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Abstract
The equations of motion for deterministic molecular dynamics (MD) are chaotic, creating problems
for their numerical treatment due to the exponential growth of error with time. Indeed, modeling and
computational errors overwhelm numerical trajectories in typical simulations. Consequently,
accuracy is expected only in a statistical sense, based on random initial conditions. Of great interest
then is the relationship between errors in the dynamics and their effects on the accuracy of statistical
quantities, specifically, expectations. This article provides a formula for the effect of a perturbation
on an ensemble average, which explains the accuracy of such calculations. It also provides a formula
for the effect of a perturbation on a time correlation function, which, however, fails to explain
accuracy for these calculations. Additionally, this article clarifies the relationships among various
dynamical properties of MD and provides an extension to a theory of non-Hamiltonian MD.
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1. Introduction
Molecular dynamics (MD) is heavily used in a variety of fields and consumes vast amounts of
computing time. However, the equations of motion for MD are chaotic, creating problems for
their numerical treatment due to the exponential growth of error with time. In particular,
computational errors overwhelm numerical trajectories in typical simulations using classical
mechanics, so the use of numerical integrators for computing statistical quantities needs to be
defended. The book [13, p. 73] speculates that shadowing (the existence of a nearby exact
trajectory) may provide the justification but concludes by saying, “that there is clearly still a
corpse in the closet. We believe this corpse will not haunt us, and we quickly close the closet.”
Indeed, despite some impressive successes for shadowing [18], it is unlikely that a shadowing
result is possible for long durations for highly elliptic dynamical systems such as MD. This
article contributes to this discussion in several ways: (i) It clarifies the significance of various
dynamical properties of MD and their relationships. (ii) It extends the theory of non-
Hamiltonian MD [28] by providing a general transformation of suitable dynamical equations
to divergence-free form. (iii) It presents a formula for the effect of a perturbation on an ensemble
average, which explains the accuracy of such a calculation. (iv) It presents a formula for the
effect of a perturbation on a time correlation function, which exposes the essential difficulty
in explaining the accuracy of such a calculation.

*This work supported by grant R01GM083605 from the National Institute of General Medical Sciences.
© 2009 Society for Industrial and Applied Mathematics
†Department of Computer Science, Purdue University, West Lafayette, IN 47907-2107 (skeel@cs.purdue.edu)..

NIH Public Access
Author Manuscript
SIAM J Sci Comput. Author manuscript; available in PMC 2010 January 16.

Published in final edited form as:
SIAM J Sci Comput. 2009 January 16; 31(2): 1363–1378. doi:10.1137/070683660.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



The main theme of this article is to explore the question of what makes MD work by means of
a perturbation analysis. The principal motivation is to seek guidance in the construction of
approximations, such as numerical integrators, fast methods for nonbonded interactions, and
coarse-graining techniques. A perturbation analysis is also useful for making an informed
choice among existing approximations. Additionally, such an analysis is the first step in
deriving computable quantities that assess the error. Finally, error analysis increases our
confidence in the results of computations. Empirical evidence, even that obtained from
systematic studies, is applicable only to a narrow range of problems; whereas, theoretical
evidence has much broader applicability.

Section 2 discusses various basic properties of dynamical systems with random initial values.
Included is an extension to a theory of non-Hamiltonian MD.

Since calculating accurate trajectories is not typically the aim of a molecular simulation, it is
desirable to specify what the precise goal is. Section 3 details two specific goals: (i) that of
computing the ensemble average 〈A〉 for some quantity A(Γ), where Γ is a point in phase space
and (ii) that of computing a time-dependent value expressible as a linear combination of
unnormalized time correlation functions, which have the form 〈(A ○ Φt) · B〉, where Φt is the
t-flow of the dynamics and B(Γ) is some (possibly) other quantity. Perhaps, only time
correlation functions and time averages are insensitive to perturbations and that they are all
that can be extracted from long-time dynamics. These seem to be the only dynamical quantities
calculated in textbooks on MD. Knowing what functionals of trajectories can be computed is
very useful for making approximations; it indicates what aspects of behavior are to be
reproduced and what is to be neglected.

Section 4 derives a formula for the effect of a perturbation in the energy function H(Γ) on an
ensemble average (as does [3] apparently), and this indicates that computing such an average
is formally well posed. Interestingly, the effect of a perturbation depends on only the zeroth
derivative of the perturbation and the observable A(Γ), except in the case of the microcanonical
ensemble for which there is a limited dependence on first derivatives.

Section 5 derives a formula for the effect of a perturbation on a time correlation function.
However, the result is less than satisfactory because it fails to indicate that the problem is well
posed as time t → ∞. (The use of the Fourier and Laplace transforms leads to interesting
formulas; however, these do not seem to advance the cause of perturbation analysis.)

It is well known [22] that the error due to numerical integration is equivalent to perturbing the
vector field defining the system of ordinary differential equations (ODEs) plus an exponentially
small time-dependent term. The perturbation theory of sections 4 and 5 applies if we neglect
the exponentially small term and consider the effect of a divergence-free perturbation to the
vector field that conserves a perturbed energy. Such is the case for a symplectic integrator
applied to a Hamiltonian system, where the effect of temporal discretization error is to change
the Hamiltonian H(Γ) to H(Γ) + η(Γ). Evidence favoring the use of symplectic integrators is
quite compelling, as discussed in section 6.

2. Model

Let Γ = [xT, pT]T comprise the phase space variables, where  consists
of positions and p consists of momenta, and let the equations of motion defining the t-flow
Φt(Γ) be
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For divergence-free dynamics, ∇ · f(Γ) = 0. A special case is Hamiltonian dynamics for which

f(Γ) = J∇H(Γ), where . Of special interest is the separable Hamiltonian
, where M is a diagonal mass matrix and U(x) is the potential energy,

which is a sum of  few-body potentials for covalent bonded forces and  2-body
potentials for nonbonded forces (electrostatic, van der Waals, excluded volume). For example,
the numerical results presented in section 6 are from a simulation of 864 argon atoms (each of
mass 39.95 atomic mass unit (a.m.u.)) in a cubic box of side length 69.66 angstrom (Å) with
periodic boundary conditions. Each pair of atoms i, j contributes a term

 to the potential energy, where u(r) = 4ε((σ/r)12 − (σ/r)6) (ε =120K
times Boltzmann’s constant σ =3.405 Å) is the Lennard–Jones potential and S(r) is a switching
function defined to be one for r ≤ ron =10 Å, zero for r ≥ roff =12 Å, and

 for values of r in between.

The microscopic state Γ of a system is not known in practice; only partial information is given
for the initial value Γ. Hence, the initial value Γ is assumed to be random with probability
density function (PDF) denoted by ρ0(Γ). Formulation as a stochastic initial value problem
dramatically changes the questions we ask, yielding problems that are well conditioned (it
seems). The PDF ρ(Γ,t) for the dynamics Φt(Γ) can be shown to be given by

(1)

which can be shown to satisfy the continuity equation

which is simply a conservation law for probability. This equation is a linear hyperbolic PDE
having trajectories Φt(Γ) as characteristics.

Of particular interest is the time average

because it represents a case of minimal information about the microstate Γ. (The existence of
the time average is guaranteed by a theorem of Birkhoff.) Not surprisingly, the density defined
in this way can be shown to be stationary with respect to the flow Φt, meaning that (1) holds
with ρ(Γ,t) = ρ(Γ), or equivalently ∇ · (ρf) = 0.

In practice, a stationary density ρ(Γ) is determined by specifying distributions of macroscopic
quantities. Given such a stationary density, we define the ensemble average for an observable
A(Γ) by
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From (1) with ρ(Γ,t) = ρ(Γ), it follows that

(2)

If there is additional information about the initial value Γ, e.g., Ak(Γ) = Ak,0, k = 1, 2,…,m,
define the initial density as a conditional density:

Stationary solutions of the continuity equation are not unique, particularly if there are conserved
quantities. Each distribution of the values of the conserved quantities can be used to define a
different stationary solution. For simplicity, we assume that energy H(Γ) is the only conserved
quantity. (In the typical case of periodic boundary conditions, angular momentum is not
conserved. Also, it is desirable to set the linear momentum to zero, and this together with
invariance of the center of mass can be used, in principle, to eliminate position and momentum
coordinates of one of the atoms.) Extension to additional conserved quantities is outlined in
[28].

It is easy to characterize stationary densities if ∇ · f = 0; hence, we assume that f is divergence-
free in much of this article. Then it is easy to show that any probability density of the form

is stationary, where ζ is an arbitrary function independent of H. (This form of density is also
necessary if ρ is required to be continuous, as discussed in section 2.2.) Typically, ζ(E) =
e−βE, where β is inverse temperature, which gives a Boltzmann–Gibbs distribution. This is the
distribution for the canonical ensemble, which represents a system in a fixed volume but
exchanging energy with a much larger system of inverse temperature β. It is also the distribution
for the grand canonical ensemble and for the isothermal-isobaric ensemble, popular for
biomolecular simulations. The latter uses a Hamiltonian

 having enthalpy as its value and parameterized by
volume V, 0 < V < +∞. This models a system where the volume V is variable, and there is
mechanical contact with a much larger system of specified pressure P. Dependence of the
potential energy on V arises from external compressing forces. For periodic boundary
conditions, V is the volume of the periodic box.

2.1. Dynamics that is not divergence-free
If ∇ · f ≠ 0, it may still be possible to find stationary solutions to the continuity equation.
Following [28], we try ρ(Γ) = e−w(Γ)ζ(Γ)/Z. Substitution into ∇ · (ρf) = 0 yields the equation

(3)

for w. In general, the existence of a solution is not expected, just as the existence of an integral
of a dynamical system is unexpected. Suppose, though, there does exist a solution w. (It will
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be unique only up to an additive function of H(Γ).) We might call it a “compressibility
integral” because its derivative along a trajectory Φt is ∇ · f, which is the compressibility
[28] of the flow.

The compressibility of the vector field f can be made to vanish by multiplying it by e−w (a
Sundman transformation [20]), which has the effect merely of transforming time.

PROPOSITION 1. If (d/dt)Φt = f ○ Φt possesses an integral H and a compressibility integral w satisfying
(3), then

is divergence-free, it conserves H, and its solution satisfies

where

Proof. Clearly . Also,

Example 1. Nosé–Hoover dynamics is defined by

where Q is a parameter. This has as an integral . The
compressibility is ∇ · f = −3Nπ/Q, and a solution of f · ∇w = −3Nπ/Q is w = −3Nξ [28]. Hence,
the vector field e3Nξf is divergence-free. Alternatively, replacing ξ by ξ’ = e3Nξ in the dynamical
equations also yields a divergence-free system [28].

Example 2. The isokinetic ensemble [28] uses

to generate the canonical ensemble in configuration space. This has as an integral .
The compressibility integral w satisfies
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which is the derivative of (3N − 1)U(x)/(pTM−1p) along a trajectory, whence w = (3N − 1)U
(x)/(pTM−1p). Again, a Sundman transformation can be used to make this divergence-free, thus
providing an affirmative answer to the question posed in [28].

Clearly, other cases exist where the invariant density can be found: If a change of variables

 is performed for a divergence-free system with ρ = ζ(H)/Z,the transformed system has

invariant  and invariant density .

2.2. Ergodicity
For a stationary density ρ(Γ) to have the form ζ(H(Γ))/Z is equivalent to the following condition:

(4)

where Ω(E) = ∫ δ(H(Γ) − E)dΓ. This represents a uniform distribution over all Γ for which E
≤ H(Γ) < E + dE. It is a stationary density, the microcanonical ensemble, corresponding to ζ
(E’) = δ(E’ − E). It is the probability density for an isolated system with energy E, with no
exchange of energy, momentum, or mass between the system and its surroundings. It is almost
exclusively a theoretical/computational tool. The microcanonical ensemble average of an
observable A(Γ) is given by

Analytical manipulations are facilitated if the Dirac delta function δ(·) is replaced by a
differentiable approximation of arbitrarily narrow width. (It could be avoided altogether by
using (d/dE) ∫ θ(H(Γ) − E)ρ(Γ)dΓ, where θ(·) is the Heaviside function.)

An assumption needed for some computational techniques is that Φt be ergodic on each
manifold H(Γ) = E. We say that a measure-preserving flow Φt is ergodic if the only subsets of
the manifold H(Γ) = E that are invariant under Φt have measure either zero or one. The flow
Φt preserves the microcanonical ensemble measure, since the latter is a stationary density for
the former. If Φt is assumed to be ergodic, the ergodic theorem implies that for any sufficiently
smooth observable A(Γ), its time average equals its microcanonical ensemble average

for almost any ΓE on the manifold H(Γ) = E.

Ergodicity implies that the trajectory {Φt(ΓE) | 0 ≤ t < +∞} is dense on the manifold H(Γ) =
E for almost any ΓE, which, in practice, is the essence of ergodicity. Although systems of
interest do not exactly have this property, it is believed that typical Hamiltonians are ergodic
for all but a fraction of phase space, a fraction that becomes vanishingly small in the
thermodynamic limit N → ∞.

Consider further the necessity of choosing the stationary density ρ(Γ) to have the form ζ(H(Γ))/
Z or, equivalently, of ensuring that (4) hold. Suppose that the energy surface H(Γ) = E has a
partition X1 + X2 + X3 + ⋯ into (disjoint) sets of positive measure such that Φt is ergodic on
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each set. It is reasonable to believe that the union of these sets has measure 1 if we assume that
there exists no integral other than H(Γ) on any set of positive measure. The most general
invariant density then has the form

where the coefficients ck are nonnegative and 1k is the indicator function for Xk. The continuous
nature of H(Γ) on the energy surface H(Γ) = E makes it unreasonable to choose ρ(Γ|H(Γ) =
E) to be anything but continuous on that surface. This forces the weights to be equal and (4)
to hold.

3. Simulation tasks
In many applications, it is the expectation of an observable 〈A〉 = ∫ A(Γ)ρ(Γ)dΓ, e.g., internal
energy 〈U〉, that is of interest, and equations of motion are not directly involved. Additionally,
problems such as that of structure determination can be formulated this way: Suppose that
configuration space (the set of all positions x) is partitioned into conformations corresponding
to subsets X1, X2, …, XK of phase space. The problem is to find subsets Xk having the greatest
probability 〈1k〉.

The expectation 〈A〉 can be estimated as an average of random samples A(Γ(ν)), ν = 1, 2, …,
Ntrials. A popular sampling technique is to use nonphysical dynamics and calculate time
averages. The dynamics must be ergodic and have the desired ensemble as its stationary density.
Molecular dynamics with stochastic terms can be used. For example, Langevin dynamics adds
friction and noise terms  to the equation for (d/dt)p, where
C is a diagonal matrix and W(t) is a collection of independent standard Wiener processes.
Alternatively, deterministic molecular dynamics can be used if ergodic. For ensembles other
than the microcanonical one, molecular dynamics with extended Hamiltonians are used.

An alternative approach of possible use in some circumstances is to represent an ensemble
average as a weighted average of microcanonical ensembles: By inserting

 into the integral that defines 〈A〉, it follows that

(5)

The density of states Ω(E) can be calculated using techniques such as those in [34].

In some applications, kinetics (physical dynamics) is of interest. Representing the effects of
the surroundings—exchange of particles, volume, and heat—in the dynamics is problematic,
especially for periodic boundaries. For large N, these effects become negligible, so a
conservative approach is to neglect them rather than risk contamination from postulated
boundary conditions. The effect of surroundings can be checked by redoing the calculation for
a different value of N.

A general cross-correlation function is given by
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where the overbar denotes a complex conjugate. It is straightforward to show that

making it necessary to consider only (complex-valued) autocorrelation functions cAA(t). It
follows from (2) that autocorrelation functions are symmetric in time in the sense that

.

We assume that the quantity we want to compute can be expressed in terms of quantities like

which implies an initial PDF ρ(Γ), which is stationary with respect to the dynamics. (A
nonstationary initial PDF ρ0(Γ) is accommodated by taking the factor ρ0(Γ)/ρ(Γ) into B(Γ).)
This formalism includes the Einstein relation for diffusion coefficients [13] and time
correlation functions, including use of the Green–Kubo formula for diffusion coefficients
[13]. For example, the velocity autocorrelation function for a system of N identical atoms is

given by , where vk(x,p) is the kth component of M−1p. An
important biological application is to compare orientational correlation functions with NMR
spectra for the purpose of deducing protein structure [19]. Also, some aspects of conformational
dynamics can be formulated this way, e.g., 〈(1Y ○ Φt) · 1X〉 is the probability of a transition
from one region X of phase space to another Y. However, transition rates kXY and other
dynamical quantities are more complicated than this, and appropriate formulations are needed.
For example, transition rates can be expressed as time derivatives of time-correlation functions
of indicator functions [6,33] and can be extracted from the matrix logarithm of a matrix of
normalized time-correlation functions of indicator functions [8]. Typically, m(t) decays
exponentially to a limiting value as t → ∞, but, in some cases [19], decay is proportional to
t−3/2.

Transient observables m(t) can be calculated as an average of values A(Φt(Γ(ν))) · B(Γ(ν)), ν =
1, 2, …, Ntrials. Under the assumption of ergodicity, m(t) can be calculated more economically
by sampling different energies E (instead of different points Γ(ν) in phase space) and computing
just one trajectory Φt(ΓE) for each energy, where H(ΓE) = E: Ergodicity implies

for each energy E, and these can be averaged using (5).
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3.1. Mixing
A dynamical property even stronger than ergodicity is that of mixing: With an initial density
ρ0(Γ) = c(Γ)δ(H(Γ) − E) on the manifold H(Γ) = E, the subsequent density ρ(Γ,t) converges—
in a weak sense—to the microcanonical density ρ(Γ) = δ(H(Γ) − E)/Ω(E) as t → +∞, meaning
that

(6)

for sufficiently smooth A(Γ). (A simple example of this is the weak convergence of sin tΓ to
0 as t → +∞.) Equation (6) can be reformulated in terms of a time correlation function using
(1): We have

where B(Γ) = ρ0(Γ)/ρ(Γ). Convergence of 〈A ○ Φt · B〉E to 〈A〉E〈B〉E as t → ∞ is equivalent to
(6). Hence, microcanonical time correlation functions for general observables converge to zero
if and only if the dynamics is mixing. (Note that convergence of a cross-correlation function
cAB(t) to zero as t → ∞ cannot be expected for a general ensemble unless either 〈A〉E or
〈B〉E is independent of E.) It is remarkable that convergence to steady-state is possible for the
linear, often time-reversible, hyperbolic PDE ∂tρ + ∇ · (ρf) = 0. It means the equation has the
character of a parabolic PDE, which is to say that the ODE has the character of a stochastic
differential equation.

4. Analysis for a perturbation to the ensemble
In this section, we suppose that the integral H is perturbed and consider the effect on an
ensemble average. Related results have been developed independently in [3] with an emphasis
on computable error estimates.

Following is the result of a perturbation analysis for a general distribution ζ(E). Note that
dependence on the gradient of the perturbation η(Γ) is absent. For the canonical ensemble, ζ
(E) = e−βE and the effect of the perturbation simplifies to −β〈(A − 〈A〉)η〉.

PROPOSITION 2. If the integral H(Γ) is perturbed to become H(Γ) + η(Γ), the first order effect on
〈A〉 is

where p denotes a perturbed ensemble average.

Proof. The result follows in a straightforward way from the expression

where, for simplicity, we omit the argument Γ of functions.
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In the case of the microcanonical ensemble, ζ(E) does not have a sensible derivative, but
integration by parts gives the alternative formula that follows. Here, the effect of a perturbation
η depends not only on the value of η(Γ), but also its derivative in some arbitrary direction k
(Γ).

PROPOSITION 3. If the integral H(Γ) is perturbed to become H(Γ) + η(Γ), the first order effect on
〈A〉E is

(7)

where k(Γ) is an arbitrary vector field.

Proof.

and the result follows by integrating by parts.

The expression given by (7) is potentially quite complicated. The safe choice k = ∇H involves
the Hessian of H. Another choice k(x, p) = [0T, pT]T leads to a much simpler expression, namely,

The integral does not blow up as p → 0 because the product dp1dp2 ⋯ dp3N compensates for
pTM−1p in the denominator. (Consider the use of 3N-dimensional polar coordinates.)

The results above apply to the use of time averages to obtain microcanonical ensemble averages
(for the given Hamiltonian or for an extended Hamiltonian) if the vector fields f and fp are both
divergence-free and if Φt and  are both ergodic.

5. Perturbation to dynamics
Suppose that the vector field f is perturbed to become fp. The goal is to express

 in terms of the difference g = fp − f, where  is the t-flow for
the vector field fp.

LEMMA 4. The first order effect of a perturbation g to the vector field is

Proof. The difference  satisfies
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whence

to first order. The lemma follows from this together with

PROPOSITION 5. The first order effect of a perturbation to the dynamics

satisfies

Proof. We have

Using (∇ A) ○ Φt · (∂ΓΦt) = ∂Γ(A ○ Φt) = ∇(A ○ Φt−s) ○ Φs · (∂ΓΦs), we get

It follows from (2) that Γ in the average can be replaced by Φ−s(Γ).

The effect of the perturbation depends on

Unfortunately, ∂ΓΦt−s is a matrix whose singular values approximate eλ(t−s) (for large t), where
the λ are the Lyapunov exponents. It is difficult to argue that the effect of a perturbation is not
large.

In the special case of a Hamiltonian system with a Hamiltonian perturbation g = J∇η, one might
ask whether the effect can be expressed in terms of just η rather than ∇η. This can be done by
integration by parts if ζ(E) has a bounded first derivative, i.e., for ensembles other than the
microcanonical one.

PROPOSITION 6. Assuming also that f = J∇H and g = J∇η, the first order effect of a perturbation is
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(8)

Proof. From Proposition 5,

Integrating by parts gives

We have

where the second equality is a consequence of Φ−s being symplectic. To complete the proof,
we need the identity

which results from differentiating Φt ○ Φs = Φt+s with respect to s and setting s = 0. Using this
gives

Of special concern in this result is the factor

which contains the exponentially growing matrix ∂ΓΦt. It is conceivable that the exponential
growth is somehow mitigated by the dot products and integration.

5.1. The same perturbation for both dynamics and sampling
Consider now the case of a Hamiltonian system and a microcanonical ensemble in which the
same perturbation η to H affects both the dynamics and the sampling, as would be the case if
a time average were used for sampling. The effect of the perturbation on the dynamics is given
formally by (8), and the effect on the sampling by

(9)
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If these are combined as Δm(t) = Δmd(t )+Δms(t), there is no obvious simplification.

There is a simple case that can be analyzed exactly. Let  and consider
uniformly perturbed masses Mp = s2M, where s is slightly different from 1. Then it can be

shown that , where Ds = diag(I, sI) and that

, where Ap(Γ) = A(DsΓ) and Bp(Γ) = B(DsΓ). In particular,
for a velocity autocorrelation function cp(t) = c(t/s), so the effect of the perturbation is to scale
time.

For the case , it should be true that , since this is true for both the
unperturbed and perturbed m(t). This provides a direct check on the correctness of the formulas.

PROPOSITION 7. The effect of a perturbation Δm(t) = Δmd(t)+Δms(t) as given by (8) and (9)
satisfies .

Proof. Substituting −t for t and then s − t for s in (8) gives

whence

The second equality uses the symplectic property of Φ−s as is done in the proof of Proposition
6. Hence,

6. Numerical integrators and shadow vector fields
There is abundant empirical evidence that numerical integrators can accurately calculate time
averages and time correlation functions, e.g., see [9] for the accurate calculation of kinetic
quantities over long times. It is of interest to explain why this is so and what properties
numerical integrators must possess. The analysis here suggests that

1. phase-space volume preservation,

2. existence of a perturbed conserved energy, and

3. ergodicity
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are sufficient for calculating time averages. More might be needed for accurate time correlation
functions.

Most numerical integrators of interest can be written Γn+1 = ΨΔt(Γn), where ΨΔt(Γ) is an
approximation to ΨΔt(Γ). A prime example is the velocity Verlet method [26] for Hamiltonian
systems with separable Hamiltonians:

This is a symplectic method meaning that (∂ΓΨΔt(Γ))TJ(∂ΓΨΔt(Γ)) = J.

Figure 1 depicts the results of a numerical experiment that illustrates that time correlation
functions can still be computed long after trajectories have lost all accuracy. The simulation is
that of 864 argon atoms as described in section 2 with initial conditions chosen from the
microcanonical ensemble for energy E that gives a temperature of 188.8 K. (Adjust E until

, where β−1 is equal to Boltzmann’s constant times .) The
experiment compares trajectories computed by the velocity Verlet method with step size 10
femtosecond (fs) to those with step size 20 fs. The rapidly rising graph is the difference in the

velocities for two trajectories using the different step sizes, ,
as a function of time 2nΔt, relative to this difference at infinite time. The more slowly rising
graph is the difference between the two velocity autocorrelation functions (defined in section
3) relative to the current value of the autocorrelation function: |c2Δt(t)−cΔt(t)|/|cΔt(t)|. This graph
has error bars computed from block averages that denote one standard deviation. A time
average over 5.24288 nanosecond (ns) is used. A second, quite different experiment was
performed in which the atomic radius σ is increased by 0.5% and again by another 0.5%. The
results are consistent with the assumed linear relationship between a perturbation and its effect
on the time correlation function. However, these results are not so compelling for longer time
lags, so the associated graphs are given in a separate note [24].

There is evidence that geometric integrators of some sort must be used. For example, it is
observed [30] that the symplectic Euler method accurately calculates time correlation functions
even for large step sizes, but that the same method with a projection on each step to exactly
conserve energy produces inaccurate results for practical step sizes. Similar results are
observed [31] in tests on numerical integrators for steady-state simulations. Poor results from
energy projection methods had already been previously observed for MD [17,7]. See [32] for
recent additional positive results for calculating various kinetic quantities using velocity Verlet.

The modified equation approach [15] to error analysis provides some justification for MD:
Formally, the numerical integrator , where the latter satisfies

, with fp(Γ) = f(Γ) + Δtqφq(Γ) + Δtq+1φq+1(Γ) + …. Here q is the order
of accuracy of the integrator and φq(Γ), φq+1(Γ),… are vector fields. (Labeling this as a merely
formal equality is supported by a proof in [5] of nonconvergence for the Euler method applied
to (d/dt)y = y2.) If f(Γ) = J∇H(Γ) for some Hamiltonian H(Γ), then fp(Γ) = J∇Hp(Γ) for some
shadow Hamiltonian
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where ηq(Γ), ηq+1(Γ), … are scalar fields, if and only if ΨΔt is symplectic [1,27]. Let f(k)(Γ) be
the truncation of fp(Γ) just before the Δtk term. Then there exists k depending on Δt for which
ΨΔt = Δt-flow of f(k) plus an  time-dependent term [1,14,21]. The duration of
Hamiltonian dynamics is only , which is too short to really justify MD.

However, conservation of the shadow Hamiltonian endures for exponentially long time, in
particular,

where H(k)(Γ) is the truncation of Hp(Γ) just before the Δtk term [1]. Conservation of the
truncated shadow Hamiltonian constrains the actual energy of a second order integrator to stay

within a range of  for exponential time. It is thus inferred that the behavior of the actual
energy consists of (i) fluctuations indicative of the discrepancy between energy and shadow
energy, plus (ii) very slow secular drift.

It is common with dynamics to monitor the energy for excessive drift. If the truncated shadow
Hamiltonian were monitored instead, systematic fluctuations would be flattened, and excessive
drift would be evident before wasting a large amount of computing time. Also, the shadow
Hamiltonian can produce a posteriori estimates of the effect of integration errors for
observables computed from time averages of extended Hamiltonian dynamics [2,4]. However,
as a practical tool, the truncated shadow Hamiltonian falls short: The formula for H(k) involves
analytical derivatives of H and is expensive to compute. To solve this problem, [25] defines
“interpolatory” shadow Hamiltonians

which are cheap and easy to evaluate. This construction applies to integrators based on splitting
the Hamiltonian and is well defined even for Hamiltonians that are merely C1.

A subsequent article [11] implements the interpolatory shadow Hamiltonians up to 24th order.
Associated experiments indicate that the shadow Hamiltonian is well conserved even if not all
higher derivatives exist. Moreover, the fluctuations are exponentially small in the step size
even for MD, where potential energy functions contain numerous singularities. Most surprising
is the observation that as the order k increases, the magnitude of the fluctuations continues to
decrease (to a positive limiting value). Hence, the expected divergence [15, p. 342] does not
materialize for reasonable step sizes.

There are efficient nonsymplectic volume-preserving methods that conserve energy very well
[12], but none are known that possess a perturbed energy that is conserved for exponentially
long time. For example, the qth order symmetric linear multistep method with simple roots on

unit circle conserves energy for  [15]. Another example, the simplified
Takahashi–Imada/Rowlands method, introduced in [35, eq. (10.5)–(10.8)], conserves energy

for  [16].

Molecular simulations of the average length of butane versus step size illustrated by [10, Fig.
2] and [23, Fig. 4] demonstrate that the dependence on step size is choppy though apparently
quadratic. Presumably, this is a result of the dynamics being nonergodic with the inaccessible
portion of phase space varying as a function of Δt. Only with unrealistic assumptions has
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ergodicity been proved for numerical integrations: one proof [21] assumes uniformly
hyperbolic dynamics and applies a shadowing lemma; another [29] assumes a step size small
enough that trajectories are resolved. A weakened property, termed δ-ergodicity, is discussed
in [29]. Recently, a weakened shadowing concept has been proposed [32] as an explanation
for the success of molecular dynamics.

Acknowledgments
The author is grateful to Alicia Klinvex for performing the numerical experiments and to Wayne Hayes, Paul Tupper,
and anonymous referees for suggestions that improve the presentation.

REFERENCES
[1]. Benettin G, Giorgilli A. On the Hamiltonian interpolation of near to the identity symplectic mappings

with application to symplectic integration algorithms. J. Statist. Phys 1994;74:1117–1143.
[2]. Bond, S. Ph.D. thesis. Dept. of Mathematics, University of Kansas; Lawrence, KS: 2000. Numerical

Methods for Extended Hamiltonian Systems with Applications in Statistical Mechanics.
[3]. Bond, SD. Backward Error Analysis for Microcanonical Averages. 2008. manuscript
[4]. Bond SD, Leimkuhler BJ. Molecular dynamics and the accuracy of numerically computed averages.

Acta Numer 2007;16:1–65.
[5]. Borwein JM, Corless RM. Emerging tools for experimental mathematics. Amer. Math. Monthly

1999;106:889–909.
[6]. Chandler D. Statistical mechanics of isomerization dynamics in liquids and the transition state

approximation. J. Chem. Phys 1978;68:2959–2970.
[7]. Chiu SW, Clark M, Subramaniam S, Jakobsson E. Collective motion artifacts arising in long-duration

molecular dynamics simulations. J. Comput. Chem 2000;21:121–131.
[8]. Chodera JD, Singhal N, Pande VS, Dill KA, Swope WC. Automatic discovery of metastable states

for the construction of Markov models of macromolecular conformational dynamics. J. Chem. Phys
2007;126:155101. (17 pp.). [PubMed: 17461665]

[9]. Crisanti A, Falcioni M, Vulpiani A. On the effects of an uncertainty on the evolution law in dynamical
systems. Phys. A 1989;160:482–502.

[10]. Deuflhard, P.; Dellnitz, M.; Junge, O.; Schütte, Ch. Computation of essential molecular dynamics
by subdivision techniques I: Basic concepts. In: Deuflhard, P.; Hermans, J.; Leimkuhler, B.; Mark,
A.; Reich, S.; Skeel, RD., editors. Computational Molecular Dynamics: Challenges, Methods, Ideas,
Lect. Notes Comput. Sci. Eng. 4. Springer-Verlag; Berlin: 1998. p. 91-108.

[11]. Engle RD, Skeel RD, Drees M. Monitoring energy drift with shadow Hamiltonians. J. Comput.
Phys 2005;206:432–452.

[12]. Faou E, Hairer E, Pham T-L. Energy conservation with non-symplectic methods: Examples and
counter-examples. BIT 2004;44:699–709.

[13]. Frenkel, D.; Smit, B. Understanding Molecular Simulation: From Algorithms to Applications. Vol.
2nd ed. Academic Press; New York: 2002.

[14]. Hairer E, Lubich C. The life-span of backward error analysis for numerical integrators. Numer.
Math 1997;76:441–462.

[15]. Hairer, E.; Lubich, C.; Wanner, G. Springer Ser. Comput. Math. Vol. 31. Springer-Verlag; Berlin:
2006. Geometric Numerical Integration.

[16]. Hairer E, McLachlan R, Skeel RD. On Energy Conservation of the Modified Takahashi-Imada
Method. Math. Modelling Numer. Anal. to appear.

[17]. Harvey SC, Tan RKZ, Cheatham TE. The flying ice cube—velocity rescaling in molecular dynamics
leads to violation of energy equipartition. J. Comput. Chem 1998;19:726–740.

[18]. Hayes W. Shadowing high-dimensional Hamiltonian systems: The gravitational n-body problem.
Phys. Rev. Lett 2003;90:54104. (4 pp.).

[19]. Leach, AR. Molecular Modelling: Principles and Applications. Vol. 2nd ed. Prentice Hall;
Englewood Cliffs, NJ: 2001.

SKEEL Page 16

SIAM J Sci Comput. Author manuscript; available in PMC 2010 January 16.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



[20]. Leimkuhler, B.; Reich, S. Simulating Hamiltonian Dynamics. Cambridge University Press; London:
2004.

[21]. Reich S. Backward error analysis for numerical integrators. SIAM J. Numer. Anal 1999;36:1549–
1570.

[22]. Sanz-Serna, JM. Numerical ordinary differential equations vs. dynamical systems. In: Broomhead,
DS.; Iserles, A., editors. The Dynamics of Numerics and the Numerics of Dynamics. Clarendon
Press; Oxford: 1992. p. 81-106.

[23]. Schlick, T. Some failures and successes of long-timestep approaches to biomolecular simulations.
In: Deuflhard, P.; Hermans, J.; Leimkuhler, B.; Mark, A.; Reich, S.; Skeel, RD., editors. Algorithms
for Macromolecular Modelling, Lect. Notes Comput. Sci. Eng. 4. Springer-Verlag; Berlin: 1998.
p. 221-250.

[24]. Skeel, RD. Supplement to “What Makes Molecular Dynamics Work?”.
http://bionum.cs.purdue.edu/08Skee.pdf

[25]. Skeel RD, Hardy DJ. Practical construction of modified Hamiltonians. SIAM J. Sci. Comput
2001;23:1172–1188.

[26]. Swope WC, Andersen HC, Berens PH, Wilson KR. A computer simulation method for the
calculation of equilibrium constants for the formation of physical clusters of molecules: Application
to small water clusters. J. Chem. Phys 1982;76:637–649.

[27]. Tang Y-F. Formal energy of a symplectic scheme for Hamiltonian systems and its applications (I).
Comput. Math. Appl 1994;27:31–39.

[28]. Tuckerman ME, Liu Y, Ciccotti G, Martyna GJ. Non-Hamiltonian molecular dynamics:
Generalizing Hamiltonian phase space principles to non-Hamiltonian systems. J. Chem. Phys
2001;115:1678–1702.

[29]. Tupper PF. Ergodicity and the numerical simulation of Hamiltonian systems. SIAM J.Appl. Dyn.
Sys 2005;4:563–587.

[30]. Tupper PF. A test problem for molecular dynamics integrators. IMA J. Numer. Anal 2005;25:286–
309.

[31]. Tupper PF. Computing statistics for Hamiltonian systems: A case study. J. Comput. Appl. Math
2007;205:826–834.

[32]. Tupper PF. The relation between approximation in distribution and shadowing in molecular
dynamics. SIAM J. Appl. Dyn. Syst. submitted.

[33]. Voter AF, Doll JD. Dynamical corrections to transition state theory for multistate systems: Surface
self-diffusion in the rare-event regime. J. Chem. Phys 1985;82:80–92.

[34]. Wang F, Landau DP. Determining the density of states for classical statistical models: A random
walk algorithm to produce a flat histogram. Phys. Rev. E 2001;64:056101. (16 pages).

[35]. Wisdom, J.; Holman, M.; Touma, J. Symplectic correctors. In: Marsden, JE.; Patrick, GW.;
Shadwick, WF., editors. Integration Algorithms and Classical Mechanics. American Mathematical
Society; Providence, RI: 1996. p. 217-244.Fields Inst. Commun. 10

SKEEL Page 17

SIAM J Sci Comput. Author manuscript; available in PMC 2010 January 16.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://bionum.cs.purdue.edu/08Skee.pdf


Fig. 1.
Trajectory velocities for different step sizes diverge much faster than velocity correlation
functions.
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