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Abstract
Equivalence testing is growing in use in scientific research outside of its traditional role in the drug
approval process. Largely due to its ease of use and recommendation from the United States Food
and Drug Administration guidance, the most common statistical method for testing equivalence is
the two one-sided tests procedure (TOST). Like classical point-null hypothesis testing, TOST is
subject to multiplicity concerns as more comparisons are made. In this manuscript, a condition that
bounds the family-wise error rate using TOST is given. This condition then leads to a simple solution
for controlling the family-wise error rate. Specifically, we demonstrate that if all pair-wise
comparisons of k independent groups are being evaluated for equivalence, then simply scaling the
nominal Type I error rate down by (k − 1) is sufficient to maintain the family-wise error rate at the
desired value or less. The resulting rule is much less conservative than the equally simple Bonferroni
correction. An example of equivalence testing in a non drug-development setting is given.
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1 Introduction
Broadly speaking, scientific research is often thought of as a field that is interested in
inductively demonstrating differences between experimental groups while presuming equality
under a null (status quo) hypothesis. However, often scientists are not interested in establishing
differences, but in proving similarities. It is our experience that questions of similarity or
equivalence are as fundamentally important to scientific research as those of differences.

An important example is that of demonstrating the bioequivalence of two formulations, such
as an established brand name drug and a new generic equivalent. Bioequivalence refers to
establishing a lack of differences in absorption, as measured by blood concentration, of two
such formulations. Hence, the natural null hypothesis is that the two formulations have different
absorption rates on a scale that is biologically relevant. Typically, the metrics being compared
are natural logarithms of areas under plasma/concentration curves obtained by repeated blood
samples of subjects having received both drugs in a random order with a suitable washout
period.

We refer to this form of evaluation in the drug approval setting as bioequivalence and reserve
the term equivalence for more generic settings. Establishing equivalence generally follows two
steps; i) first, a setting-specific meaningful difference in population parameters between two
groups is selected and ii) statistical inference is used to establish whether empirical estimates
of the parameters fall within the bounds of the meaningful limits.
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Early related work on equivalence testing using symmetric intervals can be found in Westlake
(1976). Anderson and Hauck (1983) and Hauck and Anderson (1984) give a more powerful
method for a two-way crossover design. Since these early influential articles, new procedures
have been developed based on likelihood intervals (Choi et al., 2007), Bayesian credible
intervals (Selwyn and Hall, 1984; Selwyn et al., 1981; Fluehler et al., 1983) and alternative
frequentist tests and intervals (Berger and Hsu, 1996; Hsu et al., 1994; Brown et al., 1995), to
name a few.

Certainly the most widely used procedure for statistically evaluating equivalence is the two
one-sided tests procedure (TOST), which is advocated by the United States FDA for
establishing bioequivalence. TOST is a form of equivalence testing proposed by Schuirmann
(1987). Part of TOST’s popularity is that it is theoretically and operationally similar to classical
normal-theory hypothesis testing of the equality of population means. Despite their close
relationship and the ubiquity of (alternative) research hypotheses of similarity, TOST is largely
unused in the non-drug development scientific community at large, where classical point-null
hypothesis testing of population means is firmly entrenched. A possible reason for the large
disparity in usage is not one of utility, but of exposure. Perhaps the greatest evidence supporting
this explanation is the frequent misapplication of post-hoc power calculations to data that
should be analyzed using equivalence testing (Hoenig and Heisey, 2001; Goodman and Berlin,
1994).

Recently, equivalence testing has made inroads in scientific applications unrelated to drug
development (Barnett et al., 2007, 2006). In fact, research papers advocating the use of
equivalence testing in a diverse collection of fields have begun to appear (Barker et al.,
2002; Tempelman, 2004). We conjecture that as awareness of equivalence testing increases,
so will the number of scientists incorporating TOST into their regular statistical toolbox. Hence,
it is necessary to develop methods for adapting TOST to the diverse situations scientific data
can present.

One example addressed here is that of multiplicity. As in classical hypothesis testing, as more
means are compared, the family-wise error rate, the probability of at least one incorrectly
rejected null in a family of tests, α F, rises above that of the set nominal type I error rate, α N.
If enough means are compared, the family-wise error rate becomes unacceptably high and must
be controlled. Because the foundation for equivalence testing is the same as that of classical
hypothesis testing, we look to existing solutions for addressing multiplicity.

In this article, we propose an easy multiplicity correction for all pair-wise comparisons in
equivalence testing. To develop this correction we show that the nominal error rate is only
achieved for the comparison of nearby means. For the more distant means, the error rate is
much lower, a fact that can inform the multiplicity correction. This work is motivated by recent
examples in cell engineering, where the goal is to establish the equivalence of several labeling
agents.

The manuscript is organized as follows. In Section 2 we review equivalence testing, while in
Section 3 we introduce the multiplicity problem and our proposed solution. In Section 4 we
present numerical results supporting our correction. We give an example from cell engineering
in Section 5, followed by a discussion in Section 6. Appendix A gives proofs of the results
used in the paper.

2 Equivalence testing
We describe the TOST procedure for comparing two independent group means from normally
distributed data, presuming a common variance and equal sample sizes. This setting for
equivalence testing has been described in detail elsewhere (Schuirmann, 1987; Wellek,
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2003). Briefly, equivalence testing seeks to test if the difference between the two population
means, Δμ, is within some previously defined tolerance interval [θl, θu]. To do this, two sets
of disjoint hypotheses are formed. Closely following the description and notation in
Schuirmann’s original manuscript, we have:

(1)

From each pair of hypotheses, test statistics are formed and compared to critical values from
the t-distribution. Specifically, H01 and H02 are rejected if

(2)

and

(3)

respectively. Here ΔX̄ is the observed difference in means between the two groups, s is the
pooled standard deviation, n is the (assumed common) sample size per group, df is the degrees
of freedom and ta,b is the b quantile from the t-distribution with a degrees of freedom. The
TOST procedure states that if both 2 and 3 are true, then the means are declared equivalent.

Equivalently, test (2) rejects if the lower confidence bound  is above θl and

test (3) rejects if the upper confidence bound  is below θu. Hence, the TOST
procedure is identical to forming the corresponding (1 − 2αN) confidence interval and declaring
the two groups equivalent if the interval lies entirely within the tolerance limits. We emphasize
the need for a (1 − 2αN) interval rather than a standard (1− αN) interval (for further discussion
see Choi et al., 2007; Berger and Hsu, 1996). This approach is currently recommended by the
United States FDA and is motivated by uniformly most powerful tests (see Chapter 3 Section
7 of Lehman, 1986).

For simplicity of the discussion, we assume that the tolerance limit is symmetrically centered
around zero; that is−θl = θu = θ. Then hypotheses (1) can be restated as

and equation (2) and equation (3) are restated as

(4)

Under our distributional assumptions, in a standard point null hypothesis, the desired type I
error rate is obtained exactly. In equivalence testing using TOST, the null hypothesis includes
a range of possible parameter values. The desired type I error rate is obtained only with two
criteria: i) the true difference in means must be equal to the tolerance limit assumed under the
null hypothesis, |Δμ| = θ; ii) the standardized tolerance width, , must be large (with
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the type I error rate obtained exactly only in the limit Schuirmann, 1987). Here σ is the common
group-specific standard deviation and the standardized tolerance width is the tolerance width,
2θ, divided by the standard error of the difference in means, . We prove points i and
ii in Appendix A and illustrate the convergence in Section 4. It is crucial to note that the
relationship between the type I error rate and the standardized width (criterion ii) only holds
when criterion i is true. Otherwise, the procedure is conservative and becomes increasingly so
as Δμ gets larger than θ.

Let γℓ be the actual type I error rate for the equivalence test performed for a comparison with
a true mean difference equal to ℓ ≥ 1 times the tolerance limit, Δμ = ℓθ. This parameter is
derived and discussed in Appendix A. As discussed in criteria i and ii above, γ1 is closest to
αN and limits to αN from below as the standardized tolerance width tends to infinity (see Section
4 and Appendix A). Furthermore, the γℓ decrease as ℓ increases, since the chance of incorrectly
declaring equivalence decreases as the true distance between the means increases. The rapid
decrease of γℓ as ℓ increases will form the basis for our proposed method of multiplicity control.

3 Family-wise error rates for all pair-wise comparisons
An important consideration in multiple comparisons is the family-wise error rate. A useful tool
for controlling the family-wise error rate is the Bonferroni inequality, which states that the
family-wise error rate for any group of tests is less than or equal to the sum of the individual
type I error rates. Below we use the Bonferroni inequality to develop a new method for family-
wise error rate control for equivalence testing using TOST and illustrate that a naive application
of the standard Bonferroni correction is unnecessarily conservative. Though relevant research
in multiple comparisons (see Giani and Strassburger, 2000; Bofinger, 1985; Giani and
Strassburger, 1994; Hsu, 1996; Tseng, 2002; Giani and Finner, 1991; Wellek, 2003) may
produce more optimal solutions, our interest lies in simple rules that are easily motivated and
implemented.

Consider the setting where all pair-wise equivalence comparisons are being made for k groups
using TOST; hence there are k(k − 1)/2 tests being considered. Let each group have a population
mean μi for i = 1,…,k. Without loss of generality, we presume that the means are ordered from
least to greatest. If all tests satisfy the null hypothesis, then the adjacent means must be at least
θ apart. Because, as discussed above, the type I error rate for a single comparison increases as
the difference in means decreases, the individual error rates are therefore maximized when the
means are exactly θ apart (Schuirmann, 1987). The scenario that maximizes the Bonferroni
inequality bound is therefore obtained when adjacent means are as close together as possible
without violating the null hypothesis. That is, μi − μi−1 = θ for i = 2,…, k. We note that this
scenario maximizes the Bonferonni inequality bound on the family-wise error rate because:
decreasing the length between any two adjacent means renders them equivalent (a violation of
the assumption that all null hypotheses are true) while expanding the distances decreases the
individual type I error rates (hence increasing their sum).

Observe that in this most conservative scenario, (k − 1) comparisons occur with a true difference
Δμ = 1θ, (k − 2) comparisons with a true difference Δμ = 2θ and in general (k − ℓ) comparisons
are made with a true difference Δμ = ℓθ for ℓ = 1,…k − 1. Using these facts and the Bonferroni
inequality, αF can be no greater than the sum of the γℓ times the number of comparisons with
true difference in the means equal to ℓ. That is,

(5)
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A naive Bonferroni bound is obtained by the fact that γℓ < αN:

(6)

A standard naive Bonferroni correction bounds αF by equating a desired family-wise error rate,
αD, to the bound from (6), i.e. αD = αNk(k − 1)/2, and subsequently solving for αN. One obtains
a rule that sets the nominal error rate to the desired family-wise error rate divided by the number
of tests.

However, since bounding αF by adding the individual error rates is already a conservative
procedure, and the γℓ decrease exponentially as ℓ increases, using this naive Bonferroni
correction is excessively conservative. Specifically, the naive Bonferroni correction accounts
for all possible comparisons, even of the most distal means, which must be at least k − 1 times
the tolerance limit apart. Hence, in these cases, the associated γℓ is much smaller than αN and
the bound in (6) becomes unnecessarily large. We now create a better Bonferroni correction,
by equating the desired family-wise error rate and the more accurate bound given in (5).

Notice that a maximum value for each γℓ, say γ̃ℓ, can be obtained numerically (for known
values of n, k, θ and αN) by maximizing over σ, the only unknown quantity in the equation for
γℓ. We argue numerically (Section 4) and theoretically (Appendix A) that γ̃1 = αN while γ̃ℓ <
αN for ℓ > 1. Using these maximal values, creating a more accurate Bonferroni bound is not
conceptually difficult. Specifically, one could equate αD and the bound on αF from (5) using
the γ̃ℓ:

(7)

and solve for αN. Numerically, this equation could be solved by adaptively modifying αN, such
as with a bisection algorithm. Unfortunately, this approach lacks the typical computational
ease of the naive Bonferroni correction

Evaluations of the family-wise error rates (described below) illustrate that the first term, γ̃1(k
− 1), is equal to αN(k − 1) and completely dominates the right hand side of equation (5). Hence,
we propose the following approximation to (7)

Thus, solving for αN, we obtain an easy form of multiplicity control that requires one to set
αN to αD/(k − 1). We refer to this multiple comparisons procedure as an ℓ-correction, from our
notation for γℓ. To reiterate:

the ℓ-correction controls the family-wise error rate when testing equivalence for all
pairs of k groups using TOST by setting the nominal error rate to the desired error
rate divided by the number of groups minus one.

Thus we contend that the naive Bonferroni procedure unnecessarily divides αD by an extra
factor of k/2. Below, we evaluate this rule and demonstrate that it is much less conservative
than a naive Bonferroni correction and is nearly equivalent to a correction based on (5).
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4 Numerical evaluations
As is argued in Appendix A, we first note that γ1 limits to αN as the standardized tolerance
width, ∇, increases. Figure 1 displays the behavior of γ1 as a function of ∇ for various sample
sizes and values of αN. This figure illustrates that γ1 tends to the nominal error rate. Because
of the square root n in the numerator of ∇, γ1 will typically be near αN. These points are also
argued theoretically in Appendix A. Note that in this figure, and the remaining, the smallest
possible degrees of freedom under our assumptions (2n − 2) were used.

Figure 2 displays the rapid decrease in error rate γ2 for those tests whose mean difference is
Δμ = 2θ. Note that the maximum magnitude of these terms, γ̃2, is on the order of 10−4 and
becomes much lower as the nominal error rate decreases. Further notice that the error rate
peaks, a pattern which persists for all γℓ with ℓ > 1 (see Appendix A). Plots for larger values
of ℓ are not shown, as their shape is similar with a rapidly decreasing maximum value. Figure
3 displays this decrease, by plotting the logarithm base 10 of the maximum error rate, γ̃ℓ, as ℓ
increases.

Table 1 displays the maximum bound on the family-wise error rate for various values of k and
n for the proposed ℓ-correction and a naive Bonferroni correction for a desired family-wise
error rate of αD = .05. The table demonstrates that setting the nominal error rate to the desired
family-wise error rate divided by k − 1 accurately controls the bound on the family-wise error
rate at .05. The table also demonstrates that the proposed correction, which is slightly anti-
conservative at a level that is near the numerical accuracy used in our programs (10−5), provides
adequate control of the family-wise error rate. For comparison, we replicate this process for a
naive Bonferroni correction, which is shown to be overly conservative.

5 Example
We demonstrate the ℓ-correction on an example from the field of cell-engineering. Recently,
scientists have been interested in comparing the effects of different labeling agents on what
are called microcapsules (Barnett et al., 2007). Briefly, the function of a micro-capsule is to
deliver and house healthy xenogenic cells in patients whose own cells do not function properly.
An example is injecting porcine pancreatic cells into patients with type II diabetes. In order to
monitor microcapsules once inside patients, labels that are either MRI (magnetic resonance
imaging), ultrasound, or X-ray visible are added to the microcapsules. However, researchers
must assess the labels’ effect on the living cells inside the microcapsule. In one currently
unpublished study, a human hepatic cell line (Hep G2 ATCC, Manassas) is encapsulated in
contrast-containing polyethylene glycol diacrylate microcapsules and the viability under 6
different labeling conditions is assessed. Included in this study is an unlabeled control, making
a total of 7 different conditions. The researchers are concerned with ensuring that the inclusion
of a contrast agent did not significantly alter the viability of encapsulated cells and in assessing
if cells were equally viable under the different labeling conditions. Hence, interest lies in testing
biologically equivalent viability between different labels in order to assess switch-ability. To
test viability, cell survival is assessed at different time points after cell encapsulation and
equivalence testing performed. Setting θ to 5%, all pair-wise TOST tests are performed,
comparing all strata to each other at each time point. The result is a total of 21 comparisons
per time point.

In Table 2 the larger of the absolute value of the two confidence endpoints is given for each
pair-wise comparison between the seven groups. The ℓ-correction values are given in the points
below the diagonal while the naive Bonferroni corrected values are given above. Recall that
equivalence is declared if the (1 − 2α) confidence interval is contained within the tolerance
interval. Therefore, the TOST test can be performed by comparing these numbers to the
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tolerance limit, here set to 5%. Any endpoint less than 5 is declared equivalent. Notice that the
result of the test reverses after use of the less conservative ℓ-correction in the comparisons: (1,
2), (5, 2), (7, 2), and (6, 4)

6 Conclusion
The proposed ℓ-correction, simply setting the nominal error rate used in TOST to the desired
family-wise error rate divided by the number of groups compared minus one, provides a fast
and easy method of multiplicity control for testing the bioequivalence of multiple strata. The
basis for this approach comes from a bound on the family-wise error rate by adding the
individual error rates and noting that, under a joint null hypothesis for k comparisons, only the
k − 1 comparisons with the closest mean differences make any real contribution to this bound.
On a practical side, it is important to note that in the case where all strata are compared to a
single control, the ℓ-correction and naive Bonferroni correction will be identical. However, in
examples where all pair-wise comparisons are made, such as the one considered above, the ℓ-
correction will achieve a much tighter bound to the family-wise error rate.

We emphasize that, while a vast improvement over a naive Bonferroni correction, the proposed
ℓ-correction is motivated by adding error rates and hence can be very conservative. Its main
attractions are its ease of explanation and simple implementation. If these rationales are not of
interest to the problem in hand, more optimal procedures should be pursued.
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Appendix

A Derivation of γℓ
We presume that Δμ = ℓθ and, for brevity, we denote the critical value tdf,1−αNsimply by t.

where, recall, df refers to the degrees of freedom and χ and Z represent the square root of a chi-
squared (with df degrees of freedom) and an independent Z random variable, respectively. A
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simple calculation yields that the interior probability is greater than zero only when

. Hence this may be written as:

(8)

where I(·) is an indicator function. This formula is used for all calculations, with Gauss-
Laguerre integration (see Press et al., 1992), implemented in R (Ihaka and Gentleman, 1996),
used for the outer expectation.

We now prove several points used in the manuscript. First, we argue that γℓ ≤ αN. To show
this, note that the interior of the expectation in (8) satisfies:

Hence, taking expectations we have:

Secondly, we now show that γ̃1 = αN. As the interior of (8) is bounded by a function with a
finite expectation in absolute value, we can move limits inside of the expectation. Therefore,
plugging ℓ = 1 into (8) and taking the limit as ∇ goes to infinity we have:

Thirdly, it is similarly easy to show that the limit of γℓ is zero as ∇ goes to infinity for ℓ > 1
as follows:
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Moreover, γℓ = 0 when ∇ = 0, as the indicator function, , is zero.

Finally, we argue that γℓ converges quickly to 0 as ℓ goes to infinity.

where both aℓ and bℓ converge monotonically and exponentially to 0 with ℓ.

We summarize these points and others apparent from these results as follows:

1. The only unknown that γℓ depends on is ∇, which in turn only depends on the unknown
σ.

2. γℓ is bounded from below by 0 and above by αN.

3. γ̃1 is αN and γ̃ℓ < αN for ℓ > 1.

4. For ℓ > 2, γℓconverges to 0 as ∇ goes to infinity or as ∇ goes to 0.

5. γℓ converges rapidly to 0 as ℓ gets larger.
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Figure 1.
The true error rate, γ1, for a TOST test performed when Δμ = 1θ plotted as a function of

. Each line represents a different sample size with n = 5, 10, 15, 20, 50, 1000 while
each plot considers a different nominal error rate. The arrows point in the direction of increasing
n. Dashed reference lines at the nominal error rate are drawn.
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Figure 2.
The true error rate, γ2, for a TOST test performed when Δμ = 2θ plotted as a function of

. Each line represents a different sample size with n = 5, 10, 15, 20, 50, 1000, while
each plot considers a different value of αN. The shape for the ℓ = 2 case is representative of the
shapes of all plots for any case ℓ > 1. The arrow points in the direction of increasing n.
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Figure 3.
The maximum true error rates, γ̃ℓ, for ℓ = 2,…, for a TOST test performed between two
distributions whose difference in means are Δμ= ℓθ. Six different sample sizes n = 5, 10, 15,
20, 50, 1000 are shown within each plot, each plot depicting different nominal error rates,
αN. Here ℓ is labeled “index” on the horizontal axes. The arrow in the final plot points in the
direction of increasing n. Values on the vertical axis are in log base ten scale.
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