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SUMMARY

Before a comparative diagnostic trial is carried out, maximum sample sizes for the diseased group and the
nondiseased group need to be obtained to achieve a nominal power to detect a meaningful difference in
diagnostic accuracy. Sample size calculation depends on the variance of the statistic of interest, which is
the difference between receiver operating characteristic summary measures of 2 medical diagnostic tests.
To obtain an appropriate value for the variance, one often has to assume an arbitrary parametric model
and the associated parameter values for the 2 groups of subjects under 2 tests to be compared. It becomes
more tedious to do so when the same subject undergoes 2 different tests because the correlation is then
involved in modeling the test outcomes. The calculated variance based on incorrectly specified parametric
models may be smaller than the true one, which will subsequently result in smaller maximum sample
sizes, leaving the study underpowered. In this paper, we develop a nonparametric adaptive method for
comparative diagnostic trials to update the sample sizes using interim data, while allowing early stopping
during interim analyses. We show that the proposed method maintains the nominal power and type I error
rate through theoretical proofs and simulation studies.
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1. INTRODUCTION

When a new medical diagnostic test is developed, trials are carried out to compare the diagnostic accuracy
of the new test with some existing one. In these comparative diagnostic trials, it is of interest to investi-
gate the difference between summary measures of receiver operating characteristic (ROC) curves for the
diagnostic tests. Common ROC summary measures include the area under the ROC curve (AUC), partial
area under the ROC curve (pAUC), and sensitivities at a certain specificity. Wieand and others (1989)
introduce a general family of ROC summary statistics, hereafter referred to as the �-statistic, for com-
paring the accuracy of 2 diagnostic tests. Their statistics include all aforementioned common summary
measures.
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Due to both ethical and cost concerns, it is important that a comparative diagnostic trial is terminated,
should one test be proved to be more accurate than the other. Mazumdar and Liu (2003) propose a para-
metric group sequential method to allow early termination of diagnostic trials. Tang and others (2008)
discuss a general nonparametric sequential ROC method that can be implemented with popular group se-
quential design (GSD) methods such as the O’Brien–Fleming test, Pocock test, and a more flexible error
spending approach (Lan and DeMets, 1983). Detailed discussion on GSDs is provided in Jennison and
Turnbull (2000).

Planning a sequential diagnostic trial requires calculating maximum sample sizes for the diseased
group and the nondiseased group to meet a prespecified power and to maintain a specified type
I error rate. Often, parametric distributions are assumed for test outcomes from 2 groups of subjects under
consideration, and power calculations are made using variances under this assumed model. In many situ-
ations, it is difficult to assume a proper parametric model, let alone to specify the values of the parameters
in the model, especially when correlation parameters are involved due to repeated measurements on the
same subjects. For instance, under a popular binormal model assumption, one needs to specify 2 separate
bivariate normal distributions, each of which consists of 2 mean parameters, 2 variance parameters, and
a correlation coefficient. As a result, a total of 10 parameters are needed to calculate the variance of the
estimated difference of the AUCs or pAUCs or the sensitivities at some specificity between the 2 tests.
Therefore, even if a correct parametric model is specified, when some of these 10 nuisance parameters are
incorrectly specified, the calculated variance will differ from the true one. For instance, when the assumed
correlation parameters are much smaller than the true ones, the calculated variance becomes incorrectly
smaller, which subsequently results in smaller maximum sample sizes. A study based on these sizes will
not achieve the desired power. There has been scant discussion on how to adaptively estimate sample
sizes in comparative diagnostic trials. Wu and others (2008) propose a 2-stage method to recalculate the
sample sizes by assuming bivariate binormal distributions for test outcomes. Their method is sensitive to
distributional assumptions and, moreover, does not allow early stopping of the trial should statistically
significant evidence be found against the null hypothesis.

In the clinical trial literature, several methods have been proposed to both recalculate sample sizes and
allow early stopping during interim analyses. Denne and Jennison (2000) and Proschan and others (2006)
introduce adaptive approaches to use internal pilot data to update sample sizes. Although the method
in Denne and Jennison (2000) is applicable in small samples, calculation of critical boundary values is
based on t-statistics and thus nontrivial. The adaptive approach in Proschan and others (2006) based on
z-statistics is simpler to use and performs well for large sample sizes. They obtain a variance estimate
from internal pilot data and then update the variance to recalculate sample sizes.

In this paper, we propose a nonparametric group sequential method by combining the sequential
�-statistic with the adaptive method of Proschan and others (2006) and the error spending approach
(Lan and DeMets, 1983) in comparative diagnostic trials. Good logistics for the adaptive method reside
in diagnostic trials. For instance, biomarker results are quickly available once the markers are assayed.
Patients’ true disease status is often in the record when they are accrued in the trial. These avoid delay in
obtaining valid data for comparing biomarkers during interim analysis. However, test statistics involved
in diagnostic biomarker trials are more complicated than many statistics in clinical trials. It is unclear
whether adapting the aforementioned methods in diagnostic trials is able to maintain the desired error size
and power. We will investigate theoretical and finite sample properties of the proposed method.

In Section 2, we give a brief introduction to GSD and adaptive sample size recalculation. We also
briefly introduce the �-statistic and its asymptotic resemblance to a Brownian motion process. In
Section 3, we develop an adaptive nonparametric method. Our method recalculates the sample sizes using
internal pilot data to ensure sufficient power and also allows early termination during interim looks. The
method is particularly useful when the same subject is diagnosed with 2 different tests, which is a com-
mon practice in diagnostic studies in order to minimize confounding effect due to different characteristics



Sample size recalculation 153

among subjects (Hanley and McNeil, 1982). Section 3.3 shows the large sample property of the proposed
method. In Section 4, a method to determine the initial sample sizes used in the adaptive procedures is
introduced and its drawback is illustrated. In Section 5, we present simulation results for the finite sample
performance of our method with regard to the specified power and the nominal type I error rate for AUC
and pAUC comparisons. Section 6 illustrates the application of our method in a cancer diagnostic trial.
Discussion is in Section 7.

2. SOME BACKGROUND

In this section, we will briefly introduce GSD, adaptive sample size calculation, and the �-statistic.

2.1 Group sequential design

We consider a general group sequential sampling plan with maximum K analyses. An error spending
function f (τ ), τ ∈ [0, 1], is chosen to determine the boundaries of the kth analysis, k = 1, . . . , K . To be
an error spending function, f (τ ) must be increasing and satisfy f (0) = 0 and f (1) = α. We consider
4 boundaries −∞ < ak � bk � ck � dk < ∞ at each of the K analyses, with at least one inequality
before the K th stage. A test statistic wk for comparing 2 diagnostic tests is calculated using all available
data at the kth stage and is compared with stopping boundaries. If wk � ak , bk < wk < ck , or wk � dk ,
before the final stage, then the trial is stopped earlier without accruing more subjects. We would decide
that diagnostic test 1 is inferior, approximately equivalent, or superior to test 2, respectively, depending
on which boundary is reached. Otherwise, the study accrues sufficient subjects to proceed to analysis
k + 1. The trial eventually stops at the K th stage if not so before or at the K − 1th stage. In practice, the
boundaries are usually set to ak = bk = ck = dk for one-sided tests and ak = bk < ck = dk for two-sided
tests.

2.2 Adaptive sample size calculation

At the planning stage of a trial, maximum sample sizes are required to achieve the desired power to detect
a meaningful alternative. Emerson and others (2007) provide a detailed description for calculating such
sample sizes in clinical trials. Given a specific sequential design with K maximum number of interim
analyses for a single sample, the maximal number NK of sampling units needed is given by NK =
δ2
αβV/�2

a , where �a is the value under the alternative hypothesis to be detected with statistical power β
in a level α hypothesis test, V is the variance due to a sampling unit, and δαβ is the design alternative in
some standardized version of the test. Provided that the value of δαβ is specific to the chosen stopping rule
in a GSD, the sample size is given in a two-sided test by

NK = δ2
αβ,g

δ2
αβ,f

(z1−α/2 + zβ)2V

�2
a

, (2.1)

where δ2
αβ,g/δ

2
αβ,f is the sample size ratio of a sequential design to the fixed sample design. The ra-

tio, often referred to as the sample size inflation factor, is a fixed number given some specific design.
Proschan (2004) introduces the concept of internal pilot data that often refers of available data in an on-
going trial. With the internal pilot data, the variance estimate V̂ is calculated to update maximum sample
size, ÑK :

ÑK = δ2
αβ,g

δ2
αβ,f

(z1−α/2 + zβ)2V̂

�2
a

. (2.2)
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Sometimes the updated maximum sample sizes may be lower than the original ones. If this happens,
Proschan (2004) recommends setting the final sample sizes equal to max(ÑK , NK ) = NK because a
sufficient budget has been set aside for accruing NK subjects.

2.3 �-Statistic

In a prototypical comparative diagnostic trial, 2 diagnostic tests are conducted on M diseased subjects
and N nondiseased subjects. We denote the measurements from test � (� = 1, 2) on the i th diseased
subject as X�i , where i = 1, . . . , M , and the measurements on the j th nondiseased subject as Y�j , where
j = 1, . . . , N . Define the joint cumulative survival functions (X1i , X2i ) ∼ F(x1, x2) for the diseased
population with marginal survival functions X�i ∼ F�(x). Similarly, define (Y1 j , Y2 j ) ∼ G(y1, y2) for
the nondiseased population with marginal survival functions Y�j ∼ G�(y). Without loss of generality, we
assume that measurements tend to be larger for the diseased than for the nondiseased. At each threshold
c, a pair of sensitivity (Se) and specificity (Sp) is thus given by

Se = F�(c) = Pr(X�i > c) and Sp = 1 − G�(c) = Pr(Y�j � c).

The ROC curve for the �th test is a plot of Se versus 1 − Sp for the threshold c in (−∞, +∞). 1 − Sp is
also known as false-positive rate (FPR). The ROC curve for test � is defined as ROC�(u) = F�{G−1

� (u)},
where u is in [0, 1].

Wieand and others (1989) introduce a �-statistic based on the weighted AUC �� = ∫ 1
0 [F�{G�

−1(u)}]
dW (u), with some probability measure W (u) for u ∈ (0, 1). The difference between the 2 weighted
areas becomes � = �1 − �2. Substituting the empirical survival functions F̂� and Ĝ� for F� and G�,
respectively, the �-statistic is given by

�̂ = �̂1 − �̂2 =
∫ 1

0
[F̂1{Ĝ−1

1 (u)}]dW (u) −
∫ 1

0
[F̂2{Ĝ−1

2 (u)}]dW (u). (2.3)

When W (u) = u for 0 < u < 1, �̂ compares the AUCs of 2 tests; when W (u) = u for 0 < u1 � u �
u2 � 1, and 0 otherwise, �̂ compares pAUCs between FPRs u1 and u2; and when W (u) is a point mass at
u0, �̂ compares sensitivities at a given level of specificity u0. Borrowing from results in Tang and others
(2008), the asymptotic variance of �̂ takes the form

σ 2
� = vX/M + vY /N , (2.4)

where vX and vY are

vX =
2∑

�=1

⎛
⎝∫ 1

0

∫ 1

0
F�{G−1

� (u1 ∧ u2)}dW (u1) dW (u2) −
[∫ 1

0
F�{G−1

� (u1)}dW (u1)

]2
⎞
⎠

−2
∫ 1

0

∫ 1

0
[F{G−1

1 (u1), G−1
2 (u2)} − F1{G−1

1 (u1)}F2{G−1
2 (u2)}]dW (u1)dW (u2),

vY =
2∑

�=1

⎡
⎣∫ 1

0

∫ 1

0
r�(u1)r�(u2)(u1 ∧ u2)dW (u1)dW (u2) −

{∫ 1

0
r�(u)u dW (u)

}2
⎤
⎦

−2
∫ 1

0

∫ 1

0
r1(u1)r2(u2)[G{G−1

1 (u1), G−1
2 (u2)} − st]dW (u1)dW (u2),
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with r�(u) = F ′
�{G−1

� (u)}/G ′
�{G−1

� (u)}. Here, the variance, V�, contributed by a diseased subject is
var(

√
M�̂), given by

V� = vX + λvY , (2.5)

where λ = M/N . In the next section, we develop the sequential version of this statistic and combine it
with the aforementioned GSD and adaptive sample size calculation.

3. ADAPTIVE SEQUENTIAL METHOD

The purpose of this section was to combine the concepts in Section 2 and introduce an adaptive method in
sequential diagnostic trials. We define the following symbols for the kth stage of a GSD with a maximum
K analyses, k = 1, . . . , K :

• mk, nk are the numbers of available observations for diseased and nondiseased groups, respectively,

• F̂�k , Ĝ�k are respective empirical survival functions,

• �̂k = �̂k1 − �̂k2, where �̂k� is the �th empirical weighted AUC (wAUC),

• Zk = �̂k/σ̂�k , where σ̂�k estimates σ� from available data at kth look,

• Ik = 1/σ�k , statistical information, consequently, Ik � Ik+1, k = 1, . . ., K ,

• τk = Ik/IK .

Define B(τk) = √
τk Ik�̂k , which is an asymptotically unbiased estimator for

√
τk Ik�k , with asymptotic

variance var(B(τk)) = τk . B(τk) behaves asymptotically like a Brownian motion process with drift param-
eter �

√
IK (Tang and others, 2008). Therefore, the sequential �-statistic has an independent increments

structure and can be easily adapted to general GSDs.
Pilot data nonparametrically estimate the variance of the �-statistic from (2.4) to determine the max-

imum sample sizes. In the absence of pilot data, estimation of the initial maximum sample sizes can be
obtained in several ways. One way is to assume parametric forms for F�, G�, and the bivariate survival
functions, F(x1, x2) and G(y1, y2), and substitute them into (2.4). Thus, given specified β and α, sample
sizes can be calculated from (3.1). Alternative ways are described in Section 4.

3.1 Sample size recalculation

The dependence of sample sizes on prespecified values of correlation parameters can be reduced by up-
dating the sample sizes at the interim analysis. Although the variance of the �-statistic is derived using
asymptotic results, previous simulation studies in Tang and others (2008) demonstrate that the variance
estimation has excellent finite sample performance for sample sizes as small as 50.

Before the trial is conducted, (4.1) in Section 4 can be used to obtain the initial maximum sample
sizes, MK , for the diseased and, NK , for the nondiseased. As the trial is carried out sequentially, available
data at the first interim analysis serve as internal pilot data for sample size reestimation. The estimates of
vX and vY are given by (2.4) and are subsequently used to recalculate new maximum sample sizes, say
M̃K and ÑK for the 2 groups, respectively. Analogous to (2.2), given a hypothesized value �a , M̃K , and
ÑK are

ÑK = δ2
αβ,g

δ2
αβ,f

(z1−α/2 + zβ)2V̂�

λ�2
a

and M̃K = λÑK , (3.1)
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where V̂� estimates V� from available data at the first look. By following Proschan (2004), setting the
final sample sizes equal to max(ÑK , NK ), and max(M̃K , MK ) guarantees that the original number of
observed subjects N1 will not exceed Ñ1 based on updated sample sizes.

3.2 Stopping rule

Based on the new sample sizes, M̃K and ÑK , the fraction τ1 of the maximum information spent at the first
analysis is given by τ1 = σ 2

�1/σ
2
�K , where σ 2

�K is the maximum variance at the final stage of analysis. It
follows from the variance expression in (2.4) that τ1 has a simplified form as

τ1 = M1/M̃K .

Since the same allocation ratio λ between the diseased and the nondiseased is maintained at each analysis
throughout the trial, we can also obtain the fraction τ1 by using τ1 = N1/ÑK . The type I error rate spent
at the first analysis is π1 = f (τ1), and the boundary values are determined by the inverse function of
the standard normal distribution function, �. For instance, in the example of common two-sided tests of
equal weighted AUCs, where −∞ < a1 = b1 < c1 = d1 < ∞, we have −a1 = d1 = �−1(1 − π1/2).
We use the test outcomes on the first M1 diseased subjects and N1 nondiseased subjects to compute
the empirical survival functions F̂�1 and Ĝ�1 and the wAUC estimator �̂�1. The estimates are used to
compare ROC curves using interim contrast �̂1, its standard error σ�1, and the interim standardized
statistic Z1 = �̂1/σ̂�1.

At the time of the kth analysis, we have diagnostic test data available on the first mk diseased subjects
and the first nk nondiseased subjects, allowing us to calculate the standardized test statistic Zk . The type
I error rate spent at the kth analysis is given by

πk = f (τ ∗
k ) − f (τ ∗

k−1), k = 2, . . . , K ,

where τ ∗
k = Mk/M̃K . The boundary values (ak, bk, ck, dk) at the kth analysis are then computed to

maintain the overall type I error rate α. For example, in a two-sided hypothesis test with −∞ < ak =
bk < ck = dk < ∞, we would choose stopping boundaries to ensure

Pr�=0(a1 < Z1 < d1, . . . , ak−1 < Zk−1 < dk−1, Zk � ak or Zk � dk) = πk . (3.2)

If Zk � ak , or Zk � dk , the study is stopped without accruing more subjects. Otherwise, more subjects
are recruited for the next analysis. At the final look if ZK is within the boundaries, we will conclude no
significant evidence against the null.

3.3 Large sample property

In this section, we discuss the reason that our adaptive procedure is able to control the specified type I
error rate and maintain the desired power. According to the proof of Theorem 1 in Tang and others (2008),
the convergence of empirical ROC curves, R̂OC�, � = 1, 2, is given by

√
M{R̂OC�(u) − ROC�(u)}

converges in distribution to
U1,�[F�{Ḡ−1

� (u)}] − √
λr�(u)U2,�(u), (3.3)

where U1,� and U2,�, � = 1, 2, are limiting Gaussian processes. Asymptotically, (3.3) is equivalent to

M∑
i=1

[I{X�i > G−1
1 (u)} − F�{G−1

� (u)}] +
N∑

j=1

√
λr�(u)[I{Y�j > G−1

� (u)} − u].
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Thus, the �-statistic is asymptotically equivalent to the summation of

M∑
i=1

∫ 1

0
([I{X1i > G−1

1 (u)} − F1{G−1
1 (u)}] − [I{X2i > G−1

2 (u)} − F2{G−1
2 (u)}])dW (u), (3.4)

and

N∑
j=1

∫ 1

0
[
√

λ(r1(u)[I{Y1 j > G−1
1 (u)} − u] − r2(u)[I{Y2 j > G−1

2 (u)} − u])]dW (u). (3.5)

Denote (3.4) as
∑M

i=1 Wi and (3.5) as
∑N

j=1 Vj . We see that i.i.d. random variables Wi s are independent
of i.i.d. random variables Vj s. Based on the result 11.1 in Proschan and others (2006), it follows that
estimating the nuisance variance in (2.4) provides no information of the sequentially estimated �-statistic.
This suggests that we can look at data during the interim analysis as though the recalculated sample sizes
have been fixed before the trial. These updated sample sizes give sufficient power, and the error spending
function in (3.2) controls type I error rate as the maximum error spent is restricted to be the specified
level α.

4. INITIAL SAMPLE SIZE DETERMINATION AND THE EFFECT OF CORRELATION ON POWER

This section gives a brief overview of sample size calculation from hypothesized AUC values and demon-
strates that misspecified parameter values might lead to huge loss of power. Various authors have proposed
methods to obtain maximum sample sizes without having to tediously guess specific parameter values
when comparing the AUCs of 2 tests. For uncorrelated test results, Hanley and McNeil (1982) propose
a conservative approach to calculating sample sizes from negative exponential models when comparing
2 AUCs. The advantage of using negative exponential models is that the variance of the estimated dif-
ference of AUCs can be calculated solely from specified AUC values under the null and the alternative.
Since the resulting variance is larger than that under normal or gamma distributions, subsequent sample
sizes are thus larger under negative exponential models than the other 2 models. For correlated test re-
sults, a nice method for determining the initial sample sizes is provided in section 8.3.4 of Pepe (2003).
Instead of specifying parameters for test results, her method only requires specifying 2 ROC curves and
their correlation parameter. Pepe (2003) also suggests assuming the correlation between ROC curves is 0,
which yields conservative sample sizes. Another way to obtain conservative sample sizes is introduced by
Tang and others (2008) based on the assumption of negative exponential distributions. Maximum sample
sizes, MK , for the diseased and, NK , for the nondiseased can be obtained for the O’Brien–Fleming test,
the triangular test, and the Pocock test (see Jennison and Turnbull, 2000, for detailed description of these
methods) by

MK = λNK = δ2
αβ,g

δ2
αβ,f

{z1−α/2

√
2(1 − ρA)Ṽ0 + zβ

√
Ṽ1 + Ṽ2 − 2ρA

√
Ṽ1Ṽ2}2

(�A
1 − �A

2 )2
, (4.1)

where ρA denotes the correlation between 2 AUCs, and Ṽ�̃, �̃ = 0, 1, 2, is derived from the hypothesized
AUC values, �A

1 , �A
2 , and �A

0 = (�A
1 + �A

2 )/2, and is given by

Ṽ�̃ =
λ�A

�̃

2 − �A
�̃

+
2λ(�A

�̃
)2

1 + �A
�̃

− (λ + 1)(�A
�̃
)2.
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Fig. 1. Actual power for testing equals AUCs when the correlation parameter ρA varies from −1 to 1 in (4.1): solid

line, �A
1 = 0.70,�A

2 = 0.75; dashed line, �A
1 = 0.75,�A

2 = 0.80; dotted line, �A
1 = 0.70,�A

2 = 0.80.

Equation (4.1) includes the method in Hanley and McNeil (1982) as a special case when test results are
not correlated and no interim looks are conducted, that is when λ = 1, ρA = 0 and δ2

αβ,g/δ
2
αβ,f = 1.

However, the sample size formula in (4.1) still requires a parameter measuring the correlation between
2 estimated AUCs. Specifying such a parameter may not be trivial due to unknown correlation structure
between the AUCs, and misspecification of the parameter may substantially adversely affect the power
to detect a meaningful difference in diagnostic accuracy. As recommended in Pepe (2003), conservative
sample sizes may be obtained by assuming that ρA = 0.

Figure 1 illustrates the effect of the correlation coefficient ρA on actual powers. We used K = 3,
M3 = N3 = 300, α = 0.05, and various pairs of AUCs. The actual power of the test from (4.1) was then
plotted against various values of ρA in the range of [−1, 1]. The figure shows that the actual power varies
substantially as the value of ρA varies. Apparently, the study may be severely under (over)- powered if the
true value of ρA is much less (larger) than the one specified. Both circumstances are undesirable because
the former is unable to detect with adequate power the minimal relevant difference between AUCs and
the latter unnecessarily increases the sample sizes actually needed for the study. Furthermore, if one is
interested in comparing pAUCs or other ROC summary measures other than AUCs, there are no explicit
variance formulas that only utilize the hypothesized values of the ROC summary measures. One has to
specify the values of individual parameters in the underlying distributions. It is thus appropriate to use the
proposed adaptive method to recalculate sample sizes using internal pilot data.

5. SIMULATION STUDIES

We simulated the performance of our adaptive group sequential design method (thereafter referred as
AGSD) for comparing AUCs and pAUC, for K = 2, 3 under 3 parametric models. Performance was
evaluated in terms of actual type I error rate and actual power under simulated data. We used the error
spending function by Kim and DeMets (1992) with f (τ ) = min(ατ, α) to determine the boundaries at
each analyses. We also applied the regular GSD by Tang and others (2008), which does not update the
original sample sizes, and investigated its simulated powers when some parameter was misspecified.
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The test outcomes from the 2 diagnostic tests were simulated, respectively, from 3 parametric mod-
els, the bivariate normal (Binorm), bivariate lognormal (Bilog), and bivariate exponential (Biexp). The
null hypothesis of equal AUCs or equal pAUCs were set to be false under the alternative with a nom-
inal power of 80%. The bivariate normal models have the forms of (X1, X2) ∼ N{(µ1, µ2),} and
(Y1, Y2) ∼ N{(0, 0),}, where diagonal elements of  are 1s and off-diagonal elements of  are corre-
lation parameter ρs. Mean parameters µ1 and µ2 were computed according to specified AUC or pAUC
values. We specified 3 pairs of AUCs, (0.70, 0.75), (0.75, 0.80), and (0.70, 0.80) with ρ = 0.3 under
two-sided alternative hypotheses. The bivariate lognormal models have the forms of exp(X1, X2) and
exp(Y1, Y2) for the diseased and nondiseased subjects, respectively. The AUCs under the lognormal mod-
els are the same as under the binormal models since ROC curves are invariant to monotone transforma-
tions. For comparing pAUCs in the range of FPRs, (0, 0.6), we specified 3 pairs of particular values,
(0.30, 0.35), (0.35, 0.40), and (0.30, 0.40), under two-sided alternative hypotheses. The bivariate lognor-
mal models are given by exponential transformation on (X1, X2) and (Y1, Y2), respectively.

The bivariate exponential random variables were generated with a distribution in Gumbel (1960),
which has the form of H(x, y) = H1(x)H2(y)[1+4ρ{1− H1(x)}{1− H2(y)}], where ρ ∈ [−0.25, 0.25],
and was set to be 0.10 for the simulation. Bivariate exponential data were generated with the marginal
survival functions exp(−β�1x) and exp(−β�2y) for diseased and nondiseased subjects, respectively, where
� = 1, 2, representing the type of tests. In the simulation, we set β11 = β21 = 1. β12 and β22 were chosen
according to the AUC or pAUC values.

We simulated 1000 data sets for each pair of AUCs or pAUCs under the 3 aforementioned model
assumptions. We conducted sequential analyses for K = 2 and K = 3. For each simulated data set, the
numbers of available observations in each group at the first interim analysis were M1 = N1 = MK /K ,
where the initial sample sizes MK were determined by (4.1) with a misspecified correlation ρA = 0.85.
The initial sample sizes range from 40 to 163 subjects per group for various AUCs or pAUCs. At the first
look, we updated sample sizes M̃K and ÑK from available observations by substituting nonparametric
variance estimates in (3.1). Comparing with initial sample sizes, average updated sample sizes increase
from 30% to around 200%. We specified the error spending function to be f (τ ) = max(τα, α) with
α = 0.05. The critical values at the first look were then calculated by using −a1 = d1 = �−1[1 −
f (M1/M̃K )/2]. Z1 was compared with these critical values. If Z1 � a1, or Z1 � d1, then we rejected the
null hypothesis of equal AUCs in favor of the alternative. Otherwise, we simulated (M̃K − M1)/(K − 1)
more observations to proceed to the second analysis. At the second look, Z2 was calculated and compared
with critical values b2 and c2 obtained from (3.2). If Z2 � a2, or Z2 � d2, we stopped without simulating
more observations. Otherwise, for K = 2, we would fail to reject the null. For K = 3, we would continue
to simulate (M̃3 − M1)/2 more observations and compare Z3 with critical values given by the error
spending function. It was then decided whether to reject the null for the simulated data set. For K = 2
or 3, we calculated how many times out of 1000 that the null hypothesis was rejected during either the
interim analyses or the final analysis and obtained the simulated powers. We also conducted simulation
studies using GSD and calculated its simulated powers. Unlike the AGSD method, which updated sample
sizes, the GSD method kept the original maximum sample sizes throughout the simulation. The results
are presented in Table 1. It is clear that AGSD maintains the specified power, while GSD is underpowered
due to misspecified sample sizes.

We also evaluated the performance of our method on controlling the type I error rate. We again sim-
ulated 2000 test results for each pair of AUCs or pAUCs under the 3 aforementioned parametric distri-
butions, the bivariate normal (Binorm), bivariate lognormal (Bilog), and bivariate exponential (Biexp).
The null hypotheses of equal AUCs or equal pAUCs were set to be true. We used AUCs (0.70, 0.75, and
0.80) and pAUCs (0.30, 0.35, and 0.40). In the simulations, �1 under the alternative was set to be 0.05.
The correlation coefficient ρ was set to be 0.3. We used a misspecified correlation ρA in (4.1) to com-
pute initial maximum sample sizes. We used type I error rate 0.05 and power 0.8 in the simulation. The
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Table 1. Simulated powers (in % ) with the nominal level 80% in the GSDs

Comparing AUCs

Two looks (K = 2) Three looks (K = 3)

AGSD GSD AGSD GSD

�1\�2 0.70 0.75 0.70 0.75 0.70 0.75 0.70 0.75

Binorm 0.75 82.10 NA 55.40 NA 80.70 NA 53.90 NA
0.80 82.50 81.70 63.00 58.60 81.00 79.10 63.90 57.60

Bilog 0.75 79.70 NA 55.80 NA 80.10 NA 57.90 NA
0.80 80.50 78.10 68.40 60.50 81.00 78.50 63.70 57.50

Biexp 0.75 79.90 NA 74.10 NA 78.80 NA 72.60 NA
0.80 78.20 79.40 66.50 65.80 78.20 78.40 58.10 76.10

Comparing PAUCs
�1\�2 0.30 0.35 0.30 0.35 0.30 0.35 0.30 0.35

Binorm 0.35 79.30 NA 55.10 NA 77.10 NA 57.90 NA
0.40 75.60 79.40 68.60 60.20 81.50 77.50 52.00 59.20

Bilog 0.35 80.00 NA 58.70 NA 78.60 NA 57.30 NA
0.40 82.50 77.90 67.40 61.90 79.30 78.30 67.60 61.80

Biexp 0.35 81.50 NA 67.70 NA 79.70 NA 66.60 NA
0.40 82.10 80.60 48.20 62.40 76.20 79.00 46.90 71.50

The rejection rate with 1000 realizations. The 95 prediction interval is (80.0% ± 2.48%). NA, not applicable.

Table 2. Simulated type I errors (in %) with the nominal level 5% in the GSDs

Comparing AUCs

Two looks (K = 2) Three looks (K = 3)

�1(�2) Binorm Bilog Biexp Binorm Bilog Biexp

0.70 5.05 5.80 5.30 5.10 5.60 5.00
0.75 5.30 5.15 5.30 5.55 5.45 4.70
0.80 5.55 4.65 5.40 5.10 4.80 5.45

Comparing PAUCs
0.30 5.40 5.20 4.80 5.15 5.30 5.00
0.35 5.60 5.35 5.40 5.65 5.75 5.55
0.40 4.55 5.95 5.25 5.50 5.70 5.95

The rejection rate with 2000 realizations. The 95% prediction interval is (5.00% ± 0.95%).

simulation settings were the same as those for power calculation, except that the null was true. Our method
was applied to the simulated data sets, and rejection rates were calculated from the number of rejections
out of 1000 data sets under each setting. The results are presented in Table 2. As can be seen from the ta-
ble, our method is able to control the overall type I error rate as all rejection rates are close to the nominal
level.

6. AN EXAMPLE

In this section, we illustrate the application of our method in a cancer diagnostic trial described in Lloyd
(1998). The data were collected by taking measurements of a reference biomarker and 6 newly developed



Sample size recalculation 161

biomarkers on blood samples of 135 cancer patients and 218 noncancer patients. These markers are in-
dexed from A to G. We redesigned part of the trial with the proposed method for a comparison between the
reference marker A and biomarker E with 3 looks. Because of insufficient knowledge about the trial, we
assume M3 = 135 and N3 = 218 were calculated to achieve a prespecified power for a contrast �a = 0.1
between AUCs. At the first look, we accrued data on first 45 cancer patients and 73 noncancer patients and
calculated the interim contrast �̂1 = 0.0045, V̂� = 0.1526, σ̂�1 = 0.0583, and the interim normalized
statistic Z1 = �̂1/σ̂�1 = 0.0770. The estimate V̂� was used in (3.1) to obtain the updated sample sizes,
M̃3 = 109 and Ñ3 = 175. As these updated sizes are smaller than the originally planned ones, the original
sample sizes were used for the study. Since Z1 fell within the boundary (a1 = −2.3940, d1 = 2.3940),
we continued with the second look at 45 more cancer patients and 73 more noncancer patients. We cal-
culated interim contrast �̂2 = 0.0346, its standard error σ̂�2 = 0.0327, and Z2 = �̂2/σ̂�2 = 1.0572
from accumulated 90 cancer patients and 146 noncancer patients. Now Z2 was still within the boundary
(a2 = −2.2937, c2 = 2.2937). When the trial was continued to the third look with accruing all patients,
the statistic Z3 = 2.9782 was outside the boundary (a3 = −2.1999, d3 = 2.1999). Thus, at the end of the
trial, we came to a conclusion that 2 biomarkers have different diagnostic accuracy regarding their AUCs.

7. DISCUSSION

Sample size and power calculation for a study often involve certain parameters whose values need to be
specified at the planning stage of the study. With a fixed sample size computed based on the specified
values, the power of the study can be substantially affected if these values differ from the true values of
the parameters. To complicate the issue, however, it can be quite challenging to verify the specifications
at the the planning stage of the study. A remedy to this problem is to use internal pilot data to reexamine
these assumptions and update the sample sizes accordingly so that the desired power can be maintained
for the study.

Comparing the accuracy of 2 diagnostic tests, parametrically or nonparametrically, in terms of their
ROC summary measures usually involves 2 bivariate distributions, 1 for the cases and 1 for controls. The
power required for these studies depends on quite a few nuisance parameters whose values need to be
specified. To relax such dependence, the present paper proposed an adaptive group sequential approach
to designing such studies. In this approach, initial maximum sample sizes are computed using an ap-
proximate formula that only requires specification of the between-test correlation coefficient. At the first
interim analysis, maximum sample sizes are updated using the �-statistic whose variance is estimated
from the interim data. Stopping boundaries are determined using the updated sample size and a proper
error spending function. Our simulation studies show that the proposed adaptive design maintains the
desired power without scarifying the nominal type I error rate.

Diagnostic biomarker studies are of several different design types, including cohort studies with both
definitive tests and biomarkers measured for all subjects in a cohort with definitive tests done before
measuring biomarkers (Pepe and others, 2001), and a recently introduced nested case–control studies by
Pepe and others (2008). Definitive tests are often invasive and costly. In some cohort studies, definitive
test results are already in the record and assaying biomarkers is of low cost, the proposed design may be
carried out with just 2 looks, with the first look updating sample sizes. Otherwise, we recommend more
than 2 looks in the proposed sequential design to minimize the number of subjects who undergo definitive
tests by possibly stopping the trial earlier.

The present paper only examines the issue of reestimating the variance of the �-statistic adjusting
for sample size. Using the interim data, other assumptions at the planning stage of the study can also
be reexamined. For example, we can utilize the interim data to evaluate whether the AUC difference to
be detected is reasonable or whether the case-to-control allocation ratio need to be changed. All these
evaluations may lead to reestimation of the sample sizes.
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