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Abstract
Cartesian tensor basis have been widely used to approximate spherical functions. In Medical Imaging,
tensors of various orders have been used to model the diffusivity function in Diffusion-weighted
MRI data sets. However, it is known that the peaks of the diffusivity do not correspond to orientations
of the underlying fibers and hence the displacement probability profiles should be employed instead.
In this paper, we present a novel representation of the probability profile by a 4th order tensor, which
is a smooth spherical function that can approximate single-fibers as well as multiple-fiber structures.
We also present a method for efficiently estimating the unknown tensor coefficients of the probability
profile directly from a given high-angular resolution diffusion-weighted (HARDI) data set. The
accuracy of our model is validated by experiments on synthetic and real HARDI datasets from a
fixed rat spinal cord.
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1. INTRODUCTION
In Medical Imaging, due to the advances in the imaging technology over the last decade, it has
become possible to acquire high angular resolution magnetic resonance (MR) images that
allows one to infer the apparent diffusivity of water in tissue. Several physical quantities that
can be estimated from the acquired MR data such as the diffusivity of water and the
displacement probability of its molecules are spherical functions. There are several ways to
model a spherical function. One way is to employ the spherical harmonics basis whose natural
space is the unit sphere. Cartesian tensor basis evaluated on the unit sphere can also be used
for modeling spherical functions and since they are multi-linear forms, are quite efficient to
compute and lead to simple formulations.

Cartesian tensor basis of order 2 has been used in literature for approximating the local
diffusivity in DT-MRI [1]. In this case the diffusivity can be written in the form vT Dv, where
D is a 3 × 3 symmetric positive definite matrix. However, 2nd-order tensors are incapable of
modeling complex geometry of the diffusivity function in practice for many cases (see [2,3],
such as in the presence of fiber-crossings, and a higher-order approximation must be employed
instead. Higher-order tensors have been used to model either the local diffusivity function [4,
5], or the Kurtosis component of it [6]. However, in all cases the peaks of the estimated higher-
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order tensor do not necessarily yield the distinct orientations of the underlying distinct fiber
bundles [2]. Hence, one should instead employ the displacement probability profiles given by
the Fourier integral

(1)

where q is the reciprocal space vector, S(q) is the DW-MRI signal value associated with vector
q, S0 the zero gradient signal and r and r0 is the direction and magnitude respectively of the
displacement vector. However, the computation of the integral in Eq. 1 is a task that involves
numerical integration or approximations.

In order to avoid the aforementioned computational effort and the possible inaccuracies
introduced by this step, one can directly estimate the displacement probability from the given
DW-MRI data. In this paper we propose a novel representation of the displacement probability
profile by using the 4th-order Cartesian tensor basis. 4th-order tensors have been studied
recently in [5] showing their capability to model multi-lobed diffusivity functions. In our
model, the lobes of the probability profile, which is expressed in the form of a 4th-order tensor,
correspond directly to orientations of distinct fiber distributions and thus there is no need to
evaluate the integral of Eq.1. We also present a novel method for efficiently estimating the 15
unknown tensor coefficients of the displacement probability from a given HARDI dataset. We
compare the performance of our method in computing accurate fiber orientations with several
other existing techniques, demonstrating the efficiency and accuracy of our model.

2. SPHERICAL FUNCTION TENSORIAL APPROXIMATION
A spherical function can be approximated by a nth-order Cartesian tensor expressed in the
following form

(2)

where v =[v1 v2 v3]T is a unit vector. The spherical functions modeled by Eq. 2 are antipodal
symmetric (T(v) = T(−v)) for even orders.

The ability of a Cartesian tensors to approximate the complex geometry of a spherical function
with many lobes increases with the order. A 2nd-order tensor (commonly used in DT-MRI)
can only be used for approximating antipodal symmetric spherical functions with a single lobe.
For approximating functions with more lobes, higher-order tensors are required. In the
following sections, we employ higher-order tensors to model the displacement probability
profile in HARDI datasets.

3. HIGHER-ORDER BASIS FOR HARDI APPROXIMATION
In this section we present a novel representation of the displacement probability profile as a
higher-order tensor and a method for direct estimation from a given DW-MRI dataset. We
model the probability profile by using the 4th-order Cartesian tensor basis as follows

(3)
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where ci,j,k(r0) are the tensor coefficients estimated for a given magnitude r0 of the displacement
vector. Given r0, Eq. 3 is a spherical function since the only argument is the unit vector r. In
the case of 4th-order tensors there are 15 unique unknown coefficients ci,j,k(r0) that need to be
estimated. However, since in our application, the given data is the DW-MRI signal and not the
displacement probability, we need to define a set of functions that approximate the signal, and
have the following properties: a) their Fourier integral gives the 4th-order tensorial basis
functions, and b) can be computed analytically.

A set of functions that have the above properties is presented in the right column of table 1.
This set of functions was obtained by taking all the possible combinations of partial derivatives
(∂/∂q1)i(∂/∂q2)j(∂/∂q3)kB(q), where i + j + k = 4 and B(q) is a real-valued function in ℜ3 defined
as

(4)

The Fourier integral of each partial derivative of Eq. 4 is expressed as

(5)

where c is a constant whose value is not dependent on r. Note that the left side of Eq. 5 is a
Cartesian tensor basis function. Hence we can employ the functions presented in table 1 to
model the displacement probability profile as

(6)

In the model proposed in Eq.6, the approximated DW-MRI signal has asymptotic behavior
(when ∥ q ∥→ ∞) similar to that of the commonly used Stejskal-Tanner equation [7].
Furthermore, by substituting Eq. 5 into 6 the displacement probability profile is modeled as a
4th-order tensor (Eq. 3). By using known properties of the Fourier transform, the integral in
Eq. 6 can be re-written in the following more convenient form that we will use later in Sec. 4.

(7)

where, . Note the presence of r0 in the argument of B(q/r0).

Figure 1 shows 3D plots of three of the basis functions (∂/∂q1)i(∂/∂q2)j(∂/∂q3)kB(q). By
observing the figure, we can see the variability in the shape of the basis functions (e.g. crosses
and peanut-like shapes). These characteristics of the functions provide the ability to our model
to approximate complex geometries such as fiber crossings. In the next section we employ our
proposed model (given by Eq. 7) to approximate the displacement probability profiles from a
given set of high angular resolution diffusion-weighted images.

4. FAST ESTIMATION FROM HARDI DATASETS
Given a set of N diffusion-weighted MR images Sn associated with diffusion gradient directions
gn, n = 1 … N, we seek to estimate the 15 unknown coefficients  in Eq. 7 by minimizing
the following energy
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(8)

where S0 is the zero gradient image. If N > 15 Eq. 8 can be minimized by solving an over-
determined linear system. This system is formed by constructing an N-dimensional vector S
that consists of the signal values Sn and a N × 15 matrix A whose entries are the values of our
15 dimensional basis (∂/∂q1)i(∂/∂q2)j(∂/∂q3)kB(αgn) ∀n = 1 … N, where α = ∥ qn ∥ /r0. We note
that α depends only on r0 if the diffusion-weighted images were acquired with a fixed b-value
since in this case ∥ qn ∥ is the same constant ∀n = 1 … N. In our experiments we used α = 0.5.
The estimated coefficients  are the components of the vector x in the following over-
determined linear system Ax = S, which can be solved very efficiently.

After solving the above system, we can compute the directions of the distinct fiber populations
by finding the peaks of Eq. 3. The probability profile can be visualized by plotting Eq. 3 as a
spherical function (i.e. for all unit vectors r) as shown in the experimental result section.

5. EXPERIMENTAL RESULTS
In this section we present experimental results on our method applied to simulated DW-MRI
data as well as real HARDI data from a fixed rat spinal cord.

5.1. Synthetic data experiments
In order to test our method in approximating displacement probability profiles from single
fibers as well as from fiber crossings, we synthesized a HARDI dataset of size 128 × 128 by
simulating two fiber bundles crossing each other using the realistic diffusion MR simulation
model in [8] (b-value=1250 s/mm2, 81 gradient directions).The probability profiles that were
estimated from this dataset by using our method are presented in Fig. 2(left) showing correct
fiber orientations.

Furthermore, in order to compare our proposed method with other existing techniques, we
performed another experiment using simulated noisy MR signal of 2-fiber crossings with
different amounts of Riccian noise (Fig. 2 right). We estimated the displacement probability
profiles from the corrupted signal using our proposed method and the following existing
methods: a)the DOT method described in [2],b) the ODF method presented in [9] and c) the
positive 4th-order diffusion tensor model in [5]. For all methods we computed the estimated
fiber orientation errors for different amount of noise in the data (shown in Fig. 3). The results
conclusively demonstrate the accuracy of our method, showing small fiber orientation errors
(~ 6°) for typical amount of noise with signal to noise ratios (SNR): 12.5-16.6. Furthermore,
by observing the plot, we also conclude that the accuracy of our proposed method is very close
to that of the DOT method and is better than the ODF method for higher noise cases. Here, we
should note that our method estimated each probability profile in approximately 2ms (on a
Pentium 2.4GHz) which demonstrates the efficiency of our method.

5.1.1. Real data experiments
Figure 4 shows a real data example from a fixed rat spinal cord. The protocol that used in this
experiment included acquisition of 22 images using a pulsed gradient spin echo pulse sequence
with repetition time (TR) = 1.5 s, echo time (TE) = 27.2 ms, bandwidth = 30 kHz, field-of-
view (FOV) = 4.3 × 4.3 mm. After the first image set was collected without diffusion weighting
(b ~ 0 s/mm2), 21 diffusion-weighted image sets with gradient strength (G) = 664 mT/m,
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gradient duration (δ) = 1.5 ms, gradient separation (Δ) = 17.5 ms and diffusion time (Tδ) = 17
ms were collected. The image without diffusion weighting had 8 signal averages, and each
diffusion-weighted image had 2 averages. By observing figure 4 it is clear that the white matter
probability profiles shows peaks that correspond to fiber tracts which, as expected, are
predominantly in the axial direction which is represented by the blue color. This indicates that
our proposed method estimates correct fiber orientations in real HARDI datasets. The same
figure also presents (in the zoomed plate) regions where more complex probability profiles
were estimated that show the underlying complexity of the tissue structures.

6. CONCLUSIONS
In this paper we presented a novel representation of the displacement probability profile as a
higher-order (4th) tensor. We constructed a set of basis functions that can approximate the DW-
MRI signal and also have the property that their Fourier transform can be computed analytically
giving the 4th-order Cartesian basis. We presented a method for computing efficiently the
unknown tensor coefficients directly from given DW-MRI datasets by solving an over-
determined linear system. We compared the performance of our method in estimating fiber
orientation with other existing techniques, demonstrating the accuracy of our proposed method.
Finally, we applied our framework in real HARDI datasets from fixed rat’s spinal cord showing
the ability of our model to estimate single-fiber and also multiple-fiber distributions.
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Fig. 1.
3D plots of three of the basis functions from Table 1. The functions were evaluated for varying
∥ q ∥ over a unit by circle of directions q. The circle was defined fixing the elevation spherical
coordinate to π/3 and varying azimuth.
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Fig. 2.
Probability profiles estimated by applying our method to simulated data of: left) 2-fiber
crossing bundle and right) corrupted crossings for different amounts of Riccian noise.
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Fig. 3.
Fiber orientation errors for different SNR in the data using our method (P4) and three other
existing methods: 1) DOT, 2) ODF and 3) 4th-order DT. In the experiment we used simulated
MR signal of a 2-fiber crossing, whose probability profile is shown in Fig.2(right).
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Fig. 4.
Estimated probability profiles from real data of a rat’s fixed spinal cord. The zoomed ROI
shows single fiber distributions in white matter and other more complex tissue structures.
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Table 1

Proposed basis functions

P(r) basis Corresponding S(q)/S0 basis

r1
4 (12 − 48q1

2 + 16q1
4)e−qT q

r2
4 (12 − 48q2

2 + 16q2
4)e−qT q

r3
4 (12 − 48q3

2 + 16q3
4)e−qT q

r1
2r2

2 ( − 2 + 4q1
2)( − 2 + 4q2

2)e−qT q

r2
2r2

3 ( − 2 + 4q2
2)( − 2 + 4q3

2)e−qT q

r1
2r2

3 ( − 2 + 4q1
2)( − 2 + 4q3

2)e−qT q

r1
2r2r3 4q2q3( − 2 + 4q1

2)e−qT q

r1r2
2r3 4q1q3( − 2 + 4q2

2)e−qT q

r1r2r2
3

4q1q2( − 2 + 4q3
2)e−qT q

r1
3r2 − 2q2(12q1 − 8q1

3)e−qT q

r1
3r3 − 2q3(12q1 − 8q1

3)e−qT q

r1r2
3

− 2q1(12q2 − 8q2
3)e−qT q

r2
3r3 − 2q3(12q2 − 8q2

3)e−qT q

r1r3
3

− 2q1(12q3 − 8q3
3)e−qT q

r2r3
3

− 2q2(12q3 − 8q3
3)e−qT q

r1
ir2

jr3
k (∂ ∕ ∂q1)i(∂ ∕ ∂q2) j(∂ ∕ ∂q3)kB(q)
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