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SUMMARY

We consider estimation and variable selection in the partial linear model for censored data. The partial lin-
ear model for censored data is a direct extension of the accelerated failure time model, the latter of which
is a very important alternative model to the proportional hazards model. We extend rank-based lasso-type
estimators to a model that may contain nonlinear effects. Variable selection in such partial linear model
has direct application to high-dimensional survival analyses that attempt to adjust for clinical predictors.
In the microarray setting, previous methods can adjust for other clinical predictors by assuming that clin-
ical and gene expression data enter the model linearly in the same fashion. Here, we select important
variables after adjusting for prognostic clinical variables but the clinical effects are assumed nonlinear.
Our estimator is based on stratification and can be extended naturally to account for multiple nonlinear
effects. We illustrate the utility of our method through simulation studies and application to the Wisconsin
prognostic breast cancer data set.
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1. INTRODUCTION

This note is concerned with estimation and computation in the �1-regularized partial linear model for
censored data. To fix ideas, we write the statistical model

log Ti = φ(Zi ) + X′
iβββ + εi , (i = 1, . . . , n), (1.1)

where Ti is a failure time variable, φ(Zi ) is a unknown function of predictors Zi = (Zi1, . . . , Zip)
′,

Xi is a d-vector of fixed predictors, βββ = (β1, . . . , βd)′ is a d-vector of regression coefficients, and
(ε1, . . . , εn) are independent and identically distributed errors with distribution function F . The goal is
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to estimate the regression coefficients βββ while setting some estimates equal to 0 using the observed data
{(Yi , δi , Xi , Zi ), i = 1, . . . , n}, where Yi = min(Ti , Ci ), δi = I (Ti � Ci ), Ci is a random censoring
variable and I (·) denotes the indicator function. The assumptions one adopts can make this estimation
problem challenging theoretically and numerically.

In survival analysis, the statistical model (1.1) without the nonlinear term φ(·) is called the
semiparametric accelerated failure time (AFT) model (cf. Kalbfleisch and Prentice, 2002). One family
of estimators for regression coefficients βββ in the AFT model are called the weighted logrank estimators
(see Section 2) and derived through inverting linear rank tests (Prentice, 1978; Tsiatis, 1990). Our meth-
ods extend the class of weighted logrank estimators and, in the sequel, we adopt the adjective “rank-
based” to conform with related methods in the literature (cf. Jin and others, 2003). By now, several
authors have studied variable selection in the AFT model (cf. Datta and others, 2007; Huang and
others, 2006; Johnson, 2008; Cai and others, 2009). Among the many available methods, only Johnson
(2008) and Cai and others (2009) propose procedures based on weighted logrank estimators. In this pa-
per, we propose rank-based variable selection in the partly linear model (1.1) by extending a stratified
Gehan-type estimator (Chen and others, 2005). The stratified estimator is advantageous in that it al-
lows for consistent estimation of regression coefficients without nonparametric smoothing via splines or
kernels.

These methods were developed for a microarray application at Emory’s Winship Cancer Institute
relating gene expression data and time to prostate cancer recurrence, which may be right censored.
Most modern model selection techniques perform variable selection on an arbitrary set of predictors.
It is the user’s prerogative to control the input predictors, including some collection of gene
expression, clinical predictors, or both. Unfortunately, the user’s choices may not reflect well what the
scientist really desires. If one selects variables on either gene expression or clinical variables indepen-
dently, the final model does not accurately reflect the complex correlations among the clinical and gene
expression data. If we include clinical predictors alongside gene expression with no account of the vari-
able type, then the potential problems are 2-fold. First, the final model may exclude a clinical vari-
able which we know to be scientifically relevant. Second, clinical predictors and gene expression data
are treated as equals in the eyes of the statistical learner. For users familiar with the underlying
(optimization) techniques of specific model selection methods, it is possible to circumvent the former
problem by forcing clinical variables in the model and, hence, only shrink the coefficient estimates
corresponding to the gene expression data. This method of forcing active coefficients within regular-
ized estimation does not address the latter problem, however, and is possibly beyond the expertise of the
average user. Estimation and variable selection in the partial linear model has the potential to address both
scientific issues simultaneously.

The main substantive contribution of the paper is the idea of jointly modeling clinical and genetic
predictors through the partly linear model and simultaneously performing model selection on genetic com-
ponents. The end product of this procedure is a sparse model that includes scientifically relevant clinical
covariates and data-relevant genetic components. The methodological contributions of the paper are 2-
fold. First, we propose a new rank-based variable selection procedure in the partly linear model for
censored data where no similar method exists. The second methodological contribution is entirely compu-
tational. We propose a new algorithm for regularized estimation in the AFT model that extends naturally
to the partly linear model for censored data. Existing computational strategies for regularized rank-based
estimation in the AFT model include local quadratic approximation atop simulated annealing (Johnson,
2008) and a path-based algorithm (Cai and others, 2009). The algorithm by Cai and others (2009) pro-
duces exact lasso coefficient estimates, while Johnson’s (2008) method does not. Our new algorithm
produces precise lasso coefficient estimates through an intriguing extension of least absolute deviation re-
gression. Finally, the new procedure is propagated easily as the algorithm can be adapted to the quantreg
package in R.
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2. METHODS

2.1 Background

A classic definition of the Gehan estimator (Prentice, 1978; Tsiatis, 1990) is defined as the solution to the
system of estimating equations, 0 = UG(βββ), where

UG(βββ) = n−1
n∑

i=1

n∑
j=1

δi (Xi − X j )I{ei (βββ) � e j (βββ)},

and ei (βββ) = log Yi − X′
iβββ. Evidently, UG(βββ) is the d-dimensional gradient of the convex loss function,

nLG(βββ), where

LG(βββ) =
n∑

i=1

n∑
j=1

δi{ei (βββ) − e j (βββ)}−,

c− = max(−c, 0). Jin and others (2003) approximated LG(βββ) by LM(βββ), where

LM(βββ) =
n∑

i=1

n∑
j=1

δi |ei (βββ) − e j (βββ)| +
∣∣∣∣∣M − βββ ′

n∑
k=1

n∑
l=1

δk(Xl − Xk)

∣∣∣∣∣ ,
and M is a large constant. Because the loss LM(βββ) is written as the sum of absolute deviations, the
minimizer may be found using least absolute deviation (lad) regression (e.g. quantreg in R).

The Gehan estimator with lasso (Tibshirani, 1996) penalty is defined β̂ββG(1) = minβββ{LG(βββ)+λn
∑d

j=1

|β j |}. Both Johnson (2008) and Cai and others (2009) note that β̂ββG(1) is the solution to a linear program-
ming problem. However, using the approximation by Jin and others (2003), the lasso-type estimator is
equivalently written as minβββ{LM(βββ) + λn

∑d
j=1 |β j |}. The significance of the approximation is that the

resulting constrained optimization may be carried out through simple data augmentation. In an unpub-
lished 2008 Emory University Technical Report, B. A. Johnson showed that if the Gehan estimate is the
solution to the lad regression of V on W, then the regularized Gehan estimate is simply the solution to the
lad regression of V∗ on W∗, where V∗ = (V′, 0′

d)′, W∗ = (W′, λId)′, where 0d is a d-dimensional vector
of 0s and Id is an identity matrix of size d. The data augmentation technique for regularized lad estimates
with uncensored data was first proposed by Wang and others (2007).

2.2 The stratified Gehan estimator

Chen and others (2005) recently proposed a rank-based estimator in the partly linear model for censored
data. Their estimator extends the Gehan estimator by stratifying over levels of Z and arguing that such
procedure leads to a consistent estimator of the regression coefficients in (1.1). Compared with the major-
ity of estimators in partly linear model with uncensored data, the estimator by Chen and others (2005) is
different in that it does not require nonparametric smoothing.

Intuitively, the estimator by Chen and others (2005) is defined by stratifying the sample into Kn strata
{S1, . . . , SKn } according to user-defined levels of Z and minimizing a new stratified loss function. Let
Ik denote the indices of subjects belonging to strata Sk . Their argument is that for subjects belonging to
the same strata Sk , we have φ(Zi ) = ck + Rn , for all i ∈ Ik , where the constant ck varies by strata,
k = 1, . . . , Kn and Rn is an asymptotically negligible remainder term. Chen and others (2005) propose
to minimize the loss function

LS(βββ) =
Kn∑

k=1

∑
i, j∈Ik

δi |ei (βββ) − e j (βββ)| +
∣∣∣∣∣∣M − βββ ′

Kn∑
k=1

∑
l,m∈Ik

δm(Xl − Xm)

∣∣∣∣∣∣ ,
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for a large number M , which is a direct generalization of the approximate Gehan loss LM (βββ) above.
Naturally, the �1-regularized stratified estimator is defined

β̂ββS(1) = min
βββ

⎧⎨
⎩LS(βββ) + λn

d∑
j=1

|β j |
⎫⎬
⎭ .

When Kn = 1, the stratified estimator β̂ββS(1) reduces to the Gehan estimator β̂ββG(1).

2.3 Operating characteristics

Due to space limitations, we briefly outline the basic large sample properties for our lasso-type exten-
sion of the stratified Gehan estimator β̂ββS(1). To place the concepts in proper context, it will be easier
to work with general convex loss function. Without loss of generality, define a convex loss function
L•(βββ), where βββ belongs to a compact parameter space, βββ0 is the true value for βββ, and we assume
that lim n−1L•(βββ) converges strongly to a finite limit, uniformly in βββ. Define the lasso-type estimator
β̂ββ•(1) = minβββ{n−1L•(βββ) + λn

∑
j |β j |}, the gradient vector U(βββ) = (∂/∂βββ)L•(βββ), the slope matrix

A such that n1/2U(βββ) − n1/2U(βββ0)
∼= (βββ − βββ0)

′A and assume that n1/2U(βββ0) →d N (0, B). Then,
as n1/2λn → λ0 � 0, one can show that, under suitable regularity conditions, n1/2(β̂ββ•(1) − βββ0) →d

argmin{���(u)}, where

���(u) = u′w + u′Au + λ0

d∑
j=1

[
u j sgn(β0 j )I (β j �= 0) + |u j |I (β0 j = 0)

]
, (2.1)

and w is a normal random vector with covariance B. The large sample properties of Tibshirani’s (1996)
lasso, including the expression in (2.1), are due to Knight and Fu (2000). The local asymptotic properties
may be extended to specific loss functions as special cases. Recently, Huang and others (2006) extended
(2.1) to inverse probability–weighted estimators, while Cai and others (2009) considered the extension
of (2.1) to the Gehan estimator, that is L•(βββ) = LG(βββ), through a novel application of U -processes.

Finally, substitute L•(βββ) = LS(βββ) and let β̂ββS = minLS(βββ). Chen and others (2005) have shown
that, under regularity conditions, n1/2(β̂ββS − βββ0) →d N (0, A−1

S BSA−1
S ), where AS and BS are defined

in Chen and others (2005, appendix). By coupling the conditions in Cai and others (2009) along with
the conditions in Chen and others (2005), we expect that n1/2(β̂ββS(1) − βββ0) converges in distribution
to argmin{���S(u)}, where ���S(u) is defined exactly as in (2.1) but with AS and BS replacing A and B,
respectively. Although the statement here is not rigorous, it can be made so under appropriate technical
conditions.

3. APPLICATION TO BREAST CANCER RECURRENCE

Street and others (1995) have studied classification models for breast cancer tumor types and regression
models for breast cancer recurrence. Our primary interest lies in the latter regression model for censored
data. We adopted the partly linear model for censored data in (1.1) where T is time (in months) to breast
cancer recurrence, Z = (Z1, Z2)

′ is tumor size (Tsize) and number of lymph nodes (Lnode), and X =
(X1, . . . , X30)

′ is a 30-dimensional feature vector. The feature vector X is taken from a digitized image
of a fine needle aspirate of a breast mass and describe characteristics of the cell nuclei present in the
image. The data consist of 3 summary statistics (mean, standard error [SE], and worst) for each of 10
features: radius, texture, perimeter, area, smoothness, compactness, concavity, concave points, symmetry,
and fractal dimension. These data are freely available on the University of California at Irvine repository
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of machine learning databases (Blake and Merz, 1998). Although a total of 198 samples were collected,
only 47 (23.7% of 198) samples were taken from women who experienced breast cancer recurrence. A
Kaplan–Meier curve of failure time shows that support of the failure time distribution is modest compared
to the support of the follow-up times.

This same data set (i.e. the Wisconsin prognostic breast cancer [WPBC]) was analyzed previously
by Bühlmann and Hothorn (2007) using inverse probability–weighted boosting from which they con-
cluded the following 10 variables were important: the mean radius, texture, perimeter, smoothness, and
symmetry; the SE of texture, smoothness, concavepoints, and symmetry; and “worst” concavepoints. We
analyzed the WPBC data using our regularized rank-based estimators. Our analyses assume nonlinear
effects in one or both of the clinical variables, tumor size, or number of lymph nodes. The levels of tumor
size were always determined by quantiles, while number of lymph nodes was coded by hand. With 2
levels, the latter strata are defined by 0 or greater than 0 lymph nodes. For 3 levels, we split the “greater
than 0” group into those with 1 lymph node and greater than 1 lymph node. Finally, with 4 levels, we
have a “0” level, a “1” level, “1–4” lymph nodes, and “greater than 4” lymph nodes level. We consider
univariate stratification for tumor size and lymph nodes separately in Table 1, while Table 2 considers
2-way stratified estimators. For comparison purposes, Table 2 also includes the Gehan lasso (i.e. Kn = 1)
with and without tumor size and number of lymph nodes. We tuned the regularization parameter through
5-fold cross-validation.

In Table 1, we immediately notice that mean symmetry and worst perimeter are strongly associated
with breast cancer relapse, a result that appeared consistently across different numbers of strata. Interest-
ingly, the stratified estimator with Kn = 4 using only tumor size chose a very complex model compared
to the other models. We attribute this to be an artifact of the error in cross-validation. Compared to the 10
variables selected by Bühlmann and Hothorn (2007), only mean symmetry is chosen in both procedures.
However, we note that worst perimeter is correlated with many of the predictors in the Bühlmann and
Hothorn (2007) model—for example, worst perimeter is highly correlated with mean radius (r = 0.92)
and mean perimeter (r = 0.93) and modestly correlated with worst concave points (r = 0.50). Hence,
some model differences may be explained by multicollinearity.

Analytic results for bivariate stratification over tumor size and numbers of lymph nodes are presented
in Table 2. The conclusions from results in Table 2 are similar to those reported in Table 1. Now, however,
mean fractal dimension is also mildly related to breast cancer recurrence in addition to the 2 variables from
Table 1. Of the 7 independent variables in Table 1, only mean symmetry agrees with any of 10 variables in
Bühlmann and Hothorn (2007). Finally, we found it was difficult to cross-validate the stratified estimator
as the number of levels increased and this consideration dictated why the 5- and 9-level analyses presented
in Table 1 could not be extended in Table 2. This difficulty reflects well-known finite sample limitations
of stratified estimators.

Table 1. Coefficient estimates for rank-based partial linear model stratified on tumor size or number of
lymph nodes only. Table entries are multiplied by 1000

Term Tumor size only Lymph node only

Kn = 2 3 4 5 9 2 3 4

Mean symmetry 129 164 311 237 283 168 208 224
Mean fractaldim 14 0 198 0 0 73 0 0
SE perimeter 0 0 −27 0 0 0 0 45
SE compactness 0 0 −76 0 0 0 0 0
Worst perimeter −469 −521 −494 −476 −426 −470 −440 −594
Worst smoothness 0 0 −223 0 0 0 0 −25
Worst concavity 0 0 −18 0 0 0 0 −50
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Table 2. Coefficient estimates for regularized Gehan and rank-based partial linear model through bivari-
ate stratification. Table entries are multiplied by 1000

Term Gehan 2-way stratification (Kn tumor size, Kn lymph nodes)

w/o Zi w/Zi (2,2) (2,3) (2,4) (3,2) (3,3) (3,4) (4,2) (4,3)

Tsize −69
Lnode −240
Mean symmetry 180 172 6 341 175 31 300 466 31 345
Mean fractaldim 8 30 86 50 0 27 213 182 81 16
SE texture 0 0 0 0 0 0 0 58 0 0
SE perimeter 0 0 0 0 0 0 0 −114 0 0
SE compactness 0 0 0 0 0 0 0 −29 0 0
SE symmetry 0 0 0 0 0 0 −61 −96 0 0
Worst radius 0 −72 0 0 0 0 0 0 0 0
Worst texture 0 0 0 0 0 0 0 34 0 0
Worst perimeter −603 −426 −291 −390 −433 −296 −393 −449 −272 −373
Worst smoothness 0 0 0 −84 −72 0 −327 −489 0 −80
Worst concavity 0 0 0 0 −8 0 0 −42 0 0

4. SIMULATION STUDIES

We conducted numerous simulation studies to assess the cost for ignoring the nonlinear effect in (1.1) and
fitting an ordinary AFT model instead. Due to space limitations, the simulation details have been moved to
online supplementary material (available at Biostatistics online http://www.biostatistics.oxfordjournals.org)
and only our conclusions are summarized below. First, when the true function φ is linear, the model
precision from ordinary Gehan lasso beats the stratified estimator, which agrees with intuition. At the
same time, it is interesting to note that the stratified estimator gradually achieves similar operating char-
acteristics as the unstratified estimator as the sample size increases and number of strata Kn increases.
Nevertheless, the stratified estimator is far too cumbersome if the unknown function φ is indeed linear
in Zi . Now, the big improvements in the stratified estimator are seen when the unknown function φ is
nonlinear. For example, when the sample size n = 75 and σ = 1.5, the partial model error (PME) is
7.49 and 4.73 for the unpenalized and regularized Gehan, respectively. We compare this to the PME of
the unpenalized and regularized stratified estimator, 1.03 and 0.70, respectively. Hence, there is an aver-
age 7-fold increase in PME if we fit the Gehan lasso when the true underlying model is a nonlinear (i.e.
quadratic) function of Zi .

5. REMARKS

This paper describes rank-based estimation and variable selection in the �1-regularized partial linear model
for censored data. The proposed regularized estimator extends the stratified rank-based estimator by Chen
and others (2005). Computationally, we offer a novel strategy for computing regularized Gehan estimates
and extend this strategy to stratified estimator. Theoretical properties of the regularized Gehan estimator
have been established elsewhere (Johnson, 2008; Johnson and others, 2008; Cai and others, 2009) and we
expect that similar properties apply to the stratified estimator under suitable regularity conditions. While
we have only focused on lasso estimation, the stratified estimator can accomodate other penalty functions
(cf. Johnson and others, 2008) with no additional difficulty. Compared with the computational methods
proposed by Johnson (2008) and Cai and others (2009), the methods in this paper have the advantage that
they may be easily implemented in standard software.
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A premise of this paper is that many applications of variable selection on gene expression are naive
in that they do not adequately adjust for important clinical variables. In this paper, we suggest using
the partly linear model where clinical predictors enter nonlinearly and gene expression variables enter
linearly. If clinical predictors also enter the statistical model linearly, then model (1.1) reduces to an
ordinary AFT model. In simulation studies available as supplementary material (see Biostatistics online
http://www.biostatistics.oxfordjournals.org), we show that there can be a potentially large price to pay
in terms of model precision when the true underlying model is partly linear but we fit a linear model
instead. Because many clinical predictors are already known to be related to cancer recurrence, building
recurrence models through model (1.1) by selecting genetic features after adjusting for nonlinear clinical
effects makes better scientific sense and potentially reduces model error at the same time.
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