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ABSTRACT

Motivation: Antibody-based Chromatin Immunoprecipitation assay
followed by high-throughput sequencing technology (ChIP-seq) is a
relatively new method to study the binding patterns of specific protein
molecules over the entire genome. ChIP-seq technology allows
scientist to get more comprehensive results in shorter time. Here, we
present a non-linear normalization algorithm and a mixture modeling
method for comparing ChIP-seq data from multiple samples and
characterizing genes based on their RNA polymerase II (Pol II) binding
patterns.
Results: We apply a two-step non-linear normalization method
based on locally weighted regression (LOESS) approach to compare
ChIP-seq data across multiple samples and model the difference
using an Exponential-NormalK mixture model. Fitted model is used
to identify genes associated with differential binding sites based on
local false discovery rate ( fdr). These genes are then standardized
and hierarchically clustered to characterize their Pol II binding
patterns. As a case study, we apply the analysis procedure
comparing normal breast cancer (MCF7) to tamoxifen-resistant
(OHT) cell line. We find enriched regions that are associated with
cancer (P < 0.0001). Our findings also imply that there may be a
dysregulation of cell cycle and gene expression control pathways in
the tamoxifen-resistant cells. These results show that the non-linear
normalization method can be used to analyze ChIP-seq data across
multiple samples.
Availability: Data are available at http://www.bmi.osu.edu/∼khuang/
Data/ChIP/RNAPII/
Contact: taslim.2@osu.edu; khuang@bmi.osu.edu
Supplementary information: Supplementary data are available at
Bioinformatics online.

1 INTRODUCTION
Next-generation high-throughput ChIP sequencing technology
(ChIP-seq) is becoming the preferred method for studying protein–
DNA bindings. It allows researchers to sequence tens of millions
of DNA fragments in a single experiment. It has been shown
to produce high-quality, high-specificity and high-sensitivity data
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and it is also a cost-effective approach for mapping genome-wide
protein–DNA interaction (Johnson et al., 2007). One of the earlier
method to study DNA binding proteins on the whole genome is
ChIP-chip (Horak and Snyder, 2002; Ren et al., 2000), a procedure
which involves immunoprecipitation of DNA using protein-specific
antibody and then hybridizing it to a genomic tiling array. Compared
with ChIP-chip, experiments done in ChIP-seq does not need to
worry about errors associated with cross-hybridization and the
noisy polymerase chain reaction (PCR) amplification process. In
ChIP-seq, the protein-bound DNA fragments (tags) are sequenced
by reading up to 72 nt from both ends. Parallel sequencing is
then performed to uniquely align these sequences back to the
genome producing tens of millions mapped fragments. Various
procedures such as sample preparation, tags amplification, base
calling, image processing and sequence alignment are needed to
massively sequence the short tags and get their unique genomic
location. Even though ChIP-seq data are less prone to error, the
large amount of data being produced and bias generated by various
procedures mentioned above pose new challenges in analyzing
ChIP-seq data. Innovative computational and statistical approaches
are therefore required to separate biological signal from noise. One
of them is data normalization which is very critical when comparing
results across multiple samples. Normalization is certainly needed to
identify any systematic error and bias that are not due to biological
signal. Under ideal environment where experiments are run in a
perfect condition without even the slightest error, we would expect
all differences to be associated with the biological changes in the
samples. However, as with all experiments there are some factors
that cannot be controlled which bias the results and thus creating
differences that do not reflect the biological conditions. The purpose
of normalization is to identify such systematic errors and eliminate
them to reveal the true biological signals.

Here, we present a non-linear normalization method for ChIP-seq
data to reveal biological differences across samples. To the best of
our knowledge, normalization methods for ChIP-seq data are very
limited. Although several papers have been published to analyze
data generated using ChIP-seq technology, many simply normalized
their data against the tags sequencing depth (Feng et al., 2008;
Ji et al., 2008; Kharchenko et al., 2008; Xu et al., 2008; Zhang
et al., 2008). This method is commonly used to normalize serial

2334 © The Author 2009. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oxfordjournals.org

http://www.bmi.osu


[15:55 24/8/2009 Bioinformatics-btp384.tex] Page: 2335 2334–2340

Comparative study on ChIP-seq data

analysis of gene expression (SAGE) library, which is a collection of
thousands of small DNA fragments. It is based on the assumption
that the total number of DNA bindings would be similar in different
cell types under different biological conditions. The number of
fragments aligned is normalized using the total number of matched
fragments in each sample. Hence, the normalized data will have
equal number of tags across samples. While normalizing against the
tags sequencing depth enable comparison across samples, it does
not remove systematic errors. For example, if an equipment is not
calibrated correctly in one sample causing a systematic error in one
particular experiment, then comparison between this sample with
the others will incorrectly detect the error as the effect of different
biological conditions. Recently, Rozowsky et al. (2009) address this
problem by using a linear scaling factor. They exclude potential
peaks from normalization method by comparison with input-DNA
control and then scaled the data by a linear factor. Here, we avoid
making linearity assumption by using a non-parametric regression
to normalize ChIP-seq data.

Based on the assumption that the mean of non-differential tags
will be zero, we introduce a two-stage normalization method
for ChIP-seq data and apply it to identify genes with enriched
polymerase II (Pol II) regions in breast cancer MCF7 cell line under
different conditions and OHT cell line, as a case study.

17β-estradiol (E2)-induced and tamoxifen-resistant MCF7 cell
lines are chosen for case study, since the hormonal exposure is the
best characterized risk factor for breast cancer. Previous evidence
supports the association of estrogen exposure with the increased risk
of breast cancer (Hulka et al., 2004). The distribution of estrogen
receptor (ERα) profile indicates a highly dynamic and complicated
regulation network (Carroll et al., 2006; Lin et al., 2007). The data
from ChIP-seq will be very helpful for fully characterizing and
understanding estrogen regulatory network. Tamoxifen is one of
selective ER modulators (SERMs) and is widely used to block ERα

function for breast cancer treatment (Osborne and Schiff, 2005).
However, this endocrine therapy is limited by the onset of tamoxifen
resistance. Delineating the changed architectures of ERα regulation
network in tamoxifen resistance cells may provide direct and useful
information of tamoxifen resistance.

This article is organized as follows: ChIP-seq data processing,
normalization, statistical analysis and clustering methods are
proposed in Section 2; Analysis on data from normal breast cancer
(MCF7) cell line after E2 treatment and tamoxifen-resistant subline
(OHT-MCF7) are presented in Section 3; and finally, discussion and
future directions are presented at the end of the article.

2 METHODS
Our ChIP-seq experiments are done on breast cancer cell lines comprising
three different experiments: MCF7 control, MCF7 + E2 treatment and
OHT (tamoxifen-resistant subline OHT-MCF7). The aim of this biological
problem is to find differential areas of enrichment by comparing the treatment
samples (i.e. OHT and MCF7 + E2) with the MCF7 control as a reference and
uncover the biological characteristics of tamoxifen-resistant and E2 treatment
in breast cancer cells. To accomplish this objective, we first normalized
the data to eliminate the effects of background noise, base calling, image
processing error and any other systematic errors. Next, we applied a model-
based classification technique to find genes associated with the differential
binding quantity. Finally, we clustered the significant genes profile based
on their Pol II binding patterns. A summary of the workflow is shown in
Figure 1. In this section, we provide brief descriptions of data used, the
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Fig. 1. Flow chart of the processes done in this article.

normalization method followed by the finite mixture modeling technique
and hierarchical clustering algorithm.

2.1 Breast cancer data
MCF7 human breast cancer cells (American Type Culture Collection,
Manassas, VA, USA) and tamoxifen-resistant MCF7 cells (OHT) were
maintained as described by Fan et al. (2006). Both MCF7 and OHT were
treated with E2 (10−8mol/l) for 3 h. For each immunoprecipitation, cells were
cross-linked with 1% formaldehyde for 10 min and sonicated to fragment the
chromatin to a size range of 200 bp to 1 kb. Chromatin fragments were then
immunoprecipitated with 10 µg of antibodies against Pol II and ERα (sc-
899 X and sc-8005 X, Santa Cruz, CA, USA). After immunoprecipitation,
washing and elution, ChIP DNA was purified by phenol:chloroform:isoamyl
alcohol and solubilized in 70 µl of water. Then Illumina library was
constructed and sequenced with Illumina/Solexa Genome Analyzer (Michael
Smith Genome Sciences Centre, Vancouver, Canada).

2.2 Mapping DNA fragments and determining putative
binding sites

Given a library of short DNA fragments generated from ChIP-seq
experiments, the first step was to map these tags back onto the genome to
obtain their locations and orientations. We used ELAND (Cox, unpublished
software), provided by Illumina, to align these short sequence reads to the
genome allowing up to two mismatches. After the realignment stage, we have
fragment counts in each genomic location. In our ChIP-seq experiments,
a tag is sequenced by reading up to 36 nt from both ends of the DNA
fragment. Hence, the real binding sites (i.e. the center of the corresponding
DNA sequence) is unknown. In order to determine the putative binding sites,
several ChIP-seq-based techniques shift all tags d/2 toward its orientation,
where d is the distance between the peak in the forward and reverse
strand (Kharchenko et al., 2008; Xu et al., 2008; Zhang et al., 2008).
Unlike most DNA binding proteins which bind to a distinct site, Pol II binds
throughout the promoter, upstream and downstream regions of the activated
gene. Thus, in our analysis, it is unnecessary to do any shifting. Furthermore,
since we are interested in characterizing the differential binding patterns in
multiple samples, the effect of shifting would be negligible.
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Fig. 2. An example of the normalization process applied to the binding quantity difference between MCF7 control and MCF7 + E2 breast cancer data on
Chromosome 1. (a) Raw data with clear bias towards the positive direction; (b) data normalized with respect to the mean; (c) data normalized with respect
to both mean and variance (x-axis is zoomed-in). Green (dash-dot) and magenta (dashed) lines represent the LOESS smoother line with respect to the mean
and variance, respectively. Red (dotted) line represents the zero-difference line. For color version of the figure see Bioinformatics online.

2.3 Normalization
In the analysis of any comparative experiments, there is a need to
normalize the data to remove bias and enable comparison across multiple
samples. ChIP-seq experiments like many other experiments are prone to
systematic errors. Under ideal (error-free) environment, we would expect no
difference in the measurement of two experiments under the same biological
condition. However, there are intensities measurement error and other effects
that contribute to bias in the experiments, making the difference to be
non-zero. For example, in ChIP-seq experiment, during the base calling
stage, fluorescence intensities will decrease over time adding bias to the
measurement. Hence, we would want to normalize the data to ensure the
mean of non-differential sites are zero and that the effect of bias does not
overwhelm the data itself. Also, we want to make sure that there is equal
variance across the samples. Having non-constant variance will influence
methods to find differentially enriched regions in the areas which have larger
spread.

Although several approaches have been proposed to analyze ChIP-seq
data, many normalized their data simply by using the total number of
fragments in each sample or using the sequencing depth (Feng et al., 2008;
Ji et al., 2008; Kharchenko et al., 2008; Xu et al., 2008; Zhang et al.,
2008). This straightforward method of normalization scales the raw data by
a constant factor. This method is prone to bias caused by unequal variance in
different genomic regions. Rozowsky et al. (2009) scales the raw data using
a linear factor; however, such a linearity assumption is unrealistic in many
applications . In this article, we implement a non-linear normalization method
using locally weighted polynomial least square regression (Cleveland, 1988)
to estimate a LOESS smoother of the mean and variance of the observed
data. Compared with the straightforward method of using the sequencing
depth, we find the LOESS normalization method better equipped in removing
the effect of bias and systematic errors. This normalization technique has
been applied successfully on cDNA microarray datasets (Dean and Raftery,
2005).

Let xij be the Pol II binding quantity for bin i (i = 1 ,… ,n), where
n is the total number of bins in a chromosome and j = 1, 2 refers to control
(reference) and treatment samples, respectively. In our application, we use
bins of size 1K nt, i.e. xij is the sum of fragments counts that are mapped
between location (i−1)×1000 and i× 1000 + 1 in sample j. Bin size of 1K
nt is chosen to balance between the number of data points and resolution.

The normalization process is a two-step procedure. First, the fitted values
are estimated by regressing the observed difference on the mean counts:

Ŷmean = loess

((
xi2 −xi1

)∼
(

xi2 +xi1

2

))
, (1)

where xi1 and xi2 are the observed fragment counts in control and treatment
samples as described previously. Ŷmean is the fitted value from regressing the
difference on the mean counts. Then the fitted values are subtracted from the
observed difference counts as follows:

Dmeannorm =(
xi2 −xi1

)−Ŷmean (2)

Thus, Dmeannorm is the data after correction with respect to the mean. As
shown in Figure 2b, after this step, the average of the mean-normalized data
is close to zero (indicated by the green/dash-dot line). Instead of modeling
log-ratios, as in Dean and Raftery (2005), we use the binding quantity of each
sample directly (i.e. using difference counts). By using the fragment counts
directly, it enables us to differentiate sites with the same log ratios, but vastly
different magnitude in their individual binding quantities. Furthermore, in
gene expression data, a threshold is commonly applied in the preprocessing
step to filter out low values before taking the log-ratios of the intensities.
However, in ChIP-seq experiments, zeros are meaningful (i.e. there is nothing
that binds to the regions). Hence, we do not want to apply a threshold to filter
out zero-count as doing so would lead to loss of information.

In our application, we use a loess span of 60% to get a good normalization
with respect to the mean. At this step, we generally have adjusted bias with
respect to the mean but not the spread (see Fig. 2b). In the second step, the
moving mean absolute deviation Ŷvar is estimated by regressing the absolute
of the mean-normalized difference (estimated in the first step) on the absolute
mean counts:

Ŷvar = loess

(
|Dmeannorm|∼

(
xi2 +xi1

2

))
(3)

As indicated by the LOESS line (magenta/dashed line) on Figure 2b,
the variability appears to increase as the mean becomes larger. In
order to normalize the variance, the mean-normalized difference counts
[Equation (2)] is divided by the estimated mean of absolute deviation Ŷvar

Dmeanvarnorm = Dmeannorm

Ŷvar
(4)
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We get a good result using 10% of neighborhood points (span = 10%)
to estimate the running mean absolute standard deviation. The two-
step normalization process provides a nice transformation leading to
homoscedastic variance (Fig. 2c).

2.4 Finite mixture model for differential genes selection
After normalization, we apply methods to find genes associated with
differential binding quantity. One of the earliest method is the rule of
two (Schena et al., 1996) in which genes with ratios greater than two or
less than a half are considered to be differential. Although this method is
very simple to use, it is not based on any statistical principles. Here, we
fit a finite mixture model to the normalized data and perform model-based
classification to identify genes associated with enrichment regions. In the
mixture model, we assume that the data comes from three (non-differential,
positive- and negative-differential) groups. The non-differential regions are
assumed to come from a mixture of K-component normal distributions,
where K is unknown and needs to be estimated from the data. The positive-
and negative-differential regions are assumed to follow exponential and the
mirror of exponential distributions, respectively. Khalili et al. (2009) gives
a detailed description of the finite mixture model and uses the model to
find differentially expressed genes and differentially methylated probes in
CpG islands. The choice of these distributions to represent the data is based
on the observation that the expected value of non-differential, positive- and
negative-differential binding sites are zero, positive and negative values,
respectively. The data di ∈Dmeanvarnorm are grouped based on known gene
regions to determine areas of enrichment associated with a gene. Denote
Gw as the normalized fragments difference of gene w. Each gene region
(w) is defined according to genes annotation in RefSeq database. Let W
equals to the total number of genes in RefSeq. Then for each gene region w,
we have Gw =∑

di, ∀i∈R where R is the sets of fragments within a gene
region w∈{1,...,W}. We then fit an empirical distribution based on Gw, the
normalized difference in a gene region. Suppose f (g) is the unknown density
function of the observed data Gw. We approximate the unknown function as
a mixture of K-normal components and exponential components:

f (g;�)=
K∑

k=1

(
γk φ{g,µk,σ

2
k }

)
+π1E1(−g×I{g<−ξ1},β1)

+π2E2(g×I{g>ξ2},β2), (5)

where � is a vector of unknown parameters of the mixture distributions;
φ{.} denotes the Normal density function; I{.} is an indicator function that
equals to 1 if the condition specified in {} is satisfied, and 0 otherwise;
ξ1,ξ2 >0 are the location parameters which are assumed to be known. In
practice, ξ̂1 =|max(gw <0)| and ξ̂2 =|min(gw >0)| may be used as estimates
of ξ1 and ξ2. The first K components denote the proportion of data and
are modeled by normal densities function with mean µk and variance σ 2

k .
It is designed to capture the non-differential binding sites, with parameter
γk interpreted as the proportion of non-enriched regions. The other two
components use location-exponential density function to represent the
positive- and negative-differential areas of enrichments. The parameters
π1 and π2 denote the proportion of positive- and negative-differential
binding density, respectively.

In order to find the best model to represent the observed data, a set of
optimal parameters �∗ is estimated by maximizing the likelihood function
using Expectation-Maximization (EM) algorithm for a fixed K . Then akaike’s
information criteria (AIC) (Akaike, 1973) is used to select K that provides
the best explanation of the data. Local false discovery rate ( fdr) is calculated
to determine whether gw, the normalized fragment counts difference in the
region associated with gene w is significantly enriched ( fdr(gw)≤z0):

fdr(gw)=
∑K̂

k=1 γ̂kφ(gw,µ̂k,σ̂
2
k )

f (g;�̂)
(6)

In our application, we set z0 = 0.1.

A common concern when fitting a mixture model is the issue of
identifiability. In our approach, since we assume all normal, exponential
and its mirror components to capture genes with non-differential and
positive/negative-differential binding sites, these three components are
identifiable. In fact, it has been shown that finite mixture of exponential
and normal components are generically identifiable (Teicher, 1961, 1963).

2.5 Clustering Pol II binding profiles
Although Pol II can form a distinct binding site around the transcription
start site (TSS), it also binds and proceeds along the promoter regions,
the 5′ and 3′ end regions and the downstream regions of activated genes.
Thus, it is of interest to investigate the Pol II binding patterns, which will
provide new insight on the dynamics of gene transcription by Pol II. Here,
we cluster the genes which are found to have significantly different binding
sites and investigate whether distinct binding patterns exist. To cluster the
gene profiles, we first filter out all the fragments associated with introns and
only retain the ones falling into the exons regions since Pol II mainly acts on
the exon region for transcription. After filtering out the introns, we denote
§w as the normalized tag counts in the exons regions for gene w. Genes
length are standardized to enable genome-wide profiling. The interpolation
is done with optimum interpolators designed using direct form II transposed
filter (Oetken et al., 1975). As a result of the interpolation, all genes have
the same length artificially. We then perform hierarchical clustering of §w

to group genes based on their Pol II binding patterns. Similarity distance
is calculated using Pearson’s linear correlation coefficient. Genes within a
group have similar binding patterns with each other.

3 RESULTS

3.1 Effects of E2 treatment on MCF7 cell
First, we demonstrate the normalization and statistical modeling
methods described above on the study comparing the Pol II binding
quantities between the MCF7 and E2-treated MCF7 cells. Figure 2
shows the normalization process with MCF7 as the reference. By
normalizing the data with respect to both mean and variance, we
are able to spread the points more evenly around zero and reduce
the systematic error (Fig. 2c) which is essential for eliminating bias
caused by unequal variance and outliers. The normalized fragments
are then grouped by their corresponding gene regions. Next, we
fit the normalized difference with the mixture model using EM
algorithm. The EM algorithm was re-initialized 1125 times to
prevent it from getting stuck in a local optimum. Each time the
EM step is terminated either after 2000 iterations or when the
improvement on the likelihood function is not greater than 10−16.
Figure 3 shows the best mixture model fitting the data for the whole
genome, which is a mixture of two exponential and three normal
components.

Subsequently, we apply the model-based classification to find
genes associated with differential binding sites using fdr. We classify
a binding site as significant when its fdr < 0.1. Since we group
binding sites according to their respective gene regions, the gene
with different Pol II binding density is also significant. We refer to
these genes as significant genes. In the MCF7+E2 cells (Table 1),
448 genes are found to be significant . The results are consistent with
previous findings. For instance, PGR and GREB1 have been reported
as ER target genes that are upregulated and MCF7 + E2 cells have
been shown to have more genes upregulated than downregulated
after E2 treatment (Feng et al., 2008; Lin et al., 2004). The list of
significant genes is provided in the Supplementary Material.
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Fig. 3. The fit of the best mixture model on the normalized MCF7 versus
MCF7 + E2 data. The optimal mixture model and its individual components
are plotted. Blue (solid) line represents the best mixture model (mixture of
two exponential and three normal components) imposed on the histogram of
the normalized difference of the binding quantity. Black (dashed), brown
(dotted) and green (dot-dash) lines represent normal components with
(µ1 = 5; σ1 = 8), (µ2 = 9; σ2 = 26), (µ3 = 19; σ3 = 63), respectively. Red
(long-dash) and magenta (two-dash) represent exponential components with
β1 = 127 and β2 = 112, respectively. For color version of the figure see
Bioinformatics online.

Table 1. A summary of significant genes identified from MCF7 + E2 and
OHT with MCF7 as a reference

Comparison with MCF7 control

MCF7 + E2 OHT (MCF7 + E2) ∩ OHT

No. genes with
decreased binding

184 373 62

No. genes with
increased binding

264 282 41

No. of known genes
(RefSeq)

18 364

3.2 Comparison of Pol II binding between MCF7
and OHT cells

We then applied the same methods comparing the tamoxifen-
resistant OHT cells with the MCF7 and the results are summarized
in Table 1. In the OHT cells, there are more (655 in total)
significant genes than those in the MCF7+E2 cells. In particular,
the number of downregulated genes in OHT (373) is more than
doubled the ones found in MCF7 + E2 cells (184). This may help
to explain the mechanism of tamoxifen-resistance in the OHT cells.
Therefore, we carried out functional analysis on the 311 genes that
are uniquely associated with decreased Pol II bindings in OHT
using Ingenuity Pathway Analysis (IPA, http://www.ingenuity.com),

Fig. 4. The top 10 functional groups identified by IPA for the 100 highly
connected genes that show decreased Pol II binding quantities in OHT cells
but not in E2-treated MCF7 cells. The blue bar indicates the minus logarithm
(base 10) of the P-values for the Fisher’s exact test. The threshold line
indicating P < 0.05. For color version of the figure see Bioinformatics online.

which calculates the P-values using right-tailed Fisher’s exact test.
Cellular growth and proliferation, cellular movement and embryonic
development are the top functional groups and cancer is the top
disease associated with these genes. In addition, we identified a
group of highly connected subset of 100 genes that are enriched
with functions including gene expression (38 genes), cell-cycle
control (19 genes) and cell death control (39 genes) as shown in
Figure 4. Furthermore, Gene Ontology (GO) enrichment analysis
also identifies positive regulation of anti-apoptosis as significant
(P < 0.0052, using hypergeometric test). Our findings thus suggest
a dysregulation of cell-cycle and gene expression control pathways
as well as apoptosis control in the tamoxifen-resistant cells. The
detailed GO results can be found in the Supplementary Table 2 and
Supplementary Figure 4.

3.3 Modulation of Pol II binding patterns
Different biological conditions not only lead to difference in Pol
II binding quantities, but they can also induce changes in Pol II
binding dynamics and patterns on the genes. ChIP-seq for the first
time allows us to study such changes which may lead to a new
direction in cancer research. To study this, we applied hierarchical
clustering to the 448 significant genes found in MCF7 + E2 based
on their Pol II binding patterns in MCF7 (Fig. 5a) and MCF7 + E2
(Fig. 5b), respectively. In E2-treated MCF7 cells, 167 genes show
high binding near their TSS, 51 genes show enriched binding at the
3′ end and 24 genes exhibit high binding at both 5′ and 3′ ends.
Eighty-five genes display high activities mostly in the first half of
their gene regions and 77 genes exhibit high areas of enrichment in
the second half of their gene regions. We see similar clustering for the
MCF7 control. In particular, out of the 136 genes with high binding
near the TSS, 89 genes also display high binding near TSS after
E2 treatment (Fig. 6a). Alternative promoters of human genome,

2338

http://www.ingenuity.com


[15:55 24/8/2009 Bioinformatics-btp384.tex] Page: 2339 2334–2340

Comparative study on ChIP-seq data

Fig. 5. Hierarchical clustering of genes associated with differential binding
sites in MCF7 and MCF7 + E2 cell lines and their associated Pol II binding
patterns. (a) Binding patterns in MCF7 control and (b) binding patterns
in MCF7 + E2. Red and blue color on the heatmap represent high- and
low-binding quantity, respectively. Colored clusters indicate the different
grouping based on their Pol II binding patterns. Genes in yellow cluster
show high binding near their 3′ end. Cyan clustered genes show high binding
around their 5′ end. Genes in green cluster tends to have high binding
anywhere along the 3′ and 5′ ends. The genes clustered in both heatmap
are identical.

(a) (b)

Fig. 6. A diagram showing the number of genes in (a) cluster which display
high binding at 5′ end and (b) cluster which display high binding at 3′ end.
For color version of the figure see Bioinformatics online.

especially downstream promoter in E2-induced genes close to 3′-
terminus of the gene has also been reported in Singer et al. (2008)
using a custom promoter tiling array.

Next, we cluster the 655 significant genes found in OHT
[Supplementary Fig. 1a for patterns in MCF7 cells and Fig. 1b for
OHT cells]. There are 334 genes and 358 genes displaying high
bindings at their 5′ end in tamoxifen-resistant cell line and in normal
breast cancer cells, respectively, and 188 genes are shared by the two
groups (Fig. 6a). This observation implies that the Pol II binding

pattern is more severely modulated in OHT than in MCF7+E2.
Comparing these list of genes in OHT and MCF7 + E2 cells, we
find 125 genes displaying high bindings at their 5′ end only in
OHT. Functional and GO analysis show that 95 of these genes
are involved in protein bindings (details shown in Supplementary
Table 1 and the Supplementary Fig. 3). The list of genes associated
with increased/decreased bindings and genes associated with high-
binding patterns at 5′ and 3′ ends are provided in the Supplementary
Material.

4 DISCUSSION AND FUTURE WORK
ChIP-seq is a new technique which has the potential of replacing the
ChIP-chip technology in studying protein–DNA binding. Recently,
it has been noticed that comparative study is necessary to
adequately use ChIP-seq data and therefore normalization is a key
step in interpreting the data. Here, we present a two-step non-
linear normalization method based on locally weighted regression
(LOESS) to analyze ChIP-seq data across multiple samples in which
the differences are normalized with respect to the estimated moving
mean and variance. This normalization method can eliminate non-
linear noise and bias without making any prior assumption about the
shape of the noise. In addition, we apply a model-based approach
to identify genomic regions with statistically significant changes in
protein binding quantities between the normalized data. Although
this normalization method is applied to ChIP-seq data without any
replicates, it can also accommodate data with biological replicates.

We demonstrate the applicability of the normalization algorithm
by interpreting the biological signals associated with estrogen-
induced changes in Pol II binding quantity in normal breast cancer
cells (MCF7) and comparing it with its tamoxifen-resistant cells
(OHT). We perform data normalization and fit an Exponential-
NormalK finite mixture model on the normalized data to select
genes with significant Pol II binding densities between the samples.
The results on MCF7 cells are consistent with previous findings,
while experimental validation of certain selected genes on changes
related to the OHT cells are planned. The statistical analysis also
allows us to focus on the selected genes to further study their Pol
II binding patterns using hierarchical clustering. This provides a
novel angle of investigating the effects of drugs and disease states
on transcription regulation and may lead to a new direction in cancer
research. Our current results reveal new insight on the dynamics
of Pol II-mediated gene transcription and its regulation in MCF7
and OHT cells. We plan to extend the analysis to include miRNA
regions, intron regions and a larger pool of genes by relaxing the
threshold in the mixture step. In addition, we propose to carry out
new experiments on studying the modulation of the dynamics of
Pol II using synchronized cell culture. Then the same procedure can
be scaled up easily and applied to analyze these genomic regions
including non-coding RNAs.

As a comparison, we applied the sequence depth normalization
approach which is a constant adjustment on the same datasets.
The scaling factor is very close to one and thus the effect of the
sequence depth normalization is very minimal. As shown in the
Supplementary Figure 2, the green (dot-dashed) and the magenta
(dashed) line indicate that the normalized data is still biased
toward positive direction and have unequal variance. In contrast,
the two-step LOESS normalization is correcting for both mean and
variance making the normalized data to have mean around zero
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and homoscedastics (Fig. 2c). Moreover, since LOESS is a locally
weighted smoothing function (i.e. more weights are given to points
nearby and less weight to points further away), it is more robust to
outliers.

To gauge the utility of our approach, we used CisGenome
(Ji et al., 2008) on MCF7 versus MCF7+E2 and chose fdr ≤ 0.1 as
a cutoff to find genes associated with differential binding sites and
compare them with our findings. Of the 448 genes that we found
to be associated with differential bindings, 167 of them are also
found by CisGenome. This is indicative that the programs are able
to identify common features despite using different approaches. On
the other hand, there are genes found by one of the two programs
singularly, which appears to illustrate the different strengths of the
programs in uncovering particular genes with differential binding
patterns. However, future work is warranted for more definitive
conclusion. We further caution that all these algorithms should be
considered as a first-pass attempt to identify differential binding sites
and both algorithms appear to complement each other to provide a
more complete classification.

In our approach, we assume that the majority of the genes are not
associated with differential binding sites between the reference and
the treatment samples. This assumption is satisfied for applications
in which the difference between the samples (i.e. the effects of
a treatment) are not expected to influence a large proportion of
binding sites such as ChIP-seq studies on RNA Pol II, histone
markers, FoxA1 and ERα (Welboren et al., 2009; Zhang et al.,
2008). However, if the difference between the total number of
sequenced fragments from each sample is large such as in a
knock-out gene experiment, it may be recommendable to extend
the two-step normalization method described above to a three-
step normalization procedure. In the first step, the raw data are
normalized with respect to the sequence depth followed by the
LOESS normalization approach with respect to mean and variance.
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