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ABSTRACT

Motivation: The molecular complexity of a tumor manifests itself
at the genomic, epigenomic, transcriptomic and proteomic levels.
Genomic profiling at these multiple levels should allow an integrated
characterization of tumor etiology. However, there is a shortage of
effective statistical and bioinformatic tools for truly integrative data
analysis. The standard approach to integrative clustering is separate
clustering followed by manual integration. A more statistically
powerful approach would incorporate all data types simultaneously
and generate a single integrated cluster assignment.
Methods: We developed a joint latent variable model for integrative
clustering. We call the resulting methodology iCluster. iCluster
incorporates flexible modeling of the associations between different
data types and the variance–covariance structure within data types in
a single framework, while simultaneously reducing the dimensionality
of the datasets. Likelihood-based inference is obtained through the
Expectation–Maximization algorithm.
Results: We demonstrate the iCluster algorithm using two examples
of joint analysis of copy number and gene expression data, one
from breast cancer and one from lung cancer. In both cases, we
identified subtypes characterized by concordant DNA copy number
changes and gene expression as well as unique profiles specific to
one or the other in a completely automated fashion. In addition, the
algorithm discovers potentially novel subtypes by combining weak
yet consistent alteration patterns across data types.
Availability: R code to implement iCluster can be downloaded at
http://www.mskcc.org/mskcc/html/85130.cfm.
Contact: shenr@mskcc.org
Supplementary information: Supplementary data are available at
Bioinformatics online.

1 INTRODUCTION
In recent years genomic profiling of multiple data types in the same
set of tumors has gained prominence. In a breast cancer study
relating DNA copy number to gene expression, (Pollack et al.,
2002) estimated that 62% of highly amplified genes demonstrate

∗To whom correspondence should be addressed.

moderately or highly elevated gene expression, and that DNA
copy number aberrations account for ∼10–12% of the global gene
expression changes at the messenger RNA (mRNA) level. Hyman
et al. (2002) observed similar results in breast cancer cell lines.
MicroRNAs, which are small non-coding RNAs that repress gene
expression by binding mRNA target transcripts, provide another
mechanism of gene expression regulation. Over 1000 microRNAs
are predicted to exist in humans, and they are estimated to
target one-third of all genes in the genome (Lewis et al., 2005).
The NCI/NHGRI-sponsored Cancer Genome Atlas (TCGA) pilot
project is a coordinated effort to explore the entire spectrum of
genomic alternations in human cancer to obtain an integrated
view of such interplays. The group recently published an interim
analysis of DNA sequencing, copy number, gene expression and
DNA methylation data in a large set of glioblastomas (TCGA,
2008).

In this study, we will refer to any genomic dataset involving
more than one data type measured in the same set of tumors as
multiple genomic platform (MGP) data. Identifying tumor subtypes
by simultaneously analyzing MGP data is a new problem. The
current approach to subtype discovery across multiple types is
to separately cluster each type and then to manually integrate
the results. An ideal integrative clustering approach would allow
joint inference from MGP data and generate a single integrated
cluster assignment through simultaneously capturing patterns of
genomic alterations that are: (i) consistent across multiple data
types; (ii) specific to individual data types; or (iii) weak yet
consistent across datasets that would emerge only as a result of
combining levels of evidence. Therefore, the goal of this study
is to develop such an integrative framework for tumor subtype
discovery.

There are two major challenges to the development of a truly
integrative approach. First, to capture both concordant and unique
alterations across data types, separate modeling of the covariance
between data types and the variance–covariance structure within
data types is needed. Most of the existing deterministic clustering
methods cannot be easily adapted in this way. For example,
Qin (2008) performed a hierarchical clustering of the correlation
matrix between gene expression and microRNA data. Similarly,
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Lee et al. (2008) applied a biclustering algorithm on the correlation
matrix to integrate DNA copy number and gene expression data.
In both the cases, the goal was to identify correlated patterns
of change given the two data types. While identifying correlated
patterns is sufficient for studying the regulatory mechanism of gene
expression via copy number changes or epi-genomic modifications,
it is not suitable for integrative tumor subtype analysis where
both concordant and unique alteration patterns may be important
in defining disease subgroups. The importance of capturing both
concordant and unique alterations across data types will be
demonstrated in our data examples. In addition, properly separating
covariance between data types and variance within data types
facilitates probabilistic inference for data integration.

Second, dimension reduction is a key to the feasibility and
performance of integrative clustering approaches. Methods that rely
on pairwise correlation matrices are computationally prohibitive
with today’s high-resolution arrays. Dimension reduction techniques
such as principal component analysis (PCA; Alter et al., 2000;
Holter et al., 2000) and non-negative matrix factorization (NMF;
Brunet et al., 2004) have been proposed for use in combination
with clustering algorithms. These methods work well for a
single data type. However, simultaneous dimension reduction of
multiple correlated datasets is beyond the capabilities of these
algorithms.

Tipping and Bishop (1999) showed that the principal components
can be computed through maximum-likelihood estimation of
parameters under a Gaussian latent variable model. In their
framework, the correlations among variables are modeled through
the latent variables of a substantially lower dimension space, while
an additional error term is added to model the residual variance.
Using the connection between PCA and latent variable models
as a building block, we propose a novel integrative clustering
method called iCluster that is based on a joint latent variable
model. The main idea behind iCluster is that tumor subtypes can be
modeled as unobserved (latent) variables that can be simultaneously
estimated from copy number data, mRNA expression data and other
available data types. It is a conceptually simple and computationally
feasible model that allows simultaneous inference on any number
and type of genomic datasets. Furthermore, we develop a sparse
solution of the iCluster model through optimizing a penalized
complete-data log-likelihood using the Expectation–Maximization
(EM) algorithm (Dempster et al., 1977). A lasso-type regularization
method (Tibshirani, 1996) is used in the penalized complete-data
likelihood. The resulting model continuously shrink the coefficients
for non-informative genes toward zero, and thus leading to reduced
variance and better clustering performance. Moreover, a variable
selection strategy emerges (since the coefficients for some of the
genes will be exactly zero under lasso penalty), which helps to
pinpoint important genes.

The article is organized as follows. In Section 2.1, we discuss
the K-means clustering algorithm and a global optimal solution for
the K-means problem through PCA. In Section 2.2, we formulate
the K-means problem as a Gaussian latent variable model and
show the maximum likelihood-based solution and its connection
with the PCA solution. Then in Section 2.3, we extend the latent
variable model to allow multiple data types for the purpose of
integrative clustering. A sparse solution is derived in Section 2.4. We
demonstrate the method using two datasets from published studies
in Section 3.

2 METHODS

2.1 Eigengene K-means algorithm
We start the investigation with the K-means clustering algorithm. In standard
K-means, given an initial set of K cluster assignments and the corresponding
cluster centers, the procedure iteratively moves the centers to minimize
the total within-cluster variance. For purposes of exposition, we assume
that the data are gene expression, although they could be any type of
genomic measurements. Let X denote the mean-centered expression data
of dimension p×n with rows being genes and columns being samples.
Given a partition C of the column space of X and the corresponding cluster
mean vectors {m1,··· ,mK }, the sample vectors X = {x1, ... ,xn} are assigned
cluster membership such that the sum of within-cluster squared distances is
minimized:

min
K∑

k=1

∑
C(i)=k

‖xi −mk‖2 . (1)

The cluster centers are subsequently recalculated successively based on the
current partition. The algorithm iterates until the assignments do not change.

One of the main criticisms of K-means clustering is that the algorithm is
sensitive to the choice of starting points; it can iterate to local minima rather
than the global maximum. However, it has been recently shown that a better
optimization scheme for K-means arises through PCA (Zha et al., 2001). To
see this, let Z = (z1, ... ,zK )′ with the k-th row being the indicator vector of
cluster k normalized to have unit length:

z′
k = (0, ... ,0,

1√
nk
, ...

1√
nk︸ ︷︷ ︸

nk

,0, ... ,0), (2)

where nk is the number of samples in cluster k and
∑K

k=1 nk = n. The
objective is to obtain an optimal solution of the cluster assignment matrix
Z such that the within-cluster variance is minimized. Let X′X be the Gram
matrix of the samples. The K-means loss function in (1) can be expressed as

trace(X′X)−trace(ZX′XZ′),

which is the total variance minus the between-cluster variance. Since the
total variance is a constant given the data, it follows that minimizing (1) is
equivalent to maximizing the between-cluster variance

max
ZZ′=IK

trace(ZX′XZ′). (3)

Now consider a continuous Z∗ that satisfies all the conditions of Z except
for the discrete structure. In other words, z∗

k is no longer restricted to
take values of either zero or one (scaled by the square-root of the cluster
size). Then the above is equivalent to the eigenvalue decomposition of S.
Therefore, a closed-form solution of (3) is Ẑ∗ = E, where E = (e1, ... ,eK )′
are the eigenvectors corresponding to the K largest eigenvalues from the
eigenvalue decomposition of S. As a result, Ẑ∗ is the solution to the relaxed
trace maximization problem of (3). A later publication by Ding and He
(2004) pointed out the redundancy in Z such that the K-means solution
can be defined by the first K −1 eigenvectors. The eigenvectors lie in a low-
dimensional latent space where the original data are projected onto each of
the first K −1 principal directions such that the total variance is maximized.
As a result, any distinct subgroup structures will be automatically embedded
in this set of orthogonal directional vectors.

Note that although the continuous parameterization of Z causes some loss
in interpretability of the cluster indicator matrix, it is a necessary condition
for the closed-form optimal solution to the K-means problem. The discrete
structure in Z and its interpretability can be easily restored by a simple
mapping by a pivoted QR decomposition or a standard K-means algorithm
invoked on Z∗. Zha et al. (2001) found similar performance by the two
methods for recovering the class indicator matrix. For simplicity, in what
comes later we use K-means for this final step. Finally, since we are in the
genomic data context, we refer to the algorithm described in this section as
eigengene K-means, and it yields the eigengene solution ẐE .
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2.2 A Gaussian latent variable model representation
Now we consider a Gaussian latent variable model representation of the
eigengene K-means clustering:

X = WZ+ε, (4)

where X is the mean-centered expression matrix of dimension p×n (no
intercept), Z = (z1, ... ,zK−1)′ is the cluster indicator matrix of dimension
(K −1)×n as defined in Section 2.1, W is the coefficient matrix of
dimension p×(K −1), and ε = (ε1, ... ,εp)′ is a set of independent error
terms with zero mean and a diagonal covariance matrix Cov(ε) = � where
� = diag(ψ1, ... ,ψp). The fundamental concepts of model (4) are: (i) it
differs from a regular regression model in that (z1, ... ,zK−1) are treated
as latent variables representing the true molecular tumor subtypes to be
discovered; and (ii) in dimension reduction terms, W is the projection
matrix that maps the gene×array space of the original data matrix X onto
an eigengene×eigenarray subspace spanned by the first K −1 principal
directions.

Now consider a continuous parameterization Z∗ of Z and make the
additional assumption that Z∗ ∼N(0,I) and ε∼N(0,�). Then a likelihood-
based solution to the K-means problem is available through model (4).
The inference will be based on the posterior mean of Z∗ given the data.
Tipping and Bishop (1999) established a connection between the Gaussian
latent variable model and PCA under an isotropic error model with a scalar
covariance matrix � = σ2I. Then it was shown that by plugging in the
maximum likelihood estimate of W and σ2, the posterior mean is represented
through the principal axes of the data vectors. In particular,

Ê[Z∗|X] = (�−σ2I)1/2�−1/2E, (5)

where E denotes the eigengene matrix as defined before. It is clear that
the posterior mean yields the same eigengene K-means solution Ẑ∗ = E
if the residual error σ2 is assigned the value zero. However, the subspace
Ê[Z∗|X] obtained through maximum likelihood approach will not generally
correspond to the principal subspace obtained through PCA. Such a link
occurs only under the isotropic error model.

The motivation for formulating the K-means problem as a Gaussian latent
variable model is 2-fold: (i) it provides a probabilistic inference framework;
and (ii) the latent variable model has a natural extension to multiple data
types. In the next section, we propose a joint latent variable model for
integrative clustering.

2.3 iCluster: a joint latent variable model-based
clustering method

The basic concept of iCluster is to jointly estimate Z = (z1, ... ,zK−1)′, the
latent tumor subtypes, from, say, DNA copy number data (denoted by X1,
a matrix of dimension p1 ×n), DNA methylation data (denoted by X2, a
matrix of dimension p2 ×n), mRNA expression data (denoted by X3, a matrix
of dimension p3 ×n) and so forth (Fig. 1). The mathematical form of the
integrative model is

X1 = W1Z+ε1

X2 = W2Z+ε2

.

.

.

Xm = WmZ+εm,

(6)

where m is the number of genomic data types available for the same set
of samples. We assume each dataset is row centered and therefore intercept
terms are not included in the models.

In (6), Z is the latent component that connects the m-set of models,
inducing dependencies across the data types measured on the same set of
tumors. On the other hand, the independent error terms (ε1, ... ,εm), in
which each has mean zero and diagonal covariance matrix � i, represent
the remaining variances unique to each data type after accounting for the

Fig. 1. The integrative model. The concept is to formulate the tumor subtypes
as the joint latent variable Z that needs to be simultaneously estimated from
multiple genomic data types measured on the same set of tumors.

correlation across data types. Lastly, (W1, ... ,Wm) denote the coefficient
matrices. In dimension reduction terms, they embed a simultaneous data
projection mechanism that maximizes the correlation between data types.

To derive a likelihood-based solution of (6), we use a latent
continuous parameterization that further assumes Z∗ ∼N(0,I). The error
term is ε∼N(0,�), which has a diagonal covariance matrix � =
diag(ψ1, ... ,ψ

∑
i pi ). The marginal distribution of the integrated data matrix

X = (X1, ... ,Xm)′ is then multivariate normal with mean zero and covariance
matrix � = WW′ +�, where W = (W1, ... ,Wm)′. The corresponding log-
likelihood function of the data is

�(W,�) = − n

2

(
m∑

i=1

pi ln(2π) + ln det(�) + tr(�−1G)

)
, (7)

where G is the sample covariance matrix of the following form

G =

⎛
⎜⎜⎜⎝

G11 G12 ··· G1m

G21 G22 ··· G2m

.

.

.
.
.
.

. . .
.
.
.

Gm1 Gm2 ··· Gmm

⎞
⎟⎟⎟⎠. (8)

We employ the EM algorithm to obtain the maximum likelihood estimates
of W and �. In the EM framework, we deal with the complete-data log-
likelihood

�c(W,�)=− n

2

{ m∑
i=1

piln(2π)+ln det(�)
}

− 1

2

{
tr((X−WZ∗)′�−1(X−WZ∗))+ tr(Z∗′

Z∗)
}
.

(9)

This is a much more efficient approach than directly maximizing the marginal
data likelihood in (7). It does not require explicit evaluation of the sample
covariance matrices in (8), which would call for O(n

∑
i p

2
i ) operations and

thus be computationally prohibitive.
Finally, the problem of p>> n is exacerbated in our model by the multiple

high-dimensional datasets. A sparse solution to W is desirable. In the next
section, we derive a sparse solution to solve the iCluster model via penalizing
the complete-data log-likelihood.

2.4 A sparse solution
We write the penalized complete data log-likelihood as

�c,p(W,�) = �c(W,�)−Jλ(W), (10)

where Jλ(W) is a penalty term on W with a non-negative regularization
parameter λ. Various types of penalties can be employed. In this study, we
use a lasso type (L1-norm) penalty (Tibshirani, 1996) that takes the form

Jλ(W) = λ
m∑

i=1

K−1∑
k=1

pi∑
j=1

∣∣wikj
∣∣. (11)

We derive the E- and M-step with respect to the penalized complete-data
log-likelihood. The E-step involves computing the objective function

Qp(W,�|W(t),�(t)) = EZ∗|X,W(t),�(t) [�c,p(W,�)],
which is the expected value of the complete-data log-likelihood with respect
to the distribution of Z∗ given X under the current estimates (W(t),�(t)).
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This involves computing the following quantities given the current parameter
estimates:

E[Z∗|X]=W′�−1X and
E[Z∗Z∗′ |X]=I−W′�−1W+E[Z∗|X]E[Z∗|X]′. (12)

The E-step provides a simultaneous dimension reduction by mapping the
original data matrices of joint dimensions (p1, ... ,pm)×n to a substantially
reduced subspace represented by Z∗ of dimension (K −1)×n.

The M-step is to update the parameter estimates by maximizing Qp subject
to ‖wk‖ = 1 for all k. This leads to the following estimate of �:

�(t+1) = 1

n
diag

{
XX′ −W(t)E[Z∗|X]X′} (13)

and the lasso estimate of W:

W(t+1)
lasso = sign(W(t+1))

(
|W(t+1)|−λ

)
+ , (14)

where W(t+1) = (XE[Z∗|X]′)(E[Z∗Z∗′ |X])−1. This is followed by a
normalization step wk/‖wk‖2 for all k, where ‖wk‖2 denotes the L2 norm of

the vector wk that takes the form
√∑

j w
2
jk . The algorithm iterates between

the E- and M-step until convergence. Once Ê[Z∗|X] is obtained, a final step
to recover the class indicator matrix is to invoke a standard K-means on
Ê[Z∗|X]. We denote this solution as ẐiCluster .

The lasso-type penalty results in sparse estimates of W in which many of
the coefficients are shrunken toward zero. The variance of the model is thus
reduced, leading to better clustering performance though the bias-variance
trade-off. The lasso also renders a variable selection mechanism owing to the
L1 penalty that shrinks some coefficients to exactly zero. As a result, one can
pinpoint which genes contribute to which subtype by finding the genes with
non-zero loadings on the k-th latent factor zk . This will be demonstrated in
the data example.

2.5 Model selection based on cluster separability
Let B̂∗ = Ê[Z∗|X]′Ê[Z∗|X] be ordered such that samples belonging to the
same clusters are adjacent. Then B̂∗ has a diagonal block structure and can
be used to assess cluster separability. We standardize the elements of B̂∗
to be bij/

√
biibjj for i = 1,...,n and j = 1, ... ,n, and impose a non-negative

constraint by setting negative values to zero. Then perfect cluster separability
(non-overlapping subclasses) would lead to an exact diagonal block matrix
with diagonal blocks of ones for samples belonging to the same cluster and
off-diagonal blocks of zeros for samples in different clusters. As cluster
separability decreases, B̂∗ increasingly deviates from the ‘perfect’ diagonal
block structure. We thus define a deviance measure d as the sum of absolute
differences between B̂∗ and a ‘perfect’ diagonal block matrices of 1s and 0s.
The proportion of deviance (POD) is defined as d/n2 so that POD is between
0 and 1. Small values of POD indicate strong cluster separability, and large
values of POD indicate poor cluster separability. In the data examples, we
show the utility of B̂∗ matrix plots (we call them cluster separability plots) and
associated the POD statistic for model selection, which includes estimating
the number of clusters K and the lasso parameter λ.

3 RESULTS

3.1 Subtype discovery in breast cancer
Pollack et al. (2002) studied 37 primary breast cancers and four
breast cancer cell lines for DNA copy number and mRNA expression
on the same cDNA microarrays that contain 6691 genes. Figure 2A
shows the pair of heatmaps displaying the alteration patterns in the
DNA (left panel) and in the mRNA (right panel) on chromosome 17.
Samples are arranged by separate hierarchical clustering output.
Clearly, the two dendrograms are substantially different. Although
the leftmost clusters share members that carry the HER2/ERBB2

amplicon profile near 17q12, they are not identical. This is a problem
inherent to separate clustering approaches that fail to account for the
correlation between the two datasets. On the other hand, mixing
breast tumors and cell line samples, the four cell line samples
(BT474, T47D, MCF7 and SKBR3, indicated in red text) should
be distinguished as a separate ‘subtype’ from the rest of the tumor
samples. This is clearly the case in the gene expression data, but
it is not recapitulated in the DNA copy number data. This contrast
shows the importance of capturing unique patterns specific to one
data type.

Figure 2B–E shows the results of a unified set of cluster
assignments from iCluster on the same data. Non-sparse (λ= 0)
and sparse solutions (λ= 0.01 and 0.2) were generated. Figure 2B
includes cluster separability plots described in Section 2.3 under the
sparse solution given λ= 0.2. Clearly, K = 4 gives the best diagonal
block structure. This is confirmed in Figure 2C where the four-
cluster sparse solution (λ= 0.2) minimized the POD statistic among
a range of K and λ values. Figure 2D displays the heatmaps of
the same data used in Figure 2A but with samples rearranged by
their iCluster membership. In a completely automated fashion, the
four cell lines were separated as cluster 1 (red). The HER2/ERBB2
subtype emerged as cluster 2 (green) and showed coordinated
amplification in the DNA and overexpression in the mRNA. This
subtype was associated with poor survival as shown in Figure 2E.
Cluster 3 was a potentially novel subtype derived only as a result of
combining evidence across the two datasets. It represents a subset of
tumors characterized by weak yet consistent amplifications toward
the end of the q-arm of chromosome 17. Finally, cluster 4 did not
show any distinct patterns, though a pattern may have emerged if
there were additional data types. As mentioned in Section 2.4, the
lasso-type penalty in the sparse iCluster solution renders variable
selection as a part of the outcome. Supplementary Table 1 lists the
selected subset of genes associated with each of the subtypes.

3.2 Lung cancer subtypes jointly defined by copy
number and gene expression data

We also analyzed a set of 91 lung adenocarcinomas from Memorial
Sloan–Kettering Cancer Center, which is a subset of the samples in
Chitale et al. (2009). The iCluster method was applied to perform
integrative clustering on copy number and gene expression data. The
copy number data were segmented using the CBS algorithm (Olshen
et al., 2004; Venkatraman et al., 2007). The segment means were
used as the input for integration to reduce the noise level. Variance
filtering based on gene expression was performed so as to focus on
the most variable set of 2782 genes.

Using chromosomes 8 and 12 as examples, we compared
the iCluster results with those obtained by separate hierarchical
clustering. Cluster 1 in Figure 3A is characterized by a broad region
of 8p loss evident in the copy number heatmap and the corresponding
underexpression in the expression heatmap. In contrast, this 8p loss
cluster is less well defined by separate clustering in Figure 3B.
When annotated with somatic mutation status, this cluster shows
significant enrichment of EGFR mutations (mutation panel on top
of the heatmap). Specifically, 33% of the tumors in cluster 1 carry
EGFR mutation, while 16%, 0% and 18% of the tumors in cluster
2, 3 and 4, respectively, are EGFR mutant samples (Fisher’s exact
test P = 0.03). Another interesting observation made apparent by
iCluster is that samples in cluster 4 show a similar but somewhat
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A

B C

D

E

Fig. 2. Results from separate clustering (left panel) and integrative clustering (right panel) using the Pollack data. (A). Heatmaps of copy number (DNA)
and gene expression (mRNA) on chromosome 17. Samples are arranged by separate hierarchical clustering on each data type. (B) Cluster separability plots.
(C) Model selection based on POD measure. A four-cluster sparse solution (λ= 0.2) was chosen. (D) Heatmaps on the same data as in A with samples arranged
by the integrated cluster assignment under the sparse iCluster model. (E) Kaplan–Meier plots of the subclasses identified via the integrative clustering. The
HER2/ERBB2 subtype showed poor survival.

diluted pattern of copy number aberrations when compared with
cluster 1. These samples may be related to cluster 1 but with lower
tumor content, which may account for the 18% EGFR mutations in
this cluster, the second highest among the four clusters. Chitale et al.
(2009) describe the association between chromosome 8p loss and
EGFR mutation in further details. When studying the genes within
the broad region of 8p loss, they discovered a striking association
between EGFR mutation and concordant DUSP4 deletion and
underexpression. DUSP4 is known to be involved in negative
feedback control of EGFR signaling. Notably, the sparse solutions
consistently showed better cluster separability than the non-sparse
solution as evidenced by Figure 3C.

Chromosome 12 is another interesting example. Cluster 2 in
Figure 3D is characterized by the well-known 12q14-15 amplicon
that includes oncogenes such as CDK4 and MDM2. Again, the
sparse solution improves the cluster separability substantially from
the non-sparse solution (Fig. 3F). Interestingly, the sparse model
selected only 24 DNA probes that contributed to the clustering,
which is consistent with the observation that there are relatively few

aberrations other than the small region of 12q gain in the DNA. Note,
however, that genomic alteration patterns are often chromosome
specific (8p loss and 12q gain). They do not always occur in the
same set of patients. Therefore, the results change when multiple
chromosomes are combined (Supplementary Fig. 1).

4 DISCUSSION
Despite the ever-increasing volume of MGP, data resulting from
the Cancer Genome Atlas project and other studies, there is a
shortage of effective integrative methods. Researchers often resort to
heuristic approaches where ‘manual integration’ is performed after
separate analysis of individual data types, and it is unlikely that
two investigators would perform manual integration in the same
manner. Manual integration may require a considerable amount
of prior knowledge about the underlying disease. In contrast, the
iCluster method developed here generates a single integrated cluster
assignment based on simultaneous inference from multiple data
types. In both the breast and lung cancer data examples, we have
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Fig. 3. Lung cancer subtypes for chromosomes 8 and 12. (A) Heatmap of DNA copy number (left) and mRNA expression (right) on chromosome 8. Columns
are tumors arranged by the three subclasses obtained by iCluster. Rows are genes ordered by genomic position. On top of the heatmaps are gray-dot panels
indicating mutation status of several well-known lung cancer genes. (B) Separate hierarchical clustering of the same data on chromosome 8 used in (A).
(C) Model selection based on the POD measure. A four-cluster sparse solution (λ= 0.05) was chosen that selected 301 mRNA probes and 126 DNA probes
from a total of 642 probes. (D) iCluster output on chromosome 12. Tumor samples are arranged by the six subclasses obtained by iCluster.(E) Separate
hierarchical clustering of the same data on chromosome 12 used in (D). (F) Model selection based on the POD statistic. A six-cluster sparse solution (λ= 0.1)
was chosen that selected 408 mRNA probes and 24 DNA probes from a total of 1038 probes.

shown that iCluster aligns concordant DNAcopy number aberrations
and gene expression changes. In some cases, potentially novel
subclasses are revealed only by combining weak yet consistent
evidence across data types.

In this study, we applied iCluster to integrate copy number and
gene expression data. The joint latent variable model is completely
scalable to include additional data types. Next-generation
sequencing is emerging as an appealing alternative to microarrays
for inferring RNA expression levels (mRNA-Seq), DNA–protein
interactions (ChIP-Seq), DNA methylation and so on. Although
we focus here on array data, our integrative framework could be
generalized to next-gen sequencing data after proper modifications
of the error terms to model count data based on mapped reads.
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