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ABSTRACT

Motivation: Reconstructing gene networks from microarray data has
provided mechanistic information on cellular processes. A popular
structure learning method, Bayesian network inference, has been
used to determine network topology despite its shortcomings, i.e.
the high-computational cost when analyzing a large number of
genes and the inefficiency in exploiting prior knowledge, such as the
co-regulation information of the genes. To address these limitations,
we are introducing an alternative method, knowledge-driven matrix
factorization (KMF) framework, to reconstruct phenotype-specific
modular gene networks.
Results: Considering the reconstruction of gene network as a matrix
factorization problem, we first use the gene expression data to
estimate a correlation matrix, and then factorize the correlation
matrix to recover the gene modules and the interactions between
them. Prior knowledge from Gene Ontology is integrated into the
matrix factorization. We applied this KMF algorithm to hepatocellular
carcinoma (HepG2) cells treated with free fatty acids (FFAs). By
comparing the module networks for the different conditions, we
identified the specific modules that are involved in conferring the
cytotoxic phenotype induced by palmitate. Further analysis of
the gene modules of the different conditions suggested individual
genes that play important roles in palmitate-induced cytotoxicity.
In summary, KMF can efficiently integrate gene expression data
with prior knowledge, thereby providing a powerful method of
reconstructing phenotype-specific gene networks and valuable
insights into the mechanisms that govern the phenotype.
Contact: krischan@msu.edu
Supplementary information : Supplementary data are available at
Bioinformatics online.

1 INTRODUCTION
Cellular activities are believed to be coordinately regulated by genes
and proteins that function in complex networks. Disease states ensue
upon abnormal regulation of cellular activities. Reconstructing the
gene networks that give rise to the different phenotypes may provide
insights into the cellular mechanisms involved (Said et al., 2004;
Srivastava et al., 2007). Biological networks of protein–protein
interaction (Han, 2008), metabolic pathways (Ravasz et al., 2002)
and transcriptional regulation (Ihmels et al., 2002) are modular in

∗To whom correspondence should be addressed.

structure, enabling mutations to be isolated to specific modules
without affecting the overall viability of the system (Jeong et al.,
2000; Thieffry and Romero, 1999; Yook et al., 2004). Since
organized modularity is ubiquitous in biological systems, identifying
the gene modules and their interplay in a modular network should
help to provide insights into the differential mechanisms involved
in normal versus disease states.

Previously we identified that saturated free fatty acid (FFA),
e.g. palmitate, induced cytotoxicity in liver cells, while unsaturated
FFAs, e.g. oleate and linoleate, were not significantly cytotoxic (Li
et al., 2007a, b; Srivastava and Chan, 2007; Yang and Chan, 2009).
Palmitate-induced cytotoxicity of liver cells has been implicated
in the pathogenesis of many obesity-related metabolic disorders,
such as fatty liver disease, non-alcoholic steatohepatitis (NASH)
and non-alcoholic fatty liver disease (NAFLD) (Farrell and Larter,
2006; Scheen and Luyckx, 2002). Tumor necrosis factor (TNF)-α,
a proinflammatory cytokine often is involved, along with elevated
FFA, in these diseases (Bruce and Dyck, 2004), and further
potentiates the cytotoxicity induced by palmitate (Li et al., 2007b;
Srivastava and Chan, 2007; Srivastava et al., 2007). To study the
multi-faceted effects of palmitate and provide insights into potential
mechanism of saturated FFA-induced alterations, we obtained gene
expression profiles of hepatocellular carcinoma (HepG2) cells upon
exposure to different FFAs and TNF-α, and applied a module-based
gene network reconstruction method that integrates prior knowledge
and phenotypic information. The proposed methodology consists
of two phases. The first phase, the ‘gene selection phase’, selects
a subset of genes that are relevant to the phenotype, palmitate-
induced cytotoxicity, using a mixture regression model. The second
phase, the ‘network reconstruction phase’, clusters the selected
genes into modules, and reconstructs a module network based upon
the interactions between the modules.

Selecting the genes that are potentially relevant to the desired
metabolic/phenotypic response of the cells can be viewed as a
feature selection problem (Ressom et al., 2008; Saeys et al., 2007),
which is extensively studied in machine learning (Bhaskar et al.,
2006; Inza et al., 2004). Most feature selection methods, such
as the Wilcoxon’s rank sum test (Troyanskaya et al., 2002) and
Fisher’s Discriminant Analysis (FDR; Chan et al., 2003), are data
driven, and thus susceptible to the noise level of the microarray
data. One strategy to ameliorate this problem is to incorporate
domain knowledge and functional information of the genes (Phillip
et al., 2004). Typically these knowledge-based methods qualitatively
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incorporate the prior knowledge in post-processing the genes that
are selected by the data-driven approaches. In the present work, we
address this limitation with a Bayesian mixture regression model
that quantitatively incorporates the prior knowledge of the gene
functions, upfront, in the gene-selection phase (see Supplementary
Methods for details). By this process 250 genes are selected.

Clustering methods, such as Self Organizing Map (Toronen
et al., 1999; Yin et al., 2006), hierarchical clustering (Eisen et al.,
1998) and K-means (Ma et al., 2005), commonly used to identify
gene modules, cannot uncover the interactions among the modules
or clusters. To address this limitation, several studies integrated
clustering methods with structure learning algorithms, such as
graphical Gaussian modeling and Bayesian network learning (Li and
Chan, 2004; Segal et al., 2003; Toh and Horimoto, 2002). These
approaches are predominantly data-driven and thus susceptible
to noise in the expression data, and suffer from the sparse
data problem associated with limited number of experimental
conditions (Husmeier, 2003; Yu et al., 2004).

Previous studies recognized the importance of exploiting prior
knowledge in reconstructing networks with sparse and noisy
expression data (Bar-Joseph et al., 2003; Berman et al., 2002;
Hartemink et al., 2002; Ideker et al., 2001; Ihmels et al., 2002;
Li and Yang, 2004; Pilpel et al., 2001). Similarly, we developed
a framework based on knowledge-driven matrix factorization,
termed KMF, to exploit the domain knowledge and reconstruct
modular gene networks. This framework views the gene network
reconstruction as a matrix factorization problem. In brief, the
pairwise correlation coefficients between any two genes are
computed from their expression data and used to construct a
correlation matrix. This correlation matrix is decomposed into
a product of three matrices, from which the gene modules and
module interaction information are extracted. During this process,
the Gene Ontology (GO) information is introduced as regularization
in matrix factorization, which affects the decomposed matrices
and eventually the derived gene modules and interaction among
modules. Compared with the existing approaches for gene network
reconstruction, the key features of the proposed KMF framework
are: (i) derives both the gene modules and their interactions
from a combination of expression data and GO information; (ii)
incorporates the prior knowledge of co-regulation relationships
into the network reconstruction using a regularization scheme; and
(iii) presents an efficient learning algorithm based on non-negative
matrix factorization and semi-definite programming.

Finally, although a number of algorithms have been developed for
matrix factorization (Ding and He, 2005; Lee and Seung, 1999), this
study distinguishes from the prior studies in that it incorporates the
prior knowledge of the gene functions into the matrix factorization.
In addition, unlike most matrix factorization methods that only
identify gene clusters, the current framework derives both the gene
modules and their interactions simultaneously.

2 METHODS
KMF is a technique based on matrix factorization. It first computes pairwise
correlation between two genes based on their expression levels across
different experimental conditions. The matrix of pairwise gene correlation,
denoted by W , is approximated by the product of three matrices, M ×C×M.
A gene modular network, including gene modules and their interaction, is
derived from the decomposed matrices M and C.

We denote the gene expression data by X = (x1,x2,...,xn) where n is
the number of genes, and each xi = (xi,1,xi,2,...,xi,m)∈Rm is the expression
levels of the i-th gene measured under m conditions. We can compute the
pairwise correlation between any two genes using statistical correlation
metrics such as Pearson correlation, mutual information and χ2-statistics.
In our experiment, we use RBF kernel function. This computation results
in a symmetric matrix W =[wi, j]n×n where wi, j measures the correlation
between gene xi and xj . This estimated correlation matrix W provides
valuable information about the structure of the gene network since a high
correlation wi, j between two genes xi and xj could suggest that: (i) genes xi

and xj belong to the same module, or (ii) gene xi regulates the expression
levels of gene xj or vice versa. To derive these two types of interactions
simultaneously, we follow the framework of weighted non-negative matrix
factorization (WNMF) of Ding and He (2005) and factorize W as follows:

W ≈M ×C×M�

where M is a matrix of size n×r and C is a matrix of size r×r, where
r �n is the number of modules that can be determined empirically as we
will discuss later. Matrix M =[mi, j]n×r represents the memberships of the n
genes in r modules where mi, j ≥0 indicates the confidence of assigning the
i-th gene to the j-th module. Matrix C =[ci, j]r×r represents the relationships
among r modules where ci, j ≥0 indicates the confidence of the two gene
modules to interact (regulate) with each other. Note that in this study, we
focus on the undirected network since the gene module regulation matrix C
is symmetric.

To determine the appropriate factorization of matrix W , we first define a
loss function ld (W ,MCM�) that measures the difference between W and the
factorized matrices M and C as follows:

ld (W ,MCMT )=||W −MCM�||2F =
n∑

i, j=1

(Wi, j −[MCMT ]i, j)
2

Second, we regularize the solution of M using the prior knowledge from GO
information. We encode the information within GO by a similarity matrix S,
where Si, j ≥0 represents the similarity between two genes in their biological
functions. The discussion of gene similarity by GO can be found in Jin et al.
(2006). To ensure the modules to be consistent with the prior knowledge
within the GO, we introduce another loss function lm(M,S) that measures
the inconsistency between M and S as follows:

lm(M,S)=
r∑

k=1

m�
k L(S)mk = tr(M�L(S)M)

where mk is the k-th column of M matrix. L(S) is the combinatorial Laplacian
of matrix S. The definition of combinatorial Laplacian and its application to
regularize numerical solutions can be found in Chung (1997).

Furthermore, we regularize the solution for C by the regularizer lc(C)=
||C||2F . Regularizer, as already shown in statistical machine learning
theory (Scholkopf and Smola, 2001), is important for improving the stability
of solutions as well as the generalization error of statistical models. This
regularizer enforces sparse regulation among the gene modules, and as point
out in Andrade et al. (2005), will result in a scale-free structure of the gene
module network. By combining the above factors together, we obtain the
following optimization problem:

argmin
M∈Rn×r ,C∈Rr×r

ld (W ,Z)+αlm(M,S)+βlc(C)

s. t. C �0, Ci,i =1, i=1,2,...,n,

Ci, j ≥0, i,j=1,2,...,r

Mi, j ≥0, i,j=1,2,...,n, Z =MCM�

We solve the above optimization problem through alternating
optimization. It alters the process of optimizing M with fixed C and the
process of optimizing C with fixed M iteratively till the solution converges
to the local optimum (see Supplementary Methods). Furthermore, the key
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parameters that determine the outcome of the algorithm, i.e. α, β and the
number of modules, are tuned automatically. In particular, both α and β

are determined by a supervised learning method; the number of modules
is decided by a stability analysis. Further details can be found in the
Supplementary Methods.

The KMF algorithm was applied to toxic and non-toxic conditions,
separately. It was also applied to the combination of both conditions. We
denoted by Ct and Cn the interaction matrices of toxic and non-toxic
conditions, respectively, and by Call the interaction matrix derived from all
the conditions. In order to ensure that matrices Ct and Cn are comparable, we
align Ct and Cn with Call. The alignment is achieved by linearly transforming
Ct (and Cn) to minimize |Ct −Call|2F (and |Cn −Call|2F ).

Finally, we emphasize that although this framework follows the work of
WNMF, it is different from WNMF in that it incorporates the prior knowledge
of the gene functions by introducing regularizer lm(S,M), which not only
results in a different objective function to be optimized but also a different
method of optimization.

3 RESULTS AND DISCUSSION
We applied the proposed KMF framework to HepG2 cells cultured in
different FFAs, with or without TNF-α for 24 h (see Supplementary
Methods for details). To reconstruct the network, 250 genes selected
in the gene selection phase (see Supplementary Methods) were used.
Prior knowledge can be incorporated to help reconstruct networks
with sparse and noisy expression data (Bar-Joseph et al., 2003;
Berman et al., 2002; Hartemink et al., 2002; Ideker et al., 2001;
Ihmels et al., 2002; Li and Yang, 2004; Pilpel et al., 2001). Typically,
the prior knowledge of the gene interaction is encoded in a Bayesian
prior, in which a high probability is given for each gene relationship
derived from prior knowledge. By incorporating a Bayesian prior,
Bayesian network (BN) analysis penalizes any gene relationship
(i.e. gives a low score) when it violates the prior knowledge of the
gene relationships, thus improving both the accuracy and efficiency
of BN analysis. In this study, the prior knowledge of the genes is
taken from the GO database. Although GO information does not
directly reveal the gene relationships, nevertheless it does provide
co-regulation relationships and functional information of the genes,
both of which are still potentially useful for reconstructing gene
networks. Unlike existing methods that apply the GO information
to generate predefined sets of genes based on supervised feature
selection (Subramanian et al., 2005), our KMF algorithm applies
an alternative unsupervised feature selection, which allows us to
identify the feature genes when the classification of the experimental
conditions is unknown. In addition, KMF tunes the impact of
the GO information on the model selection to obtain optimal
results (see Section 2). This is in contrast to the other methods
where the GO information takes precedence over the subsequent
analysis (Srivastava et al., 2008).

The KMF algorithm yields two matrices, M and C. M is the
module matrix. Each element Mi, j in matrix M represents the
confidence of assigning the i-th gene to the j-th module. We can
derive the member genes for each module by assigning each gene i to
the module j∗ with the highest weight, i.e. j∗ =argmax1≤j≤m Mi, j .
These member genes will furthermore allow us to infer the overall
biological functions of each module. C is the network structure
matrix that indicates the connectivity between gene modules. In
particular, each element Ci, j in matrix C represents the strength of
the interaction between modules i and j. The interaction information
revealed by the C matrix may shed light onto how biological

Table 1. Gene modules identified by KMF

Module Function

1 Lipid metabolism and lipid processing.
2 Signaling proteins, intracellular and membrane

protein-mediated: GPCR signaling, chemokine/TNF-α
receptor signaling and ion channel-related signaling.

3 Glucose metabolism: glycolysis and pentose phosphate
pathway.

4 Post-translational modification: ubiquitin-proteasome
pathway, protein folding, transportation, phosphorylation.

5 Reactive oxygen species (ROS) homeostasis, redox system
regulation and the TCA cycle.

6 Energy: ATP and GTP metabolism.
7 Protein synthesis: translation initiation and transcription.
8 Amino acid metabolism and urea cycle.
9 Apoptosis: executors and regulators.

information is processed and passed between different cellular
activities. Furthermore, comparing the C matrices for the different
conditions suggests structural changes in the module network in
response to the toxic conditions, and these changes may confer the
cytotoxic phenotype.

3.1 Application of KMF to identify gene modules and
the interactions between the modules

Nine gene modules are identified by the proposed. We observe
that the identified modules are highly enriched with genes
involved in specific cellular functions or activities (Table 1).
A full list of the genes in each module is available online at
http://www.chems.msu.edu/groups/chan/GO_KMF_genecluster.xls.
Next, KMF identified the interactions between the modules, namely
the connections between different cellular functions, in the form of
the C matrix (Table 2), and thereby recovered a module network
(Fig. 1). The bottom row (‘sum’) of Table 2 sums the correlation
coefficients (Ci, j) between a module with the other eight modules,
thereby capturing an overall snapshot of the module connections.
A higher ‘sum’ value indicates that the module is more highly
correlated with the other modules and thereby takes a more
central position in the overall gene module network. A map of the
module network is provided in Figure 1, where the strengths of
the interactions between the gene modules are indicated by both
darkness and thickness of the edges.

From the C matrix (Table 2) and the module interaction network
(Fig. 1), module 6 (ATP and GTP metabolism) has the highest ‘sum’
value among the nine modules, and is presented as the largest node
in the module interaction map. Indeed, as the molecular currency
of intracellular energy transfer, ATP (as well as GTP) is either
produced or consumed by most cellular activities, e.g. metabolism
(catabolism and anabolism) and signaling pathways. Module 6 has
the highest interaction values with modules 3, 5 and 8 in the C
matrix, reflecting that glucose metabolism (module 3) and TCA
cycle (module 5) are the major metabolic pathways that produce
ATP, the electron transport chain (ETC) (module 5) produces the
proton gradient across the mitochondria membrane to provide the
driving force for ATP production (Lehninger et al., 2005), and
amino acid metabolism (module 8) is highly dependent on the ATP
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Table 2. C matrix of the modules

Module 1 2 3 4 5 6 7 8 9

1 0.152 0.234 0.195 0.191 0.275 0.101 0.236 0.176
2 0.152 0.177 0.155 0.152 0.214 0.092 0.183 0.140
3 0.234 0.177 0.236 0.215 0.305 0.107 0.284 0.209
4 0.195 0.155 0.236 0.204 0.295 0.120 0.249 0.188
5 0.191 0.152 0.215 0.204 0.302 0.122 0.253 0.186
6 0.275 0.214 0.305 0.295 0.302 0.170 0.360 0.267
7 0.101 0.092 0.107 0.120 0.122 0.170 0.138 0.108
8 0.236 0.183 0.284 0.249 0.253 0.360 0.138 0.227
9 0.176 0.140 0.209 0.188 0.186 0.267 0.108 0.227

Sum 1.560 1.265 1.767 1.642 1.625 2.188 0.958 1.930 1.501

Elements in rows 1–9 represent the interaction strength between modules. The bottom
row (sum) is the summation of each column.

Fig. 1. Gene module interaction network. Interactions among the nine gene
modules are visualized according to the C matrix. The nodes represent
modules and the edges indicating the strength of the interaction between
modules. A higher Ci, j value in the C matrix, suggesting stronger interaction,
is indicated by a thicker and darker edge line, whereas a higher ‘sum’ value
in the C matrix, suggesting more relevant module, is indicated by a larger
and darker node.

levels. Therefore, from the example of module 6, KMF recovered a
high connectivity between ATP (and GTP) synthesis and the major
cellular activities that are known to be related to energy production
and consumption.

3.2 Application of KMF to identify the interactions
involved in palmitate-induced cytotoxicity

KMF, if applied to the different conditions separately, yields
different C matrices specifically for the toxic (saturated FFAs
and TNF-α, see Supplementary Table 1) and non-toxic (control,
unsaturated FFAs and TNF-α, see Supplementary Table 2)
conditions. This is in contrast to the average C matrix obtained
using all the conditions discussed above (Table 2). Similarly, these
condition-specific C matrices indicate module networks composed
of interactions between cellular activities for their corresponding
condition. The C matrix in the toxic conditions differs significantly
from the non-toxic conditions, suggesting that the interactions
between the gene modules in the toxic (saturated FFAs and TNF-α)
case are altered significantly, and these changes potentially may
help to explain the phenotype, palmitate-induced cytotoxicity.
To quantitatively assess these changes, we subtracted the C matrix

for the non-toxic conditions from the C matrix for the toxic
conditions, and obtained a matrix we denoted as the ‘difference
C matrix’ (Table 3). This matrix indicates the differences in the
interactions between the gene modules for the toxic versus the
non-toxic conditions. Positive values indicate stronger interactions
between the modules under the toxic than the non-toxic conditions,
and vice versa. The summation of each column in the difference
C matrix (the row denoted as ‘sum’ in Table 3) indicates the
difference between the toxic and the non-toxic conditions in the
interactions of a module with the other modules. As shown in the
difference C matrix (Table 3), modules 2, 3, 4 and 5 are more highly
connected to the other modules, while modules 6 and 9 are less
connected to the other modules in the toxic than in the non-toxic
conditions. Since modules 4 and 6 have the largest positive and
negative ‘sum’ values, 0.144 and −0.294, respectively, we focused
on these two modules in the discussion of their potential involvement
in palmitate-induced cytotoxicity (Supplementary Discussion). In
brief, the ubiquitin-proteasome pathway and post-translational
modifications (folding/unfolding, transportation and degradation)
of proteins, module 4, was identified to be important in saturated
FFA-induced cytotoxicity, which is supported by the literature (Ding
et al., 2007; Guo et al., 2007; Lai et al., 2008; Zhang et al., 2006).
In contrast, module 6, ATP metabolism, was suggested to be less
correlated with the other cellular processes in the toxic than non-
toxic conditions. Indeed long-term exposure of saturated FFAs can
activate uncoupling proteins (UCP) (Lameloise et al., 2001), which
uncouple mitochondrial oxidative phosphorylation and produce heat
instead of ATP (Breen et al., 2006). As a result, with this additional
regulation through UCPs, the level of ATP should be less connected
with the cellular activities in the toxic than the non-toxic conditions.

The proposed KMF algorithm identified the gene modules and
their interactions, as well as how they change in the toxic versus
non-toxic conditions. The results suggested that post-translational
modification and uncoupling proteins (UCP) play important roles in
mediating the palmitate/TNF-α induced cellular responses, thereby
shedding light on potential mechanisms involved in palmitate-
induced cytotoxicity. Thus far, this methodology has focused on
the module network. To further uncover the specific genes that may
be responsible for the palmitate-induced cytotoxicity, we performed
further analysis to assess the contribution of each gene in the two
gene modules that were deemed important.

3.3 Identifying potential genes responsible for
palmitate-induced cytotoxicity

As described above, the values in the M matrix (Mi, j) indicate the
strength or contribution of gene i to module j. The rank of the genes
in a module by their Mi, j values provides a relative index of the
importance of a gene to the cellular function that corresponds to that
module. Under different conditions, the modules remained relatively
stable with respect to their size and gene members, however, the
rank of certain genes changed significantly in some of the modules.
The importance or the weights of these genes in their corresponding
modules varied across the different conditions, suggesting that these
genes may play important roles in conferring a phenotype.

Given the importance of modules 4 (post-translational
modification of proteins) and 6 (ATP and GTP metabolism),
we ranked the genes in these two modules according to their Mi, j
values in the toxic conditions. The top 10 out of 33 genes in
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Table 3. Difference C matrix. Obtained by subtracting the C matrix of the non-toxic conditions (Supplementary Table 2) from the C matrix of the toxic
conditions (Supplementary Table 1)

Module 1 2 3 4 5 6 7 8 9

1 0.006 0.016 0.023 0.008 −0.050 −0.016 0.006 −0.007
2 0.006 0.037 0.031 0.017 −0.017 −0.007 0.023 −0.002
3 0.016 0.037 0.038 0.039 −0.053 −0.001 0.010 0.011
4 0.023 0.031 0.038 0.034 −0.024 0.007 0.027 0.008
5 0.008 0.017 0.039 0.034 −0.021 0.011 0.015 −0.005
6 −0.050 −0.017 −0.053 −0.024 −0.021 −0.010 −0.062 −0.057
7 −0.016 −0.007 −0.001 0.007 0.011 −0.010 0.003 −0.027
8 0.006 0.023 0.010 0.027 0.015 −0.062 0.003 −0.010
9 −0.007 −0.002 0.011 0.008 −0.005 −0.057 −0.027 −0.010

Sum −0.014 0.088 0.097 0.144 0.098 −0.294 −0.040 0.012 −0.089

The largest positive (0.144) and negative (−0.294) sum values are marked in bold.

Table 4. Top 10 out of 33 genes in module 4 ranked according to their
contributions to the module under toxic conditions

Rank

Toxic Non-toxic Difference Gene

1 4 3 LCMT
2 5 3 MAP3K12
3 3 0 PRSS2
4 2 −2 ST13
5 25 20 HSP105B
6 6 0 APOC1
7 30 23 RABGGTA
8 14 6 UVRAG
9 7 −2 DPM2
10 23 13 MAPKAPK3

The ranking difference was calculated by subtracting the ranking number of the specific
gene under toxic conditions from non-toxic conditions. Positive ranking differences
indicate bigger ranking numbers and less contribution in non-toxic conditions. The two
genes with the highest Difference ranks are highlighted in grey.

module 4 and all the genes in module 6 are listed in Table 4 and
Supplementary Table 3, respectively. The ranking numbers of these
genes in the toxic and non-toxic conditions are listed, as is the
difference in the rankings of the genes between these conditions
(Table 4 and Supplementary Table 3).

In module 4, the positions of two genes, Rab geranylgeranyltrans-
ferase (RABGGTA) and heat shock 105 kDa (HSP105B) changed
significantly in the toxic conditions, as indicated by high positive
differences in the ranking, 23 and 20, respectively, suggesting that
these two genes may be more involved in the toxic than non-toxic
conditions and thereby play a role in conferring the toxic phenotype.
RABGGT catalyzes the transfer of a geranyl–geranyl moiety from
geranyl–geranyl pyrophosphate to Rab proteins (GTPases) such
as RAB1A, RAB3A and RAB5A (Leung et al., 2006). As a
member of the Ras superfamily of monomeric G proteins, Rab
proteins regulate membrane traffic, which facilitates the trafficking
of cell membrane proteins from the Golgi apparatus to the plasma
membrane and the recycling of the membrane proteins (Seabra et al.,
2002; Stenmark and Olkkonen, 2001). RABGGT, by facilitating the
prenylation of Rab proteins (Leung et al., 2006), ensures that the

Rab proteins are insoluble and correctly anchored in the membrane.
The response of RABGGT to saturated FFAs and its potential
role, if any, in the saturated FFA-induced cytotoxicity has never
been studied. The mRNA level of RABGGT is not affected by
oleate and increased by palmitate albeit insignificantly (Fig. 2a,
see Supplementary Methods for the details of the experiments).
However, further analysis by silencing the gene expression level
of RABGGT revealed a very interesting feature of RABGGT
in regulating cytotoxicity (Fig. 2b). In the non-toxic conditions,
i.e. BSA (vehicle of the FFAs) or oleate, the LDH release was
increased by the siRNA of RABGGT (Fig. 2b), suggesting that
RABGGT may help to maintain normal healthy cellular activities
under physiological and non-toxic conditions. Indeed, membrane
traffic pathways, regulated by RABGGT through Rab GTPases, are
important in maintaining normal vesicle formation and movement
and membrane protein trafficking and recycling. In contrast, in the
toxic condition, i.e. palmitate, the LDH release was decreased by
the siRNA of RABGGT (Fig. 2b), suggesting that RABGGT may be
involved in mediating the cytotoxic effect of palmitate. The potential
mechanism of the distinct roles of RABGGT under the different
conditions is unclear at this point. Given that RABGGT catalyzes
the prenylation and therefore the activation of Rab GTPases,
we hypothesize that the toxic conditions (i.e. palmitate) induce
disordered trafficking and recycling of the membrane proteins and
disrupt the membrane integrity, through RABGGT and Rab proteins,
thereby enhancing the cytotoxicity.

As discussed in the Supplementary Discussion, as an important
chaperone protein involved in processing denatured proteins under
stress conditions (Yamagishi et al., 2000, 2003), HSP105B may also
be involved in the cellular responses induced by the toxic conditions,
potentially by regulating the post-translational modifications, such
as denaturation, folding/unfolding, transportation and degradation.
Indeed, we found that both the mRNA (Supplementary Fig. 1A)
and protein (Supplementary Fig. 1B) expression levels of HSP105B
were significantly increased by palmitate but not by oleate,
suggesting that this gene potentially plays a role in the cytotoxicity
induced by saturated FFA. HSP105B usually exists as a complex
associated with Hsp70 and Hsc70 (a constitutive member of
the HSP70 family) in mammalian cells and functions as a
negative regulator of Hsp70/Hsc70 by suppressing the Hsp70/Hsc70
chaperone activity (Yamagishi et al., 2000). More detailed
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(a) (b)

Fig. 2. Effects of the fatty acids on the expression level of RABGGTA
and the role of RABGGTA in cytotoxicity. HepG2 cells were exposed to
0.7 mM palmitate or oleate for 24 hours (a). After treatment, the cells were
harvested, and RT-PCR analysis was performed to detect the mRNA levels
of RABGGTA (a). Reverse transfection of suspended HepG2 cells were
performed with scrambled siRNA (whit bar, negative control) or siRNA
of RABGGTA (gray bars, siRABGGTA) for 24 h and the transfected cells
were then cultured in 0.7 mM palmitate or oleate for another 24 h (b). Cells
were then harvested, and the LDH release was assayed (b). Data expressed
as average of nine samples ±SD from three independent experiments.
Student’s t-test was used to analyze the differences between treatment groups.
Significantly higher (*) or lower (**) than negative control, i.e. scrambled
siRNA; P<0.01.

investigation is needed to clarify the exact role of HSP105 in
palmitate-induced cytotoxicity.

In module 6, the positions of two genes, ATPase, H+
transporting, lysosomal interacting protein 1 (ATP6IP1) and guanine
monophosphate synthetase (GMPS) are changed significantly by
the toxic conditions, indicated by their having the highest positive
difference ranking, 7 and 6, respectively (see Supplementary
Table 3), suggesting that these two genes may be involved in
conferring the toxic phenotype. As an essential component of most
eukaryotic cells, ATP6IP1 is located on the vacuole membrane,
responsible for acidifying vacuoles by transporting H+ into the
vacuoles at the expense of ATP (Nelson, 1987, 1992). Vacuoles
are involved in removing and recycling unwanted or harmful
substances, such as misfolded proteins and foreign invaders such as
bacteria (Alberts, 2002; Ganong, 2003). Together with lysosomes,
vacuoles play major roles in autophagy and maintaining the balance
between biogenesis and degradation of many cellular products. It
has been shown that palmitate induces lysosomal permeabilization,
which contributes to the cytotoxicity induced by palmitate (Acosta
and Wenzel, 1974; Feldstein et al., 2004); however, the effect
of palmitate on the vacuole membrane has not been reported. In
fact, vacuoles and lysosomes share similarities in their structures,
internal pH and major functions, and these two organelles sometimes
fuse together to exchange their internal substances. Considering the
similarity between vacuoles and lysosomes, and more importantly
based on our result that suggests this vacuole membrane protein
ATP6IP1 plays an important role in the toxic (palmitate) conditions,
we hypothesize that palmitate may similarly perturb the vacuole
membrane, and thereby interrupt the internal pH, and induce vacuole
permeabilization, which may lead to apoptosis and cytotoxicity.
Since ATP6IP1 is the major membrane protein that produces the
pH difference across the vacuole membrane, we further propose
that palmitate perturbs the vacuole membrane by interacting with
ATP6IP1. The mRNA (Fig. 3a) and protein (Fig. 3c) expression
levels of ATP6IP1 were not significantly affected by either palmitate
or oleate. However, silencing the expression of ATP6IP1 with the
siRNA of ATP6IP1 decreased the cytotoxicity induced by palmitate,
as evidenced by the LDH release (Fig. 3b). This result suggests that

(a) (b)

(c)

Fig. 3. Effects of the fatty acids on the expression level of ATP6IP1 and
the role of ATP6IP1 in cytotoxicity. HepG2 cells were exposed to 0.7 mM
palmitate or oleate for 24 h (a and c). After treatment, the cells were
harvested, and RT-PCR (a) and western blot analysis (c) were performed
to detect the mRNA (a) and the protein (c) expression levels of ATP6IP1.
Reverse transfection of suspended HepG2 cells were performed with
scrambled siRNA (white bar, negative control) or siRNA of ATP6IP1 (gray
bar, siATP6IP1) for 24 h and the transfected cells were then cultured in
0.7 mM palmitate or oleate for another 24 h (b). Cells were then harvested,
and the LDH release was assayed (b). Data expressed as average of nine
samples ±SD from three independent experiments. Student’s t-test was used
to analyze the differences between treatment groups. **Significantly lower
than negative control, i.e. scrambled siRNA, P<0.01.

palmitate may alter the vacuole membrane and induce cytotoxicity
through the vacuole membrane protein ATP6IP1.

As discussed in the Supplementary Material, the regulation of
guanine nucleotide synthesis by GMPS in liver cell cytotoxicity
has never been studied. Interestingly, we found that the mRNA
(Supplementary Fig. 2A) and protein (Supplementary Fig. 2B)
expression levels of GMPS were both significantly enhanced by
the saturated FFA, palmitate, but not by unsaturated FFA, oleate.
Currently, it is unclear what role this enzyme plays in the toxicity
induced by saturated FFA. However, the changes at the gene and
protein expressions of GMPS in response to palmitate suggested that
GMPS may play a role in saturated FFA-induced cellular activities.

4 CONCLUSIONS
KMF was used to reconstruct a gene module network, composed
of functional gene modules and their interactions. Comparing the
gene module networks for the different conditions revealed changes
in module interactions across the conditions. Our results showed
that modules 2–6 and 9 played important roles in palmitate-induced
cytotoxicity. These modules covered most of the popular areas of
the research on the cytotoxicity induced by saturated FFAs and
TNF-α in liver cells, including the regulation of apoptosis pathways
(module 9) (Barreyro et al., 2007; Feldstein et al., 2004; Yang and
Chan, 2009) and redox system (module 5) (Li et al., 2008; Srivastava
and Chan, 2007). In a separate study, we evaluated how saturated
FFAs and TNF-α affected some of the genes in module 9, such as
PKR and Bcl-2 family proteins, and found that the gene expression
level of Bcl-2 was suppressed by palmitate and TNF-α through
PKR (Li et al., 2007a; Yang and Chan, 2009), providing a potential
mechanism by which palmitate and TNF-α-induced cytotoxicity.
We also investigated some of the genes in module 5, such as
NADH dehydrogenases, which we found was also highly involved
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in palmitate-induced cytotoxicity by inducing ROS production (Li
et al., 2008).

In addition, assessing the contribution of genes within some of
the highly relevant modules (4 and 6) revealed potential genes
that may be involved in palmitate-induced cytotoxicity. Further
experiments confirmed the involvement of these genes in conferring
the phenotype, palmitate-induced cytotoxicity and suggested novel
research targets for addressing the palmitate-induced cytotoxicity.
In summary, by quantitatively integrating gene expression profile
with prior knowledge extracted from GO database, KMF provides
a powerful tool to reconstruct modular and phenotype-specific gene
networks that elucidate possible mechanisms involved in producing
a phenotype.
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