases ranging from
loose ecological groups in the open ocean and the soil
(Boetius et al. 2000; Kent and Triplett 2002; Delong

2005) to tightly knight biofilm communities on animal
body surfaces, mucosal membranes, and teeth
(Kolenbrander et al. 2002; Vial and Déziel 2008).
Phenotypic diversity might play a role in allowing
pathogens to evade a host immune response (Thattai

and van Oudenaarden 2004; van der Woude and
Bäumler 2004): many infectious diseases are caused by
polymicrobial populations (Brogden et al. 2005) or
by heterogeneous but coordinated populations of a
single pathogenic strain (Williams et al. 2000). These
same features—metabolic distribution and immune
evasion—underlie possible applications of engineered
microbial consortia (Brenner et al. 2008; Hooshangi

and Bentley 2008): fermentations can be more
efficient when reactions are compartmentalized be-
tween distinct bacterial strains (Eiteman et al. 2008);
research on bioremediation has drawn attention to

microbial communities capable of complex pollutant
degradation (Pelz et al. 1999); engineered commen-
sual bacteria, the basis of live-cell microbicide therapies
(Rao et al. 2005), might be better able to colonize body
surfaces by mimicking the multiphenotype strategy of
native microflora.

The mechanisms by which individual cells in a
microbial consortium communicate with one another
are currently being elucidated. Diffusible chemical
messengers are involved in inter- and intraspecies
communication—a process referred to as quorum
sensing—in cases ranging from biofilm formation to
virulence regulation (Williams et al. 2000; Bassler and
Losick 2006). More recently, it has become clear that
physical contact between cells on surfaces and in
biofilms plays a key role in their coordination (Rickard

et al. 2003; Bassler and Losick 2006). These regulatory
mechanisms help coordinate the different components
of a microbial consortium, preventing a single strain
with a small fitness advantage from dominating the
population. Implementing such coordination to sup-
press monoculture is a key challenge in generating
engineered microbial consortia. Brenner et al.
(2008) review two possible strategies to achieve this,
involving either direct or indirect communication: first,
mutual population regulation as implemented in an
artificial microbial predator–prey system (Balagaddé

et al. 2008); and second, metabolic cooperation where
each strain depends on another for essential nutrients
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(Shou et al. 2007). Here we suggest a third strategy,
borrowing from a natural microbial tactic known as
phase variation: continual regeneration through
interconversion between phenotypically distinct
strains.

Phase variation—a stochastic, heritable but reversible
switching of phenotype—was first described in the
pathogen Salmonella typhimurium and has since been
studied in a variety of bacterial species (van der Woude

and Bäumler 2004). In Salmonella, as in a number of
other cases, the phenotypic switch is driven by a DNA
inversion recombination event (Silverman et al. 1979)
in which the Hin DNA recombinase protein flips the
region between two 26-bp palindromic hix sequences
(Glasgow et al. 1989). The inversion process involves a
looped intermediate known as an invertasome in which
two hix sites are brought into alignment by the recom-
binase (Heichman and Johnson 1990), a process that is
accelerated in the presence of an enhancer DNA
sequence (Moskowitz et al. 1991). Hin–hix binding
depends on Hin concentration, allowing the recombi-
nation rate to be regulated (Bruist and Simon 1984;
Gates and Cox 1988; Glasgow et al. 1989). The Hin/
hix system lends itself to the modular engineering
approach advocated by the synthetic biology commu-
nity (Andrianantoandro et al. 2006; Boyle and Silver

2009; Purnick and Weiss 2009). The Hin protein along
with an artificial hixC site (Lim et al. 1992) was recently
used in three synthetic genetic constructs: a multistate
genetic memory device (Ham et al. 2008) and two
systems designed to solve combinatorial mathematics
problems (Haynes et al. 2008; Baumgardner et al.
2009). We propose that recombinase-based synthetic
constructs such as these can be used to engineer
regulated microbial consortia. We first describe how
DNA flipping on an ordered set of genetic elements can
be used to drive phenotypic interconversions. We then
develop a general mathematical framework to under-
stand the dynamics of an interconverting microbial
population, which naturally leads us to consider the
concept of neutral networks on a genotype graph. We
argue that by exploiting the properties of neutral
networks, it is possible in principle to engineer a
regulated microbial consortium. Finally, we use specific
designs to demonstrate that a population of phenotyp-
ically diverse bacteria can be maintained regardless of
their respective growth rates, while the proportion of
each phenotype can be regulated by varying the rate
of interconversion through DNA flipping.

METHODS

Population dynamics and steady-state distributions:
Let G be the graph of genotypes, as defined in the main
text, with its nodes indexed by i. The square connectivity
matrix E stores the edges of G as follows:

Eij ¼
1 if j can go to i in a single flip
0 otherwise:

�
ð1Þ

Each flip is its own inverse so E is a symmetric matrix.
Let xi(t) be the number of cells with genotype i at time t.
The population evolves as

d

dt
xi ¼ gixi 1 kfðSjEij xj � SjEjixiÞ ð2Þ

(e.g., see Thattai and van Oudenaarden 2004), where
the first term captures cell growth, the second one
accounts for transitions into state i, and the third one
accounts for transitions out of state i. Here, gi ¼ gH for
the high-fitness genotypes, gi ¼ gL , gH for the low-
fitness genotypes, and kf is the rate of DNA flipping,
which we assume is equal between any pair of connected
nodes (Figure 2B). This equation can be rewritten as

d

dt
xi ¼ SjðgLdij 1 ðgH � gLÞHijÞxj ;

where

Hij [ fEij 1 dijðdiH � SkfEkiÞ: ð3Þ

Here, f [ kf/(gH � gL) is the normalized rate of
flipping; dij¼ 1 if and only if i¼ j; and diH¼ 1 if and only
if i is a high-fitness node. After sufficient time elapses,
the population will evolve as

xiðtÞ ¼ viðfÞexp ðgL 1 ðgH � gLÞlðfÞÞt½ �; ð4Þ

where 0 , l(f) , 1 is the largest eigenvalue of H (giving
the steady-state fraction of cells in high-fitness geno-
types; Figure 4) and v(f) is the corresponding eigen-
vector (giving the steady-state distribution of cells over
all genotypes; Figure 3, D and H). Note that while the
distribution v(f) equilibrates, the total number of cells
continues to increase exponentially, with growth rate
gL 1 (gH � gL)l(f). Since H depends on a single
adjustable parameter f, its eigenvectors and eigenvalues
are functions solely of f.

Automorphisms of the genotype graph: Let G be the
simple undirected graph comprising the set N of nodes
representing genotypes and the set E of edges between
nodes connected by single DNA flips. The nodes are
partitioned into MN classes labeled by their phenotypes;
the edges are partitioned into ME classes corresponding
to distinct DNA flips. (Two flips are distinct if and only if
they relate to a distinct indexed pair of hix sites.) Each
node is by definition connected to precisely ME distinct
undirected edges. If the construct comprises n flippable
DNA elements bracketed by (n 1 1) successive hix sites,
then the total number of nodes and edges is given by

jN j ¼ n!2n and jE j ¼ jN jME

2
; where ME ¼ Cn11

2 ¼ nðn 1 1Þ
2

: ð5Þ

Let F be the group generated by single flips, and
consider a permutation a of the nodes of G that
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commutes with flips. That is, if n1 and n2 are nodes in N
related by some flip f 2 F, then their images under the
permutation a are related by the same flip:

aðn1Þ ��!f aðn2Þ
a[ a[

n1 ��!f n2

: ð6Þ

The set of all permutations a that satisfy this property
forms a group AutE(G) of edge-preserving automor-
phisms of G (Cameron 2004). For any a2AutE(G), once
its action on any node in N is specified, then its action on
every node in N is determined by repeated application of
flips. It follows that AutE(G) is the same size as N. To help
understand the nature of AutE(G), we now define
another group Z of substitution rules that also act as
special permutations on N, by swapping individual DNA
elements and either preserving or reversing their
orientation. Consider a construct assembled from three
directed DNA elements q~, r~, and s~ whose order and
orientation can be independently modified. Elements
z 2 Z are defined as in the following example:

z ¼
�

p~ q~ r~

r) q) p~

�
means zðp~q~r~Þ ¼ r)q)p~; zðq~r)p)Þ ¼ q)p)r~;

ð7Þ

and so on.
For any z 2 Z, once its action on any node in N is

specified by a substitution rule, then its action on every
node in N is determined. It follows that Z is the same
size as N and, therefore, as AutE(G). It is also straightfor-
ward to verify that all elements of Z commute with flips,
so Z�AutE(G). Since these two sets are the same size, we
must have AutE(G) ¼ Z. Finally, the elements of Z or
AutE(G) that, in addition, preserve node classes form
the subgroup AutNE(G) � AutE(G) of node-class- and
edge-class-preserving automorphisms of G. In the event
that all flips are identical, so edges are not partitioned into
classes, additional symmetries might emerge. AutNE(G)
is therefore a subgroup of AutN(G), the group of all
node-class-preserving automorphisms of G discussed in
the main text. The nodes of G can be partitioned into
AutN(G) orbits that are the nonoverlapping sets of
equivalent genotypes.

RESULTS

The genotype graph and neutral networks: We
consider a population of bacteria whose genotypes are
defined as an ordered and oriented combination of
directed DNA elements (e.g., Figure 1A). Successive
elements of such a construct are separated by hix sites so
that, in the presence of the Hin recombinase, they can
be shuffled into every possible combination through a
series of flips (Figure 1B). For a given order and
orientation, the resulting gene expression state defines

the selectable phenotype; the same elements arranged
differently might give rise to a different phenotype,
while many distinct arrangements of the elements might
give rise to the same phenotype (Figure 2). The total
number of distinct genotypes is a rapidly increasing
combinatorial function of the number of DNA elements

Figure 1.—Engineering interconvertible genotypes using
DNA recombination. (A) Basic DNA parts: regulatory elements
include promoters (P~), ribosome binding sites (RBSs), tran-
scription terminators (T~ ), and hix sites; proteins Q , R, and S
are encoded by the genes q~, r~, and the ‘‘split gene’’ s~1s~2. All basic
parts are directed except for the palindromic hix site. (B) Ex-
ample of interconversion through DNA flipping. We show a
construct consisting of three flippable DNA elements, flanked
by four hix sites. The Hin recombinase can flip the region be-
tween any pair of hix sites. Note that a flip reverses both the or-
der and the orientation of each part on the flipped element.
DNA parts on flanking regions are not subjected to flips.
mRNA transcription is initiated in the appropriate direction
at each promoter and is halted by the nearest correctly ori-
ented terminator. For clarity, we have indicated only correctly
(59–39) oriented coding sequences on the resulting polycis-
tronic mRNA strands. Coding sequences that are prefixed by
RBSs are translated into proteins. The gene fragment s~1 is
translated into the protein fragment S1 but the gene fragment
s~2 that lacks an RBS is not translated (bottom). The complete
gene s~1s~2 is translated into the full-length reporter protein S
(top). The flip thus changes the observable phenotype.
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involved: if the construct comprises n successive flip-
pable elements, then permutations and reorientations
can produce n! 3 2n distinct states. DNA flips will drive
repeated rearrangements in individual bacterial cells,
allowing them to explore the space of possible geno-
typic states (Figure 2B). The population thus evolves

along the genotype graph G, where each node repre-
sents a genotype, and there is an edge between nodes i
and j if it is possible to convert from genotype i
to genotype j in a single flip. The final population
distribution can be obtained analytically and depends
on details such as selective advantage, interconversion
rates, and connectivity (see methods: Population dynamics
and steady-state distributions).

The nodes of the genotype graph can be partitioned
into different classes on the basis of their fitness under
selection. This allows us to identify neutral networks:
sets of interconvertible genotypes of selectively identical
phenotype (Figure 3, A and E). In the present context,
these would be a set of distinct orderings of the basic
DNA elements, all having the same selectable gene
expression state and connected to one another by single
DNA flips. Neutral networks were first studied in
the context of the genotype-to-phenotype maps of
protein and RNA secondary structure (Lau and Dill

1990; Schuster et al. 1994; Reidys et al. 1997), but their
utility extends beyond the study of individual molecules
(Wagner 2005). For example, the neutral-network
structure of accessible mutations influences the nature
of viral evolution (Burch and Chao 2000; Koelle et al.
2006; van Nimwegen 2006). Although the genotypes in
a neutral network are by definition identical under
selection, they can be distinguished on the basis of their
connectivity to nonidentical genotypes: within a high-
fitness neutral network, those nodes that are more
connected to low-fitness neighbors outside it will be-
come underrepresented. As a result, even selectively
neutral genotypes will show diverging trajectories (Fig-
ure 3, C and G) and become nonuniformly represented
in steady state (van Nimwegen et al. 1999).

Graph automorphisms and genotype inequivalence:
For two genotypes to follow identical trajectories they
must be selectively neutral, but must also somehow
occupy equivalent positions in the context of the entire
genotype graph. More formally, they must be related by
a graph automorphism (see methods: Automorphisms of
the genotype graph). An automorphism of G is a special
permutation of node identities that satisfies two prop-
erties (Cameron 2004): nodes of any given class are
permuted only among themselves; and two nodes in the
new permuted graph are connected by an edge if and
only if they were connected by an edge in the original
graph. A graph might have several distinct automor-
phisms, although the vast majority of permutations will
not be automorphisms. The existence of a nontrivial
automorphism tells us that the graph is symmetric in
some way. Automorphisms are important because they
allow us to connect the global properties of G—its
topology and partitioning—to local properties of in-
dividual genotypes. Suppose there is an automorphism
a of the graph that carries node i to node j. Then i and j
must belong to the same class. In addition, for every
point that node i connects to, node j connects to a

Figure 2.—Genotype-to-phenotype maps. (A) Genotypes
fall into two classes, as defined by their growth rate under
selection: low fitness (L, white circles) and high fitness (H,
colored circles). For a high-fitness phenotype, proteins Q
and R must be expressed simultaneously; otherwise, a low-
fitness phenotype results. Among the high-fitness states, we
distinguish between those that express the full-length re-
porter protein S (blue circles) and those that do not (gray
circles). Only two of the nine possible protein combinations
that produce low-fitness states are shown. (B) Population dy-
namics: cells can transition reversibly between different geno-
typic states (circles) through DNA flips (light gray lines),
which occur at rate kf. Low-fitness states have growth rate
gL, and high-fitness states have growth rate gH . gL.
Steady-state distributions are governed by a single dimension-
less parameter f ¼ kf/(gH � gL). (C and D) Two specific de-
signs. In both cases we have used three flippable DNA
elements flanked by four hix sites. Here we show a few of
the 48 possible genotypes (schematic DNA layouts) along with
their phenotypes (colored and white circles). It is a useful ex-
ercise to work out exactly how to go from one genotype to an-
other through flips and how different orders and orientations
of the same three elements determine which proteins are ex-
pressed. Figure 3 shows that the high-fitness neutral network
(HNN) breaks up into several equivalence classes; here we list
one sample genotype from each class, labeled by integers. (C)
Design 1: the robust core. Also see Figure 3, A–D. (D) Design
2: disjoint islands. Also see Figure 3, E–H.
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corresponding point of the same class, and so on for
higher-order connections as well. If we impose popula-
tion dynamics rules on this graph, then since by
definition nodes of the same class obey the same rules
under selection, the population distribution over gen-
otypes i and j must converge to identical trajectories
(Figure 3, C and G): these two genotypes will be
equivalent.

Let AutN (G) ¼ {a0, a1, a2, . . . , am} be the group of all
node-class-preserving automorphisms of G, with a0

representing the trivial identity permutation. If we start
with some node i, then the set of nodes {i, a1(i), a2(i), . . . ,
am(i)} (not necessarily all distinct) is equivalent to i and
to one another. By applying this procedure to each node
in turn, we can break up the entire graph into non-
overlapping sets of equivalent genotypes (Figure 3, B and
F). If the nodes of G are arbitrarily partitioned into a

large number MN of classes, then AutN(G) will almost
always consist only of the identity permutation, reflect-
ing a lack of symmetry. As the number of node classes is
reduced, more automorphisms might emerge. For the
trivial case MN ¼ 1 the graph is fully symmetric so all
nodes become equivalent. However, as we show below
using specific designs, biologically relevant graphs with
as few as MN¼ 2 node classes permit few automorphisms
and have some irreducible asymmetry. Therefore, the
set of nodes equivalent to any given node is small, and
most pairs of nodes are inequivalent, even if they are of
identical phenotype. An immediate corollary is that
phenotypes with identical fitness also generically be-
come inequivalent because they are encoded by inequi-
valent mixtures of genotypes. This implies that their
proportion can, at least in principle, be regulated by
varying parameters such as the flipping rate.

Figure 3.—Neutral networks and equivalent genotypes. (A–D) Design 1: the robust core; see Figure 2C for the underlying DNA
elements. (E–H) Design 2: disjoint islands; see Figure 2D for the underlying DNA elements. (A and E) The complete graph G for
48 genotypes, split into the 36-node low-fitness neutral network (LNN; white circles) and the 12-node high-fitness neutral network
(HNN; colored circles). Two nodes are connected by an edge (light gray line) if it is possible to go from one to the other through a
single DNA flip; each node is connected to exactly six edges. (B and F) The HNN subgraph. All nodes are high-fitness types, but
some express S (blue circles) and others do not (gray circles). We only show edges that connect pairs of high-fitness genotypes.
These nodes break up into different equivalence classes (indicated by integer labels) on the basis of the symmetries of the HNN
subgraph. (B) In design 1, the HNN is a single connected network of 12 genotypes. There are two axes of symmetry, so these
partition into four equivalence classes. Within the HNN, the 2 S-expressing genotypes have the fewest connections to external
low-fitness genotypes: they form the robust class 1 core. These genotypes have two inward-facing promoters at their termini (Figure
2C), so only two of six possible flips can disrupt transcription. (F) In design 2, the HNN breaks up into two disjoint islands com-
prising 8 and 4 genotypes respectively, separated by a sea of low-fitness states. The 8-node set has a cubic topology with few external
connections; these compose equivalence class 1. The 4-node set is arranged in a line with one axis of symmetry and so breaks into
two further equivalence classes. The 8 genotypes of the S-expressing class 1 island all involve expression of flanking genes from an
internal promoter (Figure 2D); as long as this element is correctly positioned, all 8 configurations of the other two pieces will have
high fitness. (C and G) Time evolution of the bacterial population. The flipping rate is set at f¼ 0.01, and all genotypes are mixed
together at t ¼ 0. The subsequent behavior of the population is given by Equation 2. We show the fraction of cells in each of i ¼
1, . . ., 48 genotypes. For clarity, the initial conditions are chosen so that trajectories do not cross; equivalent genotypes converge,
while inequivalent genotypes diverge. The population eventually reaches a steady-state distribution vi(f) (Equation 4). All equiv-
alent genotypes will be present at the same fraction in steady-state; we label equivalence classes in descending order of this frac-
tion. Note that the most successful genotypes are those that are most connected to others within the HNN. (D and H) Genotypic
tuning. We show how the steady-state distribution vi(f) changes as the flipping rate f is varied. For f > 1, cells are overwhelmingly
found in the HNN, where they preferentially populate nodes with the most internal connections. As f is increased, differences
between genotypes become less important. For f ? 1, the population distributes uniformly over all 48 nodes. [Genotype graphs
were generated in Cytoscape version 2.6.2 (Shannon et al. 2003)].
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Specific implementations: We now illustrate these
general ideas in the context of two concrete examples.
We consider interconvertible genotypes built from the
same basic set of functional parts (Figure 1A): constitu-
tive promoters (P~); three distinct protein-coding genes
prefixed by ribosome binding sites (RBSs) at their 59

ends (q~, r~, and a ‘‘split gene’’ s~1 and s~2), along with their
corresponding protein products (Q, R, and S); and
transcription terminators (T~). The precise placement
of hix sites will determine the DNA flipping pattern.
Note that hix sites are palindromic, while the remaining
elements are directed (meaning that their orientation
matters), as indicated by arrows. These basic parts obey
the following rules (Figure 1B):

R1. Transcription: RNA polymerase initiates mRNA
transcription in the appropriate direction at any
promoter P~, but is halted by the nearest correctly
oriented terminator T~.

R2. Translation: All correctly oriented RBS-prefixed
genes on mRNAs will be translated into proteins.
The gene fragment s~1 is translated into a protein
fragment S1, while the complete gene s~1s~2 is trans-
lated into the full-length protein S. The gene frag-
ment s~2 cannot be translated since it lacks an RBS.

R3. Fitness: The presence of Q and R simultaneously
results in a high-fitness phenotype H (with growth
rate gH); all other cases result in a low-fitness
phenotype L (with growth rate gL , gH). The number
of gene copies has no impact on fitness.

R4. Reporter: The full-length protein S serves as a passive
reporter. The protein fragment S1 cannot be de-
tected. By definition, the presence or the absence of
either S or S1 has no impact on fitness.

R5. Flipping: The Hin recombinase can flip the region of
DNA between any pair of hix sites. The presence of hix
sites has no impact on transcription, translation, or
fitness.

These rules are biologically reasonable. Synthetic
systems have demonstrated the feasibility of flipping
multiple overlapping regions flanked by a series of hix
sites (Ham et al. 2008; Haynes et al. 2008; Baumgardner

et al. 2009). The flipping reaction appears to operate
efficiently over inter-hix distances ranging from 100
bases to 5 kb (Ham et al. 2008 and references therein),
and the enhancer sequence can function several kilo-
bases from these sites (Moskowitz et al. 1991). In-
troducing a distance dependence to the flipping rate
(for example, an exponential suppression) does not
qualitatively change the population dynamics (see
supporting information, Figure S1), except that some
previously equivalent genotypes might become inequi-
valent (see methods: Automorphisms of the genotype
graph). Several examples exist of efficient and modular
constitutive promoters and transcription terminators
(Voigt 2006; Shetty et al. 2008; Boyle and Silver

2009). The proteins Q and R might be enzymes in a

double auxotroph strain; alternatively, they might con-
fer resistance when cells are grown in a medium
containing two different antibiotics. Finally, it has been
shown that a hixC site can be inserted in the coding
region of the green fluorescent protein (GFP) gene,
allowing it to be reversibly ‘‘split’’ by DNA inversion
events (Baumgardner et al. 2009). The utility of this
unusual property will become clear as our discussion
proceeds.

As the bacterial population evolves, the genotypes of
individual cells will change due to the stochastic
occurrence of DNA flips; cells can transition reversibly
between low- and high-fitness states, but the latter will
dominate due to growth. The model (see methods:
Population dynamics and steady-state distributions) admits a
single dimensionless parameter f: the rate of flipping
(kf) measured relative to the growth rate differences
between the high- and low-fitness individuals (gH� gL).
As this parameter is varied, we track the fraction of cells
in low- and high-fitness states and their distribution over
the low-fitness and high-fitness neutral networks (LNN
and HNN) (Figure 3, A and E). For the special case of
zero flipping rate (f ¼ 0) the genotypes of cells cannot
change: only the high-fitness individuals will be present,
but their distribution over the HNN will be precisely the
same as the arbitrary initial condition. At any nonzero
but finite flipping rate, there is a unique nonuniform
equilibrium distribution that any population will tend
to. Suppose the flipping rate is low (f > 1), and cells of
all possible genotypes are mixed together at t ¼ 0
(Figure 3, C and G). Very rapidly (t � (gH � gL)�1),
differential growth will cause the high-fitness fraction to
increase and the low-fitness fraction to plunge; as DNA
flips begin to occur (t� kf

�1¼ f�1(gH� gL)�1), cells will
redistribute themselves across the HNN, with equivalent
genotypes converging, inequivalent phenotypes diverg-
ing, and genotypes strongly connected to other high-
fitness states being overrepresented. In this limit,
population dynamics essentially occur on the HNN
alone, so symmetries of this subgraph will determine
the sets of equivalent genotypes (Figure 3, B and F). At
high flipping rates (f ? 1) the growth rate differences
between the HNN and the LNN become unimportant:
as cells transition rapidly between genotypes, the
population spreads uniformly over the entire graph,
and the steady-state proportions of all genotypes con-
verge to the same value (Figure 3, D and H).

Phenotypic tuning: Consider now a situation in which
two distinct phenotypes have identical growth rates.
Their underlying genotypes will then be part of the same
HNN, but will be partitioned into various inequivalent
subsets. For the proportion of these two phenotypes to be
independently tunable, it must happen that the geno-
typic mixtures corresponding to these two phenotypes
respond quite differently to variations in f. Such
phenotypic tuning can indeed be achieved, through
careful design of the underlying DNA elements. In our
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two specific designs (Figure 2, C and D) we combine the
basic parts into three flippable DNA elements, resulting
in a graph with 48 nodes, each connected to 6 others via
flips. In both cases (Figure 3, A and E), G consists of
precisely 12 high-fitness nodes (gray and blue circles)
and 36 low-fitness nodes (white circles); the difference
between them lies in how phenotypes are distributed
over the graph, resulting in topologically distinct neutral
networks. We focus on three distinguishable phenotypes
(Figure 2A): low-fitness states, ignoring S expression
(white circles), high-fitness states that do not express S
(gray circles), and high-fitness states that do express S
(blue circles). As we have seen, symmetries of the HNN
cause it to break up into nonoverlapping equivalence
classes. We can label each node by its equivalence class,
for example, by listing them in order of steady-state
fractions (so class 1 is the highest, class 2 is second, and so
on; see Figure 3, B, C, F, and G). This breakup would
remain the same no matter which subset of HNN
nodes were to express S, since fitness is unaffected by S.
However, when it comes to being able to independently
tune the proportion of S-expressing to non-S-expressing
cells, we would prefer the genotypic mixtures underlying
these two phenotypes to be as different as possible. In our
two designs the class 1 nodes are precisely those that
express S (Figure 3, B and F). The key point is that we
have designed them to express S because they are class 1, not
the other way around; the fact that they express S has no
influence on their equivalence class.

To understand the circumstances under which mi-
crobial subpopulations with distinct growth rates can be
indefinitely maintained, we look at an aggregate frac-
tion of cells in the HNN compared to the total number
of cells (gray and blue circles vs. gray and blue circles
plus white circles in Figure 3, A and E; thin gray lines in
Figure 4, A and B). When f > 1, cells are overwhelm-
ingly likely to be in high-fitness states; for f ? 1 the
population spreads uniformly over the graph. The
fraction of high-fitness cells can thus be regulated over
a 4-fold dynamic range. To understand how subpopula-
tions with identical growth rates may be independently
regulated we must consider just cells within the HNN,
tracking the aggregate fraction of S-expressing cells
compared to all high-fitness cells (blue circles vs. blue
plus gray circles in Figure 3, B and F; thick blue lines in
Figure 4, A and B). At low f, cells will preferentially
populate the S-expressing genotypes; for f ? 1 cells
spread uniformly over the whole HNN, so the fraction of
S-expressing cells becomes identical to the fraction of
S-expressing genotypes in the HNN. As f is varied, the
‘‘robust core’’ design (Figure 3, A–D, and Figure 4A)
achieves a 1.8-fold dynamic range of the S-expressing
fraction, while the ‘‘disjoint islands’’ design (Figure 3, E–
H, and Figure 4B) achieves a 1.5-fold dynamic range.
Here, we have deliberately assumed that S expression has
no influence on growth, to demonstrate that phenotypic
tuning can arise just from topological properties of the

genotype graph. In practice, different nodes of the
HNN might have slightly different growth rates.
Growth differences smaller than the flipping rate will
only weakly influence the outcome; conversely, at the
very lowest flipping rates even a small growth advan-
tage can cause a subset of genotypes to take over the
population (Figure 4, A and B, dashed blue lines).

The practical range over which f can be modulated
depends on the flipping rate as well as the growth rates of
the various phenotypes. In Salmonella the flipping rate
kf is�10�3–10�2 per cell generation (approximately, per
hour) (Scott and Simon 1982) but this can be increased
at least 30-fold in vivo, in proportion to Hin protein
concentration (Bruist and Simon 1984). More direct

Figure 4.—Phenotypic tuning. (A) Design 1: the robust
core. (B) Design 2: disjoint islands. (A and B) The thin gray
line shows the steady-state fraction l(f) of cells in the HNN
compared to the total number of cells. The population as a
whole increases exponentially with growth rate gL 1 (gH �
gL)l(f) (Equation 4). For f > 1 almost all cells are in the
HNN; for f ? 1 the population spreads uniformly over the
graph, so the chance of being in one of the 12 high-fitness
states is simply 12/48. The thick blue line shows the steady-
state fraction of S-expressing cells within the HNN, compared
to all the cells within the HNN. For f > 1 cells preferentially
populate S-expressing genotypes, but at f ? 1 they spread
uniformly over the HNN. The dashed blue lines indicate what
happens when S expression influences fitness. The bottom
line shows the result of a 10% growth rate decrease, and
the top line shows the result of a 25% growth rate increase,
relative to the (gH � gL) baseline. These changes have very
little impact for large f. As f approaches zero, any growth
rate increase or decrease, respectively, causes the S-expressing
population to either dominate the population or completely
vanish.
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in vitro measurements suggest that when Hin–DNA
binding is in saturation (at a protein concentration
in excess of 10 nm), kf is on the order of 1 per hour
(Lim et al. 1992). The growth rate of the high-fitness
phenotypes (gH) will be on the order of 1–2 per hour,
while that of the low-fitness phenotypes (gL) will be
some fraction of this value. (We do not consider
exponentially diminishing populations with negative
growth rates here.) The term gH � gL will therefore
be on the order of #1 per hour. Taken together,
these estimates show that f ¼ kf/(gH � gL) can be
varied in the range 10�3–1, which brackets the useful
range of control.

DISCUSSION

By using DNA flips to drive genotypic interconver-
sions on neutral networks, we have shown it is possible to
generate, maintain, and regulate a phenotypically di-
verse population of microbes. A key feature of our
proposal is that phenotypic diversity can be regulated by
varying the rate of DNA flipping. This is important
because, in practice, we might not have much control
over the growth rates of the constituent phenotypes.
The mathematical basis of these results is extremely
general: the more asymmetric the genotype graph, the
easier it is to independently regulate different pheno-
types. Nevertheless, there are several issues that limit
their practical implementation. To maintain the mi-
crobes’ genomic integrity, we imagine that our con-
structs will be plasmid borne. Plasmids will be present in
multiple copies per cell, each possibly having a different
genotypic arrangement (although at low flipping rates,
genetic drift through random plasmid segregation will
lead to a single arrangement becoming fixed between
successive flipping events). We must also be wary of
undesirable outcomes such as interplasmid recombina-
tion and deletion of inter-hix regions. A more challeng-
ing issue is control of cell growth. We have assumed that
populations are exponentially growing, but this requires
a chemostat or batch-culture setup; if stationary-phase
effects are phenotype dependent, this will complicate
the final outcome. We have assumed that the number of
copies of crucial genes does not affect fitness, but it will
in practice. We must ensure that the growth rate
differences between high-fitness and low-fitness pheno-
types are much greater than the variation within each
group. Also, this growth advantage must be correctly
matched to the range of achievable DNA flipping rates,
requiring tight control over Hin recombinase expres-
sion. Even if we were able to overcome these various
practical hurdles, the extent of our control over multi-
phenotype populations would be limited. In our proof-
of-principle designs, the dynamic range over which
phenotypic fractions can be regulated is moderate.
This can be improved by using more DNA elements
and more ‘‘context-dependent’’ parts like split genes,

which can help generate observable phenotypic dis-
tinctions between genotypic equivalence classes. More
fundamentally, the fact that we have a single control
parameter—the flipping rate—constrains our ability to
independently regulate the proportion of several dif-
ferent phenotypes. To achieve more intricate regula-
tion of multiphenotype populations, we might consider
using two or more independently tunable DNA in-
version systems (e.g., Ham et al. 2008). This opens up a
range of interesting possibilities that can be explored
using the genotype graph framework presented here.

Far from being just another entry in the long list of
gene-regulatory mechanisms, DNA inversions add a
fundamentally new dimension to biological control.
Genetically specified systems have two levels of struc-
ture: gene expression drives a cell’s physical and
chemical program, mapping genotype to phenotype;
and DNA modifications alter that program, converting
one genotype to another. By building DNA flips into a
system’s basic architecture we can specify structure at
both levels: we can design individual genotypes, but also
define how different genotypes connect to one another.
A great variety of genotype graphs can be built using just
a handful of genes, and the range of options combina-
torially explodes as the number of DNA elements is
increased. Features like interphenotype feedback loops,
spatial variation, and differential control of flipping add
a rich layer of dynamic phenomena onto this large
canvas. Engineered microbial consortia, like their
natural counterparts, can exploit these mechanisms to
generate adaptive, nimble cell populations in which
heterogeneity is a virtue, bringing efficiencies in me-
tabolism and resilience against external shocks.

We are grateful to the Davidson-Missouri Western iGEM 2007 team,
whose project inspired us to investigate the engineering applications
of DNA flipping. We thank Eli Lebow for useful discussions about
graphs and symmetries.
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Figure S1. Distance-dependent flipping rates. Flipping rates are assumed to be

suppressed exponentially with the distance between the two hix sites involved:

!" 
=

 
! exp(-#["-1])

where ! is the nominal flipping rate, !" is the actual flipping rate, and " is the number of

intervening elements between hix sites. This form is chosen so the flipping rate between

neighboring hix sites is simply the nominal rate ! . The left panels (# = 0, ! is varied) are

identical to Figs. 3D,H. The middle panel (# is varied, ! = 0.1) shows the effect of tuning up

the suppression. The right panel (# = 1, ! is varied) shows the steady state genotype

fractions when suppression operates. We see that distance dependence does not change

the qualitative population dynamics (compare the right panels with Figs. 3D,H), except that

some previously equivalent genotypes can become inequivalent (middle panels, a single

point splits into two curves). (A) Design 1: the robust core. (B) Design 2: disjoint islands.
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FIGURE S1. –Distance-dependent flipping rates. Flipping rates are assumed to be suppressed exponentially with the distance 
between the two hix sites involved:  

φΔ = φ exp(-α[Δ-1]) 
 

where φ is the nominal flipping rate, φΔ is the actual flipping rate, and Δ is the number of intervening elements between hix sites. 
This form is chosen so the flipping rate between neighboring hix sites is simply the nominal rate φ. The left panels (α = 0, φ is 
varied) are identical to Figs. 3D,H. The middle panel (α is varied, φ = 0.1) shows the effect of tuning up the suppression. The 
right panel (α = 1, φ is varied) shows the steady state genotype fractions when suppression operates. We see that distance 
dependence does not change the qualitative population dynamics (compare the right panels with Figs. 3D,H), except that some 
previously equivalent genotypes can become inequivalent (middle panels, a single point splits into two curves). (A) Design 1: the 
robust core. (B) Design 2: disjoint islands.  

 


