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According to the authors, time-modified confounding occurs when the causal relation between a time-fixed or
time-varying confounder and the treatment or outcome changes over time. A key difference between previously
described time-varying confounding and the proposed time-modified confounding is that, in the former, the values
of the confounding variable change over time while, in the latter, the effects of the confounder change over time.
Using marginal structural models, the authors propose an approach to account for time-modified confounding when
the relation between the confounder and treatment is modified over time. An illustrative example and simulation
show that, when time-modified confounding is present, a marginal structural model with inverse probability-of-
treatment weights specified to account for time-modified confounding remains approximately unbiased with ap-
propriate confidence limit coverage, while models that do not account for time-modified confounding are biased.
Correct specification of the treatment model, including accounting for potential variation over time in confounding,
is an important assumption of marginal structural models. When the effect of confounders on either the treatment or
outcome changes over time, time-modified confounding should be considered.

bias (epidemiology); confounding factors (epidemiology); structural model

Confounding occurs when treatment and disease share a
common cause (1). Time-varying confounding occurs when
there is a time-varying cause of disease that brings about
changes in a time-varying treatment (2, 3). Time-varying
confounding affected by prior treatment occurs when sub-
sequent values of the time-varying confounder are caused
by prior treatment (4). Of course, the measured (time-fixed
or -varying) confounder may be a proxy for the underlying
causal confounder. Here, we consider ‘‘time-modified
confounding,’’ which occurs when there is a time-fixed or
time-varying cause of disease that also affects subsequent
treatment, but where the effect of this confounder on either
the treatment or outcome changes over time.

A key difference between time-varying confounding and
time-modified confounding is that, in the former, the values
of the confounding variable change over time while, in
the latter, the effects of the confounder change over time.
Further, time-modified confounding may occur with a time-
fixed or time-varying covariate, while time-varying
confounding occurs only with time-varying covariates.
Time-varying confounding and time-modified confounding
may therefore occur simultaneously in the case of a time-

varying covariate. Time-modified confounding is not to be
confused with effect measure modification, where the effect
of treatment on outcome differs by levels of an effect mod-
ifier (even if the effect modifier is also a time-varying con-
founder (5)). The term ‘‘modified’’ was chosen because the
effect of the confounder on either the treatment or outcome
is modified over time.

Time-varying effects of treatment have been considered
in the epidemiologic and statistical literature (6–8); indeed,
an assessment (9) of the proportional hazards assumption
(10) is an assessment of a departure from a constant effect of
exposure on outcome. Our purpose here is to define and
illustrate time-modified confounding. Studying the effect
of breastfeeding on infants’ weight gain, we provide an
example and evaluate the impact of time-modified con-
founding on the bias and variability of estimates of causal
effect, using simulation.

CAUSAL EFFECTS

We begin by defining causal effects using potential out-
comes (11, 12). For an outcome Y, we denote the potential
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outcome Yx as the outcome for a given treatment level x;
there are as many potential outcomes as there are levels of
treatment (note that we use ‘‘treatment’’ throughout to
refer to an exposure that may or may not be an assigned
treatment). Specifically, the average causal effect for treat-
ment level x, compared with level x# 6¼ x, is defined as
EðYxÞ � EðYx#Þ, where the expectations are taken over
the same subjects under different levels of treatment. In-
stead of a difference, one could make the contrast a ratio or
an odds ratio; we do the latter in the example below. We
could also define an average covariate-conditional causal
effect as EðYxj Z ¼ zÞ � EðYx#j Z ¼ zÞ, the causal effect at
a specific level z of covariate Z. The average covariate-
conditional causal effect does not necessarily equal the
average causal effect for certain contrasts (in particular,
the odds ratio), even in the absence of effect modification
by Z (13, 14).

CAUSAL DIAGRAMS

Pearl (15) formalized causal diagrams as directed acyclic
graphs, giving investigators powerful tools for bias assess-
ment, providing the rules of causal diagrams are followed.
A set of these rules is succinctly given in the Appendix of the
work by Hernán et al. (16). Causal diagrams link variables
by single-headed (i.e., directed) arrows that represent direct
causal effects. The absence of an arrow between 2 variables,
on the other hand, is a strong claim of no direct causal effect
of the former variable on the latter. To represent chains of
causation in time, Pearl’s original formalization of causal
diagrams does not allow a directed path (i.e., a trail of ar-
rows) to point back to a prior variable (i.e., the diagrams are
acyclic). For a diagram to represent causal effects as defined
in the prior section, all common causes of any pair of var-
iables included on the graph must also be included on the
graph.

CONFOUNDING

Confounding refers to settings in which treatment and
outcome share a common cause, which may be represented
by a single variable or a combination of variables. Figure 1A
describes a simple case of confounding. Let X(0) represent
treatment at time 0 (using values in parentheses to represent
time ordering), Y(2) outcome at time 2, and Z(0) a confound-
ing variable occurring temporally prior to X(0) that has a
direct causal effect on both X(0) and Y(2); note that, in this
figure, X(0) has no causal effect on Y(2). Robins (17) and
Hernán et al. (16) demonstrated the need to consider
substantive knowledge in decisions on adjustment for con-
founders. In Figure 1A, control for Z(0) through regression,
stratification, or restriction provides a consistent estimate of
the Z(0)-conditional causal effect of treatment X(0) on out-
come Y(2) (an estimator is consistent if it converges in prob-
ability to the true value as the sample size tends to infinity).
In the following section, we consider a series of extensions
of the confounding definition to settings involving time-
varying variables and effects.

Time-modified confounding

Figure 1B extends the setting in Figure 1A to the case
where treatment X now varies over time, but Z(0) confounds
only the X(0)–Y(2) relation. This is a simple case of time-
modified confounding. Control for Z(0) will give a consistent
estimate of the Z(0)-conditional causal effect of X(0) on
Y(2), while the effect of X(1) on Y(2) can be estimated
consistently from the crude (unadjusted) model.

Time-varying confounding

Figure 1C describes a setting with time-varying (or time-
dependent) confounding. X(0) and X(1) represent treatment
at times 0 and 1, and Z(0) and Z(1) represent (possibly a set
of) time-varying confounding variables measured tempo-
rally prior to times t ¼ 0 and t ¼ 1, respectively. In the
following, we consider only 2 time points; the argument
generalizes to more time points. At each time point, the
confounders have a direct causal effect on treatment. As
in Figure 1, A and B, Figure 1C is constructed such that
there is no direct causal effect of X(0) or X(1) on Y(2), the
outcome measured at time 2. To simplify exposition, we
measure outcome only at time 2; however, our claims apply
equally if the outcome were measured at each time point. By
using Figure 1C to estimate the total (i.e., direct and indi-
rect) causal effect of X(0) on Y(2), adjustment for Z(0) is
necessary. To estimate the total causal effect of X(1) on Y(2),
we must adjust for Z(1). In the setting described by Figure
1C, standard statistical methods (e.g., Cox regression with
time-varying treatment and covariates) can consistently es-
timate, as previously defined, the Z(t)-conditional causal
effect of treatment X(t), t ¼ 0 or 1, on outcome Y(2) (4).

Figure 1. Causal diagrams representing confounding (A), time-
modified confounding by a time-fixed covariate (B), time-varying con-
founding (C), time-varying confounding affected by prior treatment
(D), and time-modified confounding (E and F).
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Figure 1D describes an extension of Figure 1C, where
now the time-varying confounder is affected by prior treat-
ment. In this case, adjustment for Z(1) is necessary to esti-
mate the effect of X(1) but blocks a causal effect of X(0). In
such settings, Robins et al. (18) showed that estimation of
the total effect of X(t) was biased when standard statistical
methods were used. Robins et al. (4) have proposed a series
of methods to address this problem, including marginal
structural models, which will be described below after we
further define time-modified confounding.

Time-modified confounding by time-varying factors

Figure 1E describes a further extension of Figure 1C,
which illustrates time-modified confounding. In this case,
the effect of the confounding variables Z(t) on treatment X(t)
differs over time t; in the case of Figure 1E, there is a direct
causal effect of Z(0) on X(0), but there is no direct causal
effect of Z(1) on X(1). Figure 1F describes a companion
scenario of time-modified confounding, where Z(0) has no
direct causal effect on X(0), although Z(1) does have a direct
causal effect on X(1). Two other companion scenarios of
time-modified confounding could be drawn, alternating ab-
sence and presence of the effects of Z(0) and Z(1) on Y(2),
respectively.

Figure 1E could represent an observational study of
a time-varying treatment X(t), such as use of a pharmaco-
logic therapy, where Z(0) and Z(1) represent an indication
for early treatment, such as access to care. In this setting,
having the indication may be positively associated with use
of a novel pharmacologic agent (at time 0), but as inequities
in use become apparent and corrected, access to care may no
longer be associated with use of the agent at time 1.

Figure 1F could represent a randomized trial of a treat-
ment taken over time, in which X(t) represents treatment
actually received at time t (i.e., irrespective of randomiza-
tion). In this setting, we assume that there is no effect of Z(0)
on X(0) by design, because of randomization and full initial
compliance. However, it is plausible that compliance behav-
ior changes over time, and that the dependence of compli-
ance on covariates changes over time as well, so that Z(1)
has a direct causal effect on X(1), or that Z(1) and X(1) share
a common cause.

As an aside, in both of these simple cases (i.e., Figure 1, E
and F), the causal effect of X(t) on Y(2) could be consistently
estimated by standard methods (such as linear or logistic
regression). For example, in Figure 1E, adjusting for Z(0)
is sufficient to control confounding and to provide an un-
biased estimate of the causal effect. In Figure 1F, the simple
cross-tabulation of X(0) and Y(2) would provide an unbiased
estimate of the causal effect of X(t) on Y(2). However, these
approaches are based on the knowledge that the hypothe-
sized diagram is correct. In practice, one may be unlikely to
estimate the effect of X(t) without using all measured expo-
sure and confounding information. Such adjustment may
introduce bias. Moreover, as the dimension of the problem
grows with additional time points, summaries of exposures
and confounders (such as cumulative averages (19)) are
needed and often preclude such simple solutions. In prac-
tice, these simple solutions would fail if there were a causal

effect of Z(1) on X(1) (4). Marginal structural models can
provide consistent estimates in either case.

Time-modified confounding is not restricted to settings
where an effect is present at one time and absent at another
time. Indeed, such examples will be rare relative to exam-
ples where the size or the direction of the effect changes
over time. Causal diagrams are better suited to illustrate all-
or-none effects, because arrows encode the presence or
absence of a direct causal effect rather than the size or di-
rection of the effect. One could use a signed causal diagram
(20, 21), under certain assumptions, to describe settings
where the effect direction changes over time.

In Figure 1, D–F, Z(1) is a confounding variable affected
by previous treatment X(0). As previously noted, in such
settings marginal structural models can be used to consis-
tently estimate the total causal effect of X(t) on Y(2). In the
next section, we describe how to use marginal structural
models to account for time-modified confounding in the
presence of time-varying confounding.

MARGINAL STRUCTURAL MODELS

Marginal structural models (4, 22) are models for the
marginal expectation of a potential outcome as a function
of a specified treatment regimen. For example, if Y is an
outcome and X(t) is a time-varying treatment, then a mar-
ginal structural model is specified as

E½Y�x� ¼ f ð�xÞ;

where �x refers to the history of treatment X(t), and f(.) is
a defined function, typically a (perhaps transformed) linear
combination of components of x. To estimate the parameters
of a marginal structural model, we compute stabilized
weights (22). We first fit a model for the probability of re-
ceiving treatment x and then weight individuals by the in-
verse probability of receiving the observed treatment given
the measured treatment and confounder histories. These
weights are stabilized to improve efficiency by a function
not including the variables for which one wishes the weights
to remove confounding. Specifically, for a categorical expo-
sure, the weights are defined as follows:

WiðtÞ¼
Qt

s¼0 P
�
XiðsÞ¼ xiðsÞ

�
=P

�
XiðsÞ

¼xiðsÞj �Xiðs� 1Þ; �ZiðsÞ
�
;

where �XiðsÞ represents treatment history from baseline to
time s. These weights can be extended to continuous treat-
ments by replacing the probability mass functions with the
corresponding densities (4). These inverse probability-of-
treatment weights can be multiplied by inverse probability-
of-censoring weights when censoring is informative by
measured variables (22); we do not consider censoring here.
An unadjusted model for the outcome as a function of treat-
ment is then fit to the weighted sample. If the functional form
of the treatment model is correctly specified and the other
assumptions of the marginal structural model (i.e.,
consistency (23, 24), positivity (25), exchangeability (26))
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hold, then the estimate of the marginal effect of treatment has
a causal interpretation.

A critical step in fitting a marginal structural model is the
development of a model for the probability of treatment.
When treatment is binary and time varying, logistic regres-
sion models for each time point are typically pooled to-
gether in a single model fit (27) for the probability of
treatment given the history of the treatment and confound-
ers. The coefficients in this pooled logistic model represent
the effect of confounders on treatment conditional on past
treatment and averaged over time points. In Figure 1, C and
D, for example, assuming that the association between con-
founder Z(t) and treatment X(t) is constant over time, then
the single coefficient from the pooled logistic model will
accurately portray this time-stable association. However, in
Figure 1, E and F, where this association varies over time,
the single coefficient for Z(t) in the pooled logistic model
will represent a weighted average of a null association (of
Z(0) on X(0)) and a nonnull association (of Z(1) on X(1))
and, hence, fail to appropriately account for time-varying
confounding.

A simple method for correcting this potential residual
confounding bias is to fit the logistic model for treatment
separately at each time point, rather than pooling across
time. A cost of this correction is a loss in efficiency that
will appear in the form of increased variability in the esti-
mated weights. In real data settings (i.e., finite samples),
a compromise must be sought between control of confound-
ing bias and loss of precision along the lines previously
discussed (25, 28). We note that marginal structural models
(29) require that the model for the weights be correctly
specified; however, to our knowledge, little attention has
been paid to the issue of time-modified confounding in
specifying models for the weights.

EXAMPLE

Moodie et al. (30) considered the causal effect of breast-
feeding on infant weight gain in a cluster-randomized trial
of a breastfeeding promotion intervention (31). Maternity
hospitals and their affiliated polyclinics were randomized to
a breastfeeding promotion intervention or to standard care.
The data include 17,046 mother-infant pairs from 31 sites,
all of whom started breastfeeding. Breastfeeding status was

recorded at 1, 2, 3, 6, 9, and 12 months of life, with weight at
12 months as the outcome.

Here, we consider a marginal structural linear model for
infant weight at 12 months, as a function of breastfeeding
regimen, with regimens of the form ‘‘breastfeed until month
j and then stop,’’ with j¼ 1, 2, 3, 6, 9, 12. To fit the marginal
structural model, we computed inverse probability-of-
continued-breastfeeding weights at each time point. We gen-
erated stabilized inverse probability weights using 1) pooled
weighting, such that all time points were treated in the same
model, and 2) separate models for the inverse probability
weights at each time point. Table 1 presents selected odds
ratios from the probability-of-continued-breastfeeding mod-
els under the 2 specifications. In the pooled model, the odds
ratio for past maternal smoking is 0.65, while in the separate
models the odds ratio is 0.51 at 1 month and 1.03 at 12
months, indicating substantial time-modified confounding.
The corresponding estimated causal effects of breastfeeding
to 12 months (relative to early weaning) are 0.10 kg (95%
confidence limits: �0.01, 0.22) in the standard marginal
structural model and �0.09 kg (95% confidence limits:
�0.18, 0.01) in the marginal structural model allowing for
time-modified confounding. The reversal of effect is some-
what surprising; however, the large differences in the proba-
bility-of-treatment models for the 2 marginal structural
models (and the probable misspecification of the pooled
model) likely account for this difference.

SIMULATION STUDY

We now consider a simulation study with time-modified
confounding. For illustrative purposes, we consider simple
settings, reflecting some diagrams in Figure 1. Consider
a study of the proportion of patients with hypercholesterol-
emia whose cholesterol levels have not changed after
8 months of treatment with a novel pharmacologic agent
versus a standard agent. We assume that the study is con-
ducted within levels of all major time-fixed predictors of
treatment failure, so that there is no unmeasured confound-
ing. We considered 3 scenarios, corresponding to Figure 1,
C–E. In all 3 cases, at study entry (t ¼ 0), patients with an
indicator of poor liver function (e.g., alanine transaminase,
>32 IU/L for women or >50 IU/L for men) were placed on
the novel therapy at 4 times the odds of being placed on

Table 1. Odds Ratios for Continued Breastfeeding in the First Year of Lifea

Variable
Odds Ratio for Continued Breastfeeding

1 Month 2 Months 3 Months 6 Months 9 Months 12 Months Pooled

Intervention 2.09 1.49 1.47 1.42 1.34 1.25 1.47

Past smoking 0.51 0.58 0.84 0.72 0.91 1.03 0.65

Maternal age, years 1.12 1.07 1.08 1.04 1.09 1.06 1.07

Maternal age2, years2 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Child’s weight, kg 3.61 2.04 4.04 3.01 1.06 1.23 0.52

Child’s weight2, kg2 0.84 0.97 0.91 0.93 1.00 0.99 1.03

a Models are adjusted for hospital region, maternal education, current drinking and smoking, history of atopy and

breastfeeding, child’s sex, and time-varying health status.
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a standard therapy. Having poor liver function was a strong
predictor of treatment failure (i.e., the odds ratios for
Z(0) ¼ 6 and for Z(1) given Z(0) ¼ 2), irrespective of
which treatment a patient received. In scenario 1, treatment
has no effect on either liver function at 4 months or out-
come. Scenario 2 modifies the first scenario by the addition
of a causal effect of therapy on liver function at 4 months.
Finally, scenario 3 is a modification of scenario 2, in which
we remove the direct causal effect between liver function
at 4 months and treatment just after 4 months. For each
scenario, 5,000 simulated data sets of 600 subjects were
generated. Details of the data structure are given in the
Appendix.

Table 2 summarizes results from a series of analyses for
each scenario. We present the geometric mean odds ratio,
the estimated 95% confidence limit coverage probability,
and the standard error of the log odds ratio for each analysis
for 4 models. First, we present results from an unadjusted
logistic regression model where treatment failure is the out-
come and the sole regressor is the cumulative average treat-
ment, defined simply as [X(0)þ X(1)]/2. Second, we present
results from a Z(t)-adjusted logistic regression model, where
treatment failure is again the outcome and the regressors are
the cumulative average treatment, along with Z(0) and Z(1).
Third, we present results from a standard marginal struc-
tural logistic regression model, where treatment failure is

again the outcome and the sole regressor is the cumulative
average treatment, but the patient contributions are
weighted by the inverse probability of treatment, pooled
over times 0 and 1. Fourth and last, we present results from
a marginal structural logistic regression model, where treat-
ment failure is again the outcome and the sole regressor is
again the cumulative average treatment; however, now the
patients’ contributions are weighted by the inverse proba-
bility of treatment, which is stratified by time.

In scenario 1 (Figure 1C), there is no direct or indirect
causal effect of treatment X(t) on outcome Y(2). On the basis
of the theory of causal diagrams (15), we expect the crude
analyses to be biased and the adjusted and both marginal
structural model analyses to be unbiased, with the adjusted
analysis being most efficient. As seen in Table 2, the crude
analysis is biased away from the null with a geometric mean
odds ratio of 2.07. The adjusted, standard, and proposed
marginal structural models were each approximately unbi-
ased, with geometric mean odds ratios of 1.00, 1.01, and
1.01 and 95% confidence limit coverages of 96%, 95%, and
95%, respectively. Relative to the adjusted analysis, the ef-
ficiencies of the standard and proposed marginal structural
models were 1.05 and 1.06, respectively.

In scenario 2 (Figure 1D), there is an indirect causal effect
of treatment X(0) on outcome Y(2) mediated by the time-
varying confounder Z(1), which is expected to yield an odds

Table 2. Odds Ratios, 95% Confidence Limit Coverage, and Simulation Standard Errors for

Cumulative Average Treatment With a Novel (Versus Standard) Cholesterol Therapy and

8-Month Risk of Treatment Failure for Unadjusted, Adjusted, Time-pooled-weighted, and Time-

stratified-weighted Marginal Structural Logistic Regression Models

Scenario and Method
Odds
Ratioa

95% Confidence
Limit Coverage, %

Standard
Errorb

Scenario 1 (Figure 1C), causal odds ratio ¼ 1.0c

Crude 2.07 N/Ad 0.381

Adjusted 1.00 95.6 0.416

Standard marginal structural model 1.01 94.7 0.427

Proposed marginal structural model 1.01 94.7 0.427

Scenario 2 (Figure 1D), causal odds ratio ¼ 1.35

Crude 1.95 N/A 0.365

Adjusted 1.01 N/A 0.453

Standard marginal structural model 1.39 94.7 0.400

Proposed marginal structural model 1.39 94.7 0.399

Scenario 3 (Figure 1E), causal odds ratio ¼ 1.35

Crude 2.23 N/A 0.384

Adjusted 1.00 N/A 0.437

Standard marginal structural model 1.61 N/A 0.392

Proposed marginal structural model 1.37 94.8 0.407

Abbreviation: N/A, not applicable.
a Geometric mean of 5,000 estimated odds ratios.
b Simulation standard error for the log odds ratio (i.e., standard deviation of 5,000 estimated log

odds ratios).
c In scenario 1, where the true effect is null, the statistical power column gives the type 1 error.
d Confidence limit coverage and statistical power were provided for only approximately un-

biased estimators.
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ratio of 1.35. Again, on the basis of causal diagram theory,
we expect both the crude and adjusted analyses to be biased
and both marginal structural model analyses to be unbiased,
with the standard marginal structural model being the more
efficient of the 2. As seen in Table 2, the crude and adjusted
analyses are biased away and toward the null, with geomet-
ric mean odds ratios of 1.95 and 1.01, respectively. The
standard and proposed marginal structural models were each
biased slightly away from the null, with geometric mean
odds ratios of 1.39 and 1.39 and 95% confidence limit cover-
ages of 95% and 95%, respectively. In both cases, the lower
bound of a 95% simulation interval was 1.37. The efficiency
of the proposed marginal structural models relative to the
standard marginal structural model was 1.00.

In scenario 3 (Figure 1E), there is again an indirect causal
effect of X(0) on Y(2) mediated by Z(1), which is expected to
yield an odds ratio of 1.35. On the basis of theory, we expect
the crude, adjusted, and standard marginal structural model
analyses to be biased and the proposed marginal structural
model analysis to be unbiased. As seen in Table 2, the crude,
adjusted, and standard marginal structural model analyses
are biased with geometric mean odds ratios of 2.23, 1.00,
and 1.61, respectively. The proposed marginal structural
model was again biased slightly away from the null, with
a geometric mean odds ratio of 1.37 and 95% confidence
limit coverage of 95%. The lower bound of a 95% simula-
tion interval was 1.36.

We expected to observe a loss of efficiency when estimat-
ing the proposed, as compared with the standard, marginal
structural model in scenario 2, when the standard marginal
structural model was correctly specified. In Figure 2, we plot
the inverse probability weights from the standard marginal
structural model by the corresponding weights from the pro-
posed marginal structural model for 2,000 samples of size
250 from scenario 2. We chose a sample size of 250 to
exaggerate the efficiency loss in a small-sample setting.
Three groupings of points are apparent in the plot. Individ-
uals whose treatment was always as predicted by the treat-
ment model fall in the lower-left quadrant along the
45-degree reference line. Individuals whose treatment was
always the opposite of that predicted by the treatment model
fall into the upper-right quadrant along the 45 degree line.
Individuals whose treatment was sometimes predicted cor-
rectly fall into a cluster in the center of the plot; the higher
variability of the proposed weights (the wider spread along
the X-axis than the Y-axis) is evidence of the loss of effi-
ciency that occurs when the stratified weights are used when
not needed.

DISCUSSION

Time-modified confounding occurs when there is a time-
fixed or time-varying cause of disease that also influences
subsequent treatment, and when the effect of this con-
founder on either the treatment or outcome changes over
time. Time-modified confounding differs from time-varying
confounding because, in the former, the magnitude or di-
rection of the effect, rather than the value of the variables,
changes over time. Time-modified confounding differs from

effect measure modification, because we refer to the mag-
nitude of the effect of the confounder on the treatment (or
outcome) changing over time, whereas the latter refers to the
effect of the treatment on outcome differing by levels of the
modifier. It is possible to conceive of a time-modified con-
founder that is also an effect modifier, but that is beyond the
scope of this paper.

Time-modified confounding may often be present in epi-
demiologic studies of time-varying treatments. For exam-
ple, Figure 1E with one modification (the arrow from X(0) to
Z(1) would be absent) could represent an observational
study of a time-varying treatment X(t), such as use of a phar-
macologic therapy with a time-fixed confounder, for exam-
ple, sex (such that Z(0) and Z(1) will be the same value for
each participant, Z(t) ¼ Z). In this setting, being male may
be positively associated with use of a novel pharmacologic
agent (at time 0), but as inequities in use become apparent
and corrected, sex may no longer be associated with use of
the agent at time 1.

Even in the absence of time-modified confounding and
assuming that the number of time points is not excessive,
there may be little loss in using the stratified weights (i.e., in
assuming that time-modified confounding is present). In
Figure 2, with the exception of individuals whose treatment
is always as predicted by the model, the pooled weights are
slightly smaller than the stratified weights, as evidenced by
a slightly smaller (but close to 1.0) mean weight (not
shown). The slightly smaller, but less variable, standard
weights appear to trade a small amount of bias for improved
efficiency. More work is needed to explore the finite-sample
properties of marginal structural models.

Figure 2. Scatterplot of standard (pooled) inverse probability
weights against proposed (time-stratified) inverse probability weights,
for example, scenario 2 (Figure 1C).
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We have provided an example indicating the potential for
time-modified confounding to affect estimates of causal ef-
fects and have emphasized the need to correctly specify the
treatment model when fitting marginal structural models.
Our example and simulations illustrate the magnitude of
bias possible in typical epidemiologic settings, but they
are not exhaustive. More simulations and worked examples
are needed. In conclusion, when the effect of a time-fixed or
time-varying confounder on either treatment or outcome
changes over time, attention must be given to the possibility
of time-modified confounding.
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APPENDIX

Details of the Simulation Study

Example data were generated following a Markovian de-
composition of Figure 1, C–E, respectively. Five thousand
samples each of 600 patients per sample were generated.
First, Z(0) was taken as a Bernoulli random variable,
with probability of 0.50. Second, X(0) was taken as a
Bernoulli random variable with probability of 1=ð1þ
expf�½�logð2Þ þ logð4Þ3zð0Þ�gÞ, such that the marginal
probability was approximately 0.50. Third, Z(1) was taken

as a Bernoulli random variable with probability of
1=ð1þ expf�½�k0 þ k1xð0Þ�gÞ, where in scenario 1 k0 ¼
k1 ¼ log(1) and in scenarios 2 and 3 k0 ¼ log(4) and k1 ¼
log(8), such that the marginal probability of Z(1) was approx-
imately 0.50. Fourth, X(1) was taken as a Bernoulli random
variable with probability of 1=ð1þ expf�½�g0 þ g1xð0Þ�gÞ,
where in scenarios 1 and 2 g0 ¼ log(2) and g1 ¼ log(4) and
in scenario 3 g0 ¼ g1 ¼ log(1), such that the marginal prob-
ability of Z(1) was approximately 0.50. Fifth and last, Y(2)
was taken as a Bernoulli random variable with probability of
1=ð1þ expf�½�logð40Þ þ logð6Þ3zð0Þ þ logð2Þ3zð1Þ�gÞ,
such that the marginal probability was approximately 0.10.

In the generated data, treatment X(t) has no direct causal
effects on Y(2), as in Figure 1, C–E, but in scenarios 2 and 3
(Figure 1, D and E), X(0) does have an indirect causal
effect on Y(2) mediated through covariate Z(1). In scenario
1, there is no total (direct and indirect) causal effect of X(t)
on Y(2). In scenarios 2 and 3, the total causal effect of X(t)
on Y(2) is therefore equal to the direct causal effect of
X(0) on Y(2). For reference, in scenarios 2 and 3, we obtain
the total causal effect of X(t) on Y(2) as’ logð0:3Þby use of
the Kullback-Leibler Information Criterion coefficient
(32). Generally, this coefficient is the maximum likelihood
estimate for a specified model, such that it is the closest
possible estimate to the true maximum likelihood estimate
(33). Here, the Kullback-Leibler Information Criterion co-
efficient estimates the population-average cause effect.
The Kullback-Leibler Information Criterion parameter
was obtained from a logistic model for Y(2) regressed on
X(0) with inverse probability-of-X(0)-treatment weights
conditional only on Z(0), with a sample size of 1 million
patients.
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