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Influenza-like illness data are collected via an Influenza Sentinel Provider Surveillance Network at the state level.
Because participation is voluntary, locations of the sentinel providers may not reflect optimal geographic place-
ment. The purpose of this study was to determine the “best” locations for sentinel providers in lowa by using
a maximal coverage model (MCM) and to compare the population coverage obtained with that of the current
sentinel network. The authors used an MCM to maximize the lowa population located within 20 miles (32.2 km)
of 1-143 candidate sites and calculated the coverage provided by each additional site. The first MCM location
covered 15% of the population; adding a second increased coverage to 25%. Additional locations provided more
coverage but with diminishing marginal returns. In contrast, the existing 22 lowa sentinel locations covered 56% of
the population, the same coverage achieved with just 10 MCM sites. Using 22 MCM sites covered more than 75%
of the population, an improvement over the current site placement, adding nearly 600,000 lowa residents. Given
scarce public health resources, MCMs can help surveillance efforts by prioritizing recruitment of sentinel locations.

geographic locations; influenza, human; models, statistical; population surveillance; sentinel surveillance

Abbreviations: IDPH, lowa Department of Public Health; ZCTA, zip code tabulation area.

Controlling seasonal influenza is a major public health
priority. In the United States alone, influenza causes an es-
timated 36,000 deaths annually (1). Influenza is not a nation-
ally notifiable disease in the United States (2), but an
influenza surveillance program does exist (3); one of its
components includes tracking influenza-like illness. One
major goal of influenza-like illness surveillance is to detect
changes in influenza activity. Earlier detection, for example,
can improve both clinical and public health responses.

Every week during influenza season, members of the
Influenza Sentinel Provider Surveillance Network report
the total number of patients they have seen, along with the
number with influenza-like illnesses (i.e., a temperature of
37.8°C or higher and a cough and/or a sore throat without
any other apparent cause). Members of this network are
recruited from a pool of health care providers who routinely
care for patients with influenza (e.g., pediatricians, inter-
nists, family practice physicians). Network members repre-
sent a conglomerate of individual health care providers,

group practices, and hospital-based clinics. As voluntary
participants, they are not compensated for their surveillance
efforts.

In Iowa, recruitment and primary influenza-like illness
data are coordinated at the state level. Because participation
is voluntary, the surveillance sites may underrepresent or
overrepresent different geographic regions (e.g., rural pop-
ulations). As a result, the current locations of sentinel pro-
viders in Iowa and other US states may not reflect the
optimal geographic placement of surveillance sites, leading
to biased or simply incomplete information about influenza
timing and activity.

Optimal location placement is a common problem en-
countered by commercial organizations. Such problems
are usually called facility location problems; examples
include the placement of new retail stores, bank branches,
and warehouses (4, 5). Typically, the organization is seeking
to maximize revenue or some other prespecified utility func-
tion while minimizing associated costs. There are a number
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of variations of this general problem. For example, in some
formulations, a set of facilities already exists, and the goal is
to determine the best location for additional facilities ac-
cording to the prespecified metric. For instance, how does
a firm situate an additional warehouse to minimize overall
transportation and distribution costs? Another formulation,
more pertinent to disease surveillance, maximizes the pop-
ulation within a certain fixed distance given a set number
of facilities. Solutions to this particular problem variant,
referred to as maximal coverage models, have been used
by government agencies to develop infrastructure (e.g.,
systems for communication or for purification of drinking
water) and even to determine the best location for new
health care facilities (6). However, to our knowledge, this
approach has not been used to assist with infectious disease
surveillance.

In theory, increased influenza-like illness surveillance
coverage will lead to more accurate and perhaps earlier de-
tection of influenza activity. Thus, the overarching goal of
this study was to use location-allocation modeling tech-
niques to find better locations for influenza sentinel pro-
viders in the state of Iowa. In this paper, we explore 2
alternative formulations of the problem: a “de novo™ for-
mulation (V locations are selected starting from a blank slate)
and an incremental formulation (N additional locations are
selected to best complement M preexisting locations). Solu-
tions to these problems yield near-optimal sets of influenza
sentinel providers in Iowa and can also help improve other
statewide surveillance networks (e.g., hospital- or laboratory-
based groups).

MATERIALS AND METHODS
Data

The population in each zip code tabulation area (ZCTA)
in Iowa was obtained from the 2000 US Census. ZCTAs are
defined by the Census Bureau and correspond roughly to
postal zip codes, but they have a more regular geographic
shape; usually, but not always, zip codes map directly onto
like-numbered ZCTAs. Moreover, zip codes may change
from year to year, but ZCTAs do not. For this study, we
assume that the entire population of a given ZCTA is con-
centrated at its geographic center.

We created a set of candidate sentinel sites from the phy-
sician licensure records of the Iowa Department of Public
Health (IDPH) combined with the existing sentinel sites.
This set was compiled by the IDPH epidemiologist respon-
sible for coordinating influenza surveillance, and it included
the addresses of all emergency medicine, family practice,
general medicine, internal medicine, and pediatrics
locations.

We used each of the 143 possible sites within unique zip
codes as possible sentinel provider locations. Note that
the 26 original sentinel locations in the 2006-2007 IDPH-
influenza-like-illness network correspond to 22 unique sur-
veillance locations (i.e., zip codes). Four duplicate zip codes
were excluded from our analysis. (Because the current sys-
tem is entirely voluntary, in some cases more than one sen-
tinel site in the same location opted to participate.) Each of
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the resulting 143 candidate sentinel sites was then assigned
to ZCTAs by using the latitude and longitude coordinates of
the site’s zip code.

Algorithm

We used a greedy algorithm to maximize the number of
people in the state who are within a fixed prespecified dis-
tance, S, of at least one of the N surveillance sites (this
problem is entirely equivalent to minimizing the population
that is further than S from any of the N surveillance sites,
making for a more straightforward mathematical formula-
tion). The algorithm was proposed by Church and ReVelle
(7) as a way to solve this class of maximal coverage location
problems.

By definition, using all candidate surveillance sites will guar-
antee maximal coverage. However, given resource constraints,
2 more interesting questions are 1) which surveillance-site
subset of fixed size provides maximum coverage? and 2) what
is the smallest set of sites that cover a fixed percentage of the
total population? Both of these problems have explicit math-
ematical formulations; for example, the second problem can be
expressed as follows:

N
Minimize : S
i=1

M

N
Subject to: ij (l - Siyij> <7
=1 =l

where N is the number of candidate surveillance sites, M is
the number of ZCTAs that cover lowa, w; is the weight of
ZCTA j (e.g., number of people in that ZCTA), s; is the
selection variable (with a value of 1 if site i is selected
and O otherwise), and y; is the coverage variable (with
a value of 1 if ZCTA j is serviced by candidate surveillance
site i and O otherwise). The constraint sums the w; values of
every ZCTA left uncovered by all of the selected sites; thus,
the parameter T is the maximum number of people we are
willing to leave uncovered. If 1 is set to 0, then the solution
to this optimization problem would select as many candidate
surveillance sites as required to ensure that every person is
covered by one of the surveillance locations. When appropri-
ate input values are specified for N, M, T, w; (forj=1... M),
and y; (fori=1...N;j=1... M), an algorithmic solution
to the problem would find values for each s;, indicating by
those values which sentinel surveillance sites selected from
the candidate sites constitute an optimal configuration.

To find the best sentinel locations, we first constructed
a matrix of inter-ZCTA distances using the Euclidean dis-
tance between ZCTA centroids. Next, we repeatedly se-
lected additional surveillance sites, each time electing to
add the candidate site that maximally increases population
coverage within distance S. The algorithm stops when either
1) we have selected the prespecified number of sentinel
locations, or 2) we have exceeded the prespecified coverage
threshold, given in terms of a percentage of the total pop-
ulation. Note that the same algorithm can be used to solve
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Figure 1. A) The population distribution for the state of lowa. B) The 143 different possible locations for influenza-like iliness sentinel sites. C) The
22 influenza-like illness sentinel locations (based on the 143 sentinel locations) chosen by the authors’ maximal coverage model. The numbers
represent the order in which the sites were chosen by the model. D) The 22 lowa Department of Public Health influenza-like illness sentinel
locations for the 2006—2007 influenza season. The numbers represent the order in which the existing sites should have been chosen to maximize

coverage.

the incremental version of the problem simply by presetting
the selected sites to the original 22 IDPH surveillance sites
and then using the greedy algorithm to select additional sites
up to the stopping criterion. This algorithm was imple-
mented in R, a statistical programming language (http://
www.r-project.org/), which was used to produce all of the
results given in this paper.

RESULTS

Figure 1A is a graphic representation of the population
distribution in the state of Iowa (total: 2,926,324 people).
Figure 1B shows the set of 143 candidate sites, including the
22 existing locations and the possible new sites.

Figure 1C shows the results obtained by our algorithm
when 22 sentinel sites are selected based on a distance S =
20 miles (32.2 km) from 143 sentinel locations (the num-
bered labels correspond to the selection order). Figure 1D,
shown for comparison, gives the locations of the 22 existing
2006-2007 IDPH sentinel surveillance sites. The first site
selected by our algorithm covers 15% of the Iowa popula-
tion; adding the second site brings this number to 25%.
Additional locations provide more coverage, but with di-
minishing marginal returns, as shown in Figure 2.

The upper curve of Figure 2 shows the coverage obtained
when the algorithm is allowed to run to completion, that is,

when all possible sites are added even though they yield no
increase in coverage. For the 143 candidate sites used, the
first 52 selected yield a coverage of 95%; additional sites did
not significantly improve coverage. Included for compari-
son (the lower curve) are the results obtained for the incre-
mental problem, where the 22 20062007 IDPH sites are
included as a starting set, and additional sites are then se-
lected until no additional coverage is possible. The 22 2006—
2007 IDPH sites cover 56% of the population, whereas the
first 22 sites selected de novo achieve 75% coverage. Note
that the first 10 sites selected de novo achieve the same
population coverage as all 22 of the 2006-2007 IDPH
locations.

The results described above consider the state of Iowa as
a closed system. However, people living or working in
neighboring states create an “‘edge effect”” on the Iowa bor-
der, resulting in underestimated population coverage at the
border. Thus, to account for the effect of the population
living close to the borders of lowa, we used the maximal
coverage algorithm described above to find sentinel sites
while considering all of the population within 20 miles of
the 143 candidate sentinel surveillance sites (ignoring state
borders, a total population of 3,911,774).

Figure 3 shows the results obtained by our algorithm
when 22 sentinel sites are selected based on a distance S =
20 miles for the extended geographic model. The num-
bered labels correspond to the selection order. The first site
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Figure 2. Population coverage (proportion) as a function of additional hospital surveillance units for a fixed, prespecified distance of 20 miles
(32.2 km). The upper, solid curve represents the proportion of population coverage as each new surveillance site is added if the sites are selected
de novo; the lower, dashed curve represents the proportion of population coverage when new surveillance sites are added incrementally to the 22
original 2006—2007 lowa Department of Public Health—influenza-like illness surveillance locations.

selected by our algorithm covers 17% of the population
(Iowa, including border populations); adding the second site
brings this number to 29%. Additional locations provide
more coverage, but with diminishing marginal returns.

In Figure 4, we show the coverage obtained when the
algorithm is allowed to run to completion. For the 143 can-
didate sites used, the first 58 sites selected yield coverage of
95%; additional sites did not improve coverage. When con-
sidering the border population, the 22 2006-2007 IDPH
sites cover only 48% of the population, whereas the first
22 sites selected de novo achieve 77% coverage. Note that
the first 5 sites selected de novo achieve the same population
coverage as all 22 of the original IDPH locations.
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Figure 3. The 22 lowa influenza-like illness sentinel locations chosen
by the maximal coverage model when considering the border popula-
tion in neighboring states. Numbers correspond to the selection order.
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Finally, because some commercial firms use variations of
maximal coverage models to decide where to locate retail
outlets, we measured the population within 20 miles of the
45 Super Wal-Mart stores and the 18 Target stores within the
state of Iowa. The 45 Super Wal-Mart stores cover 79% of
the population of Iowa, with the 22 stores in the most pop-
ulated ZCTAs covering 63% of the population; the 18 Target
locations cover 61% of the population.

DISCUSSION

Surveillance is one of the cornerstones of public health
practice. Without accurate information about disease activ-
ity, it is difficult to measure health needs, allocate resources,
or design and implement effective interventions to improve
public health. Because it is not obvious where an infectious
disease such as influenza will start or where it will spread,
covering a wider geographic area and more people will in-
crease the probability of detecting the disease sooner and
more accurately (i.e., measure the magnitude of seasonal
activity), all else being equal. Disease surveillance is expen-
sive and time consuming, however. Maximal coverage
models provide a way for public health officials to maximize
the population covered across geographic areas while min-
imizing the cost to public health agencies by controlling the
number of surveillance sites used.

Recently, a great deal of attention has been devoted to
modeling influenza epidemics and pandemics (8-13). How-
ever, our focus is significantly different. First, much of the
current modeling work is designed to determine the effec-
tiveness of policy and mitigation strategies. This work often
does not directly apply to seasonal influenza and thus may not
be applicable to everyday decision making for public health
departments. Second, most of the recent influenza modeling
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Figure 4. Population coverage (proportion) as a function of additional health care provider surveillance units, for a fixed, prespecified distance of
20 miles (32.2 km), considering the population adjacent to lowa’s border. The upper, solid curve represents the proportion of population coverage
as each new surveillance site is added if the sites are selected by the algorithm; the lower, dashed curve represents the proportion of population

coverage starting from the 22 currently selected surveillance sites.

work focuses on generating output from simulations. Our
work specifically focuses on input: improving the quality of
influenza surveillance data. Although reported nationally,
several modes of influenza surveillance are coordinated at
the state level. Currently, the only state-level data available
across the United States are qualitative reports from the state
and territorial epidemiologists summarizing weekly influ-
enza activity (3). Different states have different mechanisms
and approaches for influenza-like illness surveillance. For
example, North Carolina tracks electronic medical records
from emergency rooms across the state to augment influenza
surveillance efforts (14). Iowa does not have such an elec-
tronic medical record collection system in place. Yet, re-
gardless of resources and approaches, all states have
public health budget constraints for collecting data.

Given scarce public-health resources in Iowa and other
rural states, using a maximal coverage model will better
target further recruitment efforts for new influenza-like- ill-
ness sentinel locations. For example, if one were allowed to
select sites individually by using our algorithm, 22 sites
would have covered over 75% of the population of Iowa
versus the 56% of the population of Towa actually covered
during the 20062007 season. We also find that a goal of
80% coverage can be obtained by using just 27 appropri-
ately selected sites. This number is surprisingly low, and it
represents an easily attainable number of sentinel members.
In practice, it may not be feasible or wise to turn reliable
sentinel volunteers away from a network, but, unlike finding
optimal locations for building warehouses, including addi-
tional volunteer members need not be expensive. Thus, our
model can inform surveillance coordinators about where to
add additional sites given a set of currently participating
sites. This approach can guide the recruitment efforts for
filling gaps in surveillance geographic coverage.

Although we produce a usable result that represents an
immediate improvement over the status quo, some aspects
of our approach merit careful consideration. First, we as-
sume that 20 miles is the correct coverage distance. This is
a convenient assumption and a reasonable starting point (in
Iowa, almost everyone is within 20 miles of a health care
provider), but in some areas this distance might be too
large (urban areas); in others, it might be too small. To test
our 20-mile assumption, we computed the coverage results
obtained for different values of S (specifically, 15 miles
(16.6 km) and 25 miles (40.2 km)). As expected, the cover-
age increases as S increases. We also find that the relation
between the increases in coverage for each additional site is
consistent across different values of S. In other words, the
shape of the graphs in Figure 2 remain the same for different
values of S.

Second, we used a Euclidian distance measure; although
doing so is reasonable in Iowa given the state’s unusually
regular road and county structure, states with large lakes or
mountain ranges may be better modeled by using road dis-
tance rather than Euclidian distance. Third, our initial mod-
eling approach considered Iowa as a closed system. This
approach tends to undervalue border communities, that is,
cities in Iowa on the state border adjacent to other commu-
nities in neighboring states. However, these communities
are epidemiologically connected despite their intervening
state boundaries: for example, 2 of the “Quad Cities” are
in Towa and 2 are in Illinois. To adjust for this edge effect,
we maximized the total population within 20 miles of the
143 candidate sites within Iowa, both inside and outside the
state of Towa. Unfortunately, this approach probably over-
compensates for the influence of the cross-border pop-
ulation: people living across the border are certainly less
likely to present to a sentinel site in Iowa. Neither
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solution—modeling the state as a closed system vs. includ-
ing cross-border populations—is ideal.

Fourth, although having a large proportion of a state’s
population within a short distance of sentinel providers is
clearly important, some sampling of low-population-density
areas may also be important. Future work may consider
a multicriteria objective that weights the success of the sen-
tinel provider network in being close to a large proportion of
the population of the state against the geographic balance of
site placement. Finally, if our efforts are to provide a robust
and useful tool for the public health community, we will also
need to find and provide alternative providers for those lo-
cations where the selected providers opt not to participate.
One simple approach would be to look for alternate pro-
viders in ZCTAs adjacent to the locations chosen by the
maximal coverage model.

Many of the limitations described above could be addressed
by incorporating data containing information on where pa-
tients live and where they seek care for influenza-related ill-
nesses. Such information can be extracted from Medicare and
Medicaid billing data. With such data, we could generate
values of § that capture actual health-care-seeking behavior
instead of choosing a constant value for people in both rural
and urban areas. Furthermore, we could validate the results
of our algorithm across different influenza seasons and mea-
sure the benefit of adding redundant locations in more urban
regions. We could also calibrate our model to modify our
placement algorithm to fit more specific utility functions,
for example, placing sites to optimize the earliest detection
of influenza activity.

From a computational standpoint, it is important to note
that our algorithm greedily maximizes the coverage at each
selection point, guaranteeing the best choice at each step; it
cannot, however, guarantee the optimal solution overall.
Computationally speaking, this problem is an example of
an NP-hard problem, a problem in which the cost of com-
puting the optimal solution grows exponentially with the
number of sites to choose from (15). Such problems are
considered intractable, so computer scientists and opera-
tions researchers instead compute approximate solutions
that are close enough to the optimal solution to use effec-
tively in practice (as we did in this paper).

Clearly, states can improve upon current influenza-like-
illness surveillance and, with minimal additional effort,
move beyond nontargeted recruitment of volunteers. The
modeling approach is not difficult, and, at the state level,
the computational resources needed are not excessive. Fur-
thermore, in some states, it may be possible to just piggy-
back on the location-allocation work of commercial firms
that have already implemented their own maximal coverage
modeling. State health departments, for example, may be
able to use locations of statewide retail chains to guide
placement of their surveillance sites without computational
work. Of course, commercial entities use many other vari-
ables aside from population coverage including, for exam-
ple, local competition from other retail outlets, as well as
transportation factors such as proximity to distribution cen-
ters (16, 17). In other words, retail chains and public health
departments have different utility functions. Nevertheless,
starting from the current distribution of providers, targeting
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additional providers in underserved areas near large retail
locations may be an easy and reasonable way to choose new
surveillance sites.

This modeling framework can also be applied to other
influenza surveillance systems, such as hospital- or
school-based efforts. Moreover, maximal coverage models
have public health applications beyond influenza surveil-
lance. For example, they could be used to help public health
laboratories determine where to collect specimens for state-
wide surveillance projects. During outbreaks, maximal cov-
erage models could help focus case-finding efforts. Similar
models could also be used to help with disaster preparedness
and can be adjusted, by modifying population distributions,
to focus on covering specific populations at higher risk of
certain diseases. For example, by using the distribution of
people over the age of 65 years, one could establish the
optimal geographic locations of stroke treatment centers.
Alternatively, geocoded stroke incidence data could be used
to help locate the placement of new treatment centers. In
fact, geocoded health outcomes data could help optimize
both clinical and public health resources for a number of
diseases (e.g., sexually transmitted diseases).

In summary, maximal coverage models, long used in the
business community, have the potential to improve and op-
timize disease surveillance activities at both the state and
national levels. Despite several limitations, applications of
maximal coverage models represent a promising area of
research at the interface between geography, computer sci-
ence, epidemiology, and clinical medicine.
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