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The Hydrodynamics of a Run-and-Tumble Bacterium Propelled
by Polymorphic Helical Flagella
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ABSTRACT To study the swimming of a peritrichous bacterium such as Escherichia coli, which is able to change its swimming
direction actively, we simulate the ‘‘run-and-tumble’’ motion by using a bead-spring model to account for: 1), the hydrodynamic
and the mechanical interactions among the cell body and multiple flagella; 2), the reversal of the rotation of a flagellum in a tumble;
and 3), the associated polymorphic transformations of the flagellum. Because a flexible hook connects the cell body and each
flagellum, the flagella can take independent orientations with respect to the cell body. This simulation reproduces the experimen-
tally observed behaviors of E. coli, namely, a three-dimensional random-walk trajectory in run-and-tumble motion and steady
clockwise swimming near a wall. We show that the polymorphic transformation of a flagellum in a tumble facilitates the reorien-
tation of the cell, and that the time-averaged flow-field near a cell in a run has double-layered helical streamlines, with a time-
dependent flow magnitude large enough to affect the transport of surrounding chemoattractants.
INTRODUCTION
The peritrichous bacterium Escherichia coli is a well-studied

example of a microswimmer in nature—one that is able to

change its swimming direction actively, showing ‘‘run-

and-tumble’’ motion. A cell swims by rotating multiple

helical flagella, each of which is attached by a hook to

a rotary motor on the body (1,2). When all rotary motors

rotate in the same direction, the cell swims forward (i.e.,

a run state). The cell changes direction by reversing the rota-

tion of at least one of the motors (i.e., a tumble state).

Although a tumble reorients the cell in a random direction,

it is able to migrate stochastically toward a more favorable

environment by changing the frequency of the reorienta-

tion—depending on the gradient of the temperature or

concentration of molecules of interest (i.e., sugars, amino

acids, dipeptides) (1,3).

The shape of the body of E. coli approximates a prolate

spheroid with short and long axes of length 1 mm and 2 mm,

respectively. A cell has an average of 3.4 flagella (2), each of

which, in the ‘‘normal’’ state, is a left-handed helix with

pitch of ~2.5 mm and helix diameter of ~0.5 mm (4). Under

a reversal of motor rotation direction, the flagellum trans-

forms from normal to semicoiled (a right-handed helix

with half the normal pitch but retaining the normal diameter)

and then to curly 1 (a right-handed helix with half the normal

pitch and half the normal diameter) (2,4).

The hydrodynamics of a swimming E. coli is complex

because of 1), the interactions of a cell body and multiple

flagella; 2), the translation-rotation coupling induced by

the helical shape of the flagellum (5); and 3), the polymor-

phic transformation of a flagellum under a reversal of

the rotation of a motor. Although the swimming and the
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collective behavior of flagellar bacteria have been studied

using the dipole model (6), the two-bead swimmer model

(7,8), the three-bead swimmer model (9,10), the single-

flagellum model (11–14), and the three-flagella model with-

out a body and without polymorphic transformations (15),

there has been no versatile model to deal with all these

complexities.

Here, we discretize a flagellated cell with a bead-spring

model and simulate its swimming process to obtain

1. The trajectories of a cell undergoing run-and-tumble

motion.

2. The flow field around a cell in a run.

3. The effect of a nearby wall on its trajectory and hydrody-

namics.

4. The effect of polymorphic transformations on the effi-

ciency of the reorientation.

The simulation results show the following:

1. The reversal of rotation of one rotary motor reorients

a cell; thus, the run-and-tumble motion leads to a

random-walk trajectory.

2. The time-averaged flow field near a cell has double-

layered helical streamlines, and the instantaneous flow

has strong time-dependency and much larger magnitude

than that of the time-averaged flow—large enough to

make the Péclet number (ratio of flow advection to rate

of diffusion of a particle) for sugar molecules larger

than unity near a cell.

3. Viewed perpendicular to the wall through the solvent,

a cell near a wall swims clockwise and stays close to

the wall in agreement with experiments and a theory for

a single-flagellum model (12,16,17).

4. The polymorphic transformation speeds the reorientation

in a tumble motion.
doi: 10.1016/j.bpj.2009.09.044
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METHODS

We construct a bead-spring cell model with a body and multiple flagella by

connecting beads with hydrodynamic radius a using three kinds of poten-

tials: A spring potential fs that controls the distance between two adjacent

connected beads; a bending potential fb that controls the bending angle

formed by three connected beads; and a torsional potential ft that controls

the torsional angle formed by four connected beads in a helical flagellum:
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Here i, j, k, and l are indices of beads; rij is a vector connecting rj (position

vector of bead j) to ri; FFF(rij), is FENE-Fraenkel spring (18) with equilib-

rium length L and spring constant H, whose deformed spring length rij is

restricted to a range set by the parameter s; kb is the bending potential

constant; qbend
ijk is the bending angle formed by beads i, j, and k; qbend

0 is

the equilibrium bending angle; kt is the torsional potential constant; qtorsion
ijkl

is the torsion angle formed by beads i, j, k, and l which is computed with

the method proposed by Bekker et al. (19); and qtorsion
0 is the equilibrium

torsion angle. Additionally, we employ a spring-spring interaction potential

fss to prevent two springs from crossing each other (20), which is fss(D) ¼
Ass exp(�D/ass), where Ass, ass, and D are the strength, the characteristic

range of this potential, and the closest distance between springs, respec-

tively. A discretized geometry is shown in Fig. 1, which contains 15 beads

in the cell body and 15 in each of three flagella attached to the body. Note
b
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FIGURE 1 The geometry of E. coli with flagella of the normal state and

the discretized model. The value b is half the length of the long axis of

the body, which is the unit length scale in our simulation, and is typically

1 mm for E. coli. Shaded circles in the diagram of the body represent the

positions of first bead of each flagellum attached by a hook.
that the shape of a body and each flagellum are kept nearly rigid with the

employed potentials. (In a run, the time-average spring deformation is

(0.6 5 2.2)%, the time-average bending angle fluctuation is (�0.1 5 4.2)�,
and the time-average torsional angle fluctuation is (�1.3 5 2.7)�. The

values are the mean 5 SD for simulation data of a cell in a run for 240t.)

Although this level of discretization is too coarse to recover the theoretical

mobility tensors quantitatively, the qualitative behavior of the motion is

captured. The quantitative accuracy can be improved progressively by

increasing the number of beads used, and we have found that using more

beads does not change the qualitative results presented here. See Appendix

for an evaluation of the mobility tensors of the body and flagellum for

different levels of discretization.

The hook that connects the body to a flagellum is modeled with three

beads, one of them a body bead and the other two the first two flagellum

beads (see Fig. 2). As long as the bending angle formed by these three beads

qbend
hook is>90�, no bending potential is applied to the flagellar hook because of

its flexibility (3). A bending potential fhook
b is applied for qbend

hook % 90� to

keep the flagellum from intersecting the body:

fhook
b

�
qbend

hook

�
¼ 0 if qbend

hook > 90+; (4)

¼ �1

2
kbcos2qbend

hook otherwise: (5)

A hook propagates the twist generated by a rotary motor. A rotary motor

twists the base of a flagellum and counterrotates the body. Because the

flagellum and the body are rigid enough to retain their shapes during swim-

ming (2), we simply apply torques on each flagellum and the body to repre-

sent the action of a motor, and we do not explicitly model the mechanics of

the motor or the time-dependent distortion of the hook that the motor

produces. For the total torque and force to be zero, torques from a motor

are distributed on three beads of a hook as shown in Fig. 2. First, torques

T1 and T2 of identical magnitude T are applied, each of which points

outward from an end of the hook and tangent to this end. These torques
T1

-T2

-T1

Body

Flagellum

Hook

Ttot
= Ta+Tb

Ta

Tb

Tc
Fc

-Fc rc

T2

Force distributionTorque distribution

FIGURE 2 (Top) The model of a hook and the distribution of the torques

from the action of a rotary motor. (Bottom left) The decomposition of a tor-

que Ttot into two torques Ta and Tb, each of which is perpendicular to

a spring. (Bottom right) The decomposition of a torque Tc into a force couple

Fc and –Fc, with which Tc ¼ rc � Fc is satisfied.
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TABLE 1 Parameters for simulations of modeled cell

Parameter type Symbol Meaning Value

Common a Radius of bead. 0.1 b

H Spring constant. 10 T/b

s Spring stretch parameter. 0.1

kb Bending potential constant. 20 T
kt Torsional potential constant. 10 T

— Number of flagella on a cell. 3

Dt Time increment in simulations. 10�3

Body — Number of beads. 15

L Equilibrium spring length. *

qbend
0 Equilibrium bending angle. *

Flagellum — Number of beads. 15

L Equilibrium spring length. 0.58 b

qbend
0 Equilibrium bending angle. 142�/90�/105�y

qtorsion
0 Equilibrium torsional angle. �60�/65�/120�y

Ass Spring-spring potential constant. 1.0 T
ass Characteristic range of

spring-spring potential.

0.2 b

— Cut-off length of

spring-spring potential.

0.2 b

The symbols b and T are half the length of the long axis of the body and the

magnitude of the torque applied by a motor to each end of the hook.

*See Fig. 1.
yValues for normal/semicoiled/curly 1 conformation, respectively.

Trajectory Normal (run)
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represent the twist and the countertwist induced by a rotary motor. Because

these two torques are not co-linear due to the variable bending angle of the

hook, torques �T1 and �T2 are also applied on the hook so that the total

torque is zero. A torque can be decomposed into a distribution of forces

on three beads easily as shown in Fig. 2, and all four torques induced by

a motor are distributed as forces on beads in and adjacent to the associated

hook. An equivalent way of representing the torque balance would be to

combine torques �T1 and �T2 into a single redirecting torque T3, which

represents the torque generated by deformation of the hook that reorients

the motor torque T1 into a torque T2 that rotates the flagellum. Our model

assumes that the hydrodynamics of swimming controls the orientation of

the flagella and the body; the elasticity of the hook merely serves to keep

torques in balance. (It is assumed that the time required for the actual

hook to bend and twist enough to generate this redirecting torque is small

compared to the time for a run or tumble. This assumption is likely to be

true, because otherwise the counterrotation of the motor during a tumble

would mainly undo the twist of the hook built-up during a run rather than

produce a counterrotation of the flagellum.)

The motion of each bead of a modeled cell at low Reynolds number is

computed according to the following equation with the force distribution

on beads obtained by adding forces associated with the torques from motors

and all potential forces,

riðt þ DtÞ ¼ riðtÞ þ
(XN

j¼ 1

Hij$f j

)
Dt; (6)

where ri(t) is the position vector of bead i at time t; fj is the summation of

forces originating from the torques and potential forces on bead j; N is the

total number of beads in a modeled cell; Hij is the Rotne-Prager-Yamakawa

hydrodynamic interaction tensor (21–23); and Dt is the time increment in the

simulation. By superposing the hydrodynamic interactions between beads,

this equation with the force distribution on beads captures the dynamics

of a discretized cell, which can change its geometry in the response to defor-

mation of the flexible hooks, the distribution of torque-originated forces in

and around the hooks, and the polymorphic transformation of the flagellum.

Note that we ignore the effect of the Brownian motion.

For a run, all torques are applied in such a way that all flagella rotate coun-

terclockwise when viewed from behind the cell. For a tumble, the torques T1

and T2 for one flagellum are inverted so that the flagellum rotates in the

opposite way from the others. At the beginning of a tumble, the equilibrium

bending and torsional angles of the flagellum attached to the motor are

switched to the angles of semicoiled state, and at the middle of a tumble

to the angles of curly 1 state to mimic the polymorphic transformations

(see Table 1 for the angles).

We choose three input parameters with physical units: b (half the length of

the long axis of the body, which is typically 1 mm for E. coli); h (solvent

viscosity); and T (magnitude of the torque given by a motor to each end of

hook). Therefore, we scale length, time, and energy with b, t ¼ hb3/T, and

T, respectively. All parameters used in simulations are shown in Table 1.
5b
Start

End

Semicoiled
(tumble)

Curly 1
(tumble)

FIGURE 3 Typical trajectory of a modeled cell in run-and-tumble motion

(left) and snapshots of cell conformations in different states during the

motion (right). The red (or dark gray) line in the trajectory represents

a run state and the blue (or light gray) line, a tumble state. The trajectory

contains runs for 1200t each and tumbles for 800t each, the latter of which

each consists of a semicoiled state for 400t and a curly 1 state for 400t.
RESULTS

A typical trajectory of the center-of-mass position of a cell

that undergoes run-and-tumble motion based on our simula-

tions is shown in Fig. 3 with snapshots of the conformation

of the cell in different states during the motion (see also

Movie S1 in the Supporting Material). Because our simu-

lated hook is flexible, the flagella can all take independent

orientations with respect to the cell body; the hydrodynamics

of swimming dictate the flagellar orientations. In a run, three

flagella spontaneously form a bundle and the cell swims

straight, whereas, in a tumble, a reversal of a motor and the

transformations of the associated flagellum trigger unbun-
Biophysical Journal 98(1) 12–17
dling of the flagellum and reorientation of the cell. When

the motor reverts to regular rotation, the flagella promptly

rebundle and start a new run. This bundling-unbundling-

rebundling sequence of flagella in run-and-tumble motion

agrees with experimental observations (2). Moreover, we find

that the average change in direction during a tumble is

enhanced by ~28% and ~17% by the polymorphic transforma-

tions in tumbles of duration 200t and 800t, respectively, rela-

tive to the change in direction without these transformations.

Note that the period of rotation of the flagellar bundle

around the swimming axis in a run is ~10.4t and that of

the cell body, 22.4t. The difference in rotation rate between



FIGURE 4 Time-averaged flow field around a modeled cell in a run. In this figure and Fig. 7, red (or light gray) arrows points into the paper and blue (or

dark gray) arrows the opposite. All arrows are unit flow-velocity vectors. In the near-field flow, all the shown velocity vectors have actual magnitude-

of-velocity >4.0 � 10�5 b/t. The far-field recovers the dipole flow (left), which is induced by a force dipole generated by the thrust from the rotating helical

flagella and the drag force on the cell.

 0.01
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the cell body and the flagellar bundle (experimentally

observed (2)) produces complex quasiperiodicity in the pro-

pulsion of a cell and in the associated flow field. Note also

that the change in direction produced by a tumble increases

from (12.5 5 0.4)� to (16 5 6)� when the polymorphic

transitions are added to a tumble of duration 200t, and from

(62 5 6)� to (72 5 5)� in a tumble of duration 800t. The

values are the mean 5 SD averaged over 39 separate tumbles.

By taking a time-average of the flow field near a cell with

three flagella during a run, we obtain the time-averaged

streamlines (see Figs. 4 and 5). The flow has a double-

layered helical structure with three axisymmetric vortices,

whose inner and outer streamlines around 1), the body; 2),

the middle; and 3), the end of the flagellar bundle all have

different combinations of helicity and rotation. This flow

decays as r�3 in the near field and as r�2 in the far field

(see Fig. 6), in agreement with that of the three-bead

swimmer; and, when viewed from the direction perpendic-

ular to the swimming axis, the time-averaged flow field is

found surprisingly similar to that of the three-bead swimmer

model (9,10), except that ours has an angular component of
FIGURE 5 Streamlines implied by the near-field flow in Fig. 4.
velocity around the swimming axis. In fact, the double-

layered helical structure is a combination of the time-aver-

aged flow of this three-bead swimmer and the angular

velocity induced by the rotation of the bundle of flagella

and the counterrotation of the cell body. We find a similar

flow field with the three-vortex structure when we 1), shorten

the flagella by a factor of two; 2), lengthen it by 50%; 3),

change the geometric distribution of flagella on the body;

4), refine the model of flagella using twice as many beads;

or 5), reduce the number of flagella to two. This time-aver-

aged flow has a stagnation point behind the swimming cell

and the far-field flow recovers the flow of the dipole model

or two-bead swimmer model, which pushes fluid behind

the swimmer opposite to the migration direction. This is

because, in far-field, a swimming cell is a moving-force

dipole generated by the thrust from the rotating helical

flagella and the drag force on the cell—which is equal in

magnitude and opposite in direction to the thrust.
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FIGURE 6 The decay of the magnitude of the time-averaged flow

velocity v with distance. The value r is the distance from the center-of-

mass rcm to a point on a plane that is perpendicular to the swimming axis

and contains rcm.
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FIGURE 8 Time-averaged flow field around a modeled cell in a run near a

wall. The cell and the shown velocity field are 2.7 b away from the wall. Red

(or light gray) arrows point toward the wall and blue (or dark gray) arrows

the opposite.
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We also visualized the instantaneous flow field around

a swimming cell (Fig. 7 and Movie S2) and found that this

field is strongly time-dependent, and the magnitude of

flow, which decays only as r�2, is much larger in magnitude

(�101~2) than the time-averaged flow. It has been pointed

out that the flow perturbation by swimming E. coli is too

small compared to the rate of diffusion of chemoattractants,

such as sugar molecules, to affect their transportation; in

other words, the Péclet number (Pe) is less than unity

(Pe x 10(�2)~(�1)) (24). However, this Pe was calculated

using the swimming velocity of E. coli, which is equivalent

to the near-field time-averaged flow velocity. If we instead

use the instantaneous velocity of the flagella, which is equiv-

alent in magnitude to the instantaneous flow velocity near

a swimming cell, we obtain

Pe ¼ l 2pRf

kBT=ð6phwasÞ
x2:3; (7)

where l and R are the pitch (2.5 mm) and the helical radius

(0.25 mm) of a flagellum, respectively; f is the rotation rate

(130 Hz) (2); kB and T are the Boltzmann constant and

room temperature; hw is the viscosity of water; and as is

the radius of a sugar molecule (~nm). Thus, the time-depen-

dent flow produced by flagellar motion can affect the migra-

tion of sugar molecules near a cell. There is a difference in

magnitude between the swimming velocity and the instanta-

neous flow velocity near a cell, because not all of the

momentum of flagellar motion can be converted into the

thrust of the cell; some of it only agitates fluid near the cell.

Simulations were also performed for a cell near a wall by

employing the Rotne-Prager-Yamakawa tensor with the wall

effect included (25) and a short-range repulsive potential

between each bead and the wall with cutoff length 0.2 b.

The simulation shows that a cell in a run near a wall swims

clockwise (as viewed perpendicular to the wall through the

solvent) and stays close to the wall in agreement with exper-

iments (16). It is also found that the time-averaged flow

around a cell near a wall is complex, and when viewed
t t t

FIGURE 7 Time evolution of the flow field near a modeled cell. All arrows

velocity >1.6 � 10�3 b/t. The period of rotation of the flagellar bundle around

Biophysical Journal 98(1) 12–17
from the direction perpendicular to the wall, the flow on

the right side of the cell is different from that on the left

side (see Fig. 8). This asymmetry in flow is likely the origin

of the clockwise motion of the cell.
DISCUSSION

Our simulation of a discretized cell thus reproduces the

behavior of E. coli observed in experiments (i.e., the three-

dimensional random-walk trajectory in run-and-tumble

motion and the steady clockwise swimming near a wall),

accounting for the essential mechanics of its swimming,

such as the torque produced by a rotary motor, the torque

redirection through flexible hooks, and the polymorphic

transformations of flagella. We also find that the time-aver-

aged flow field near a cell has double-layered helical stream-

lines. Moreover, the instantaneous flow field has much larger

magnitude than the time-averaged flow, so that the flow

near a cell can enhance the transport of small-molecule
t t t

are unit flow-velocity vectors, each of which has an actual magnitude of

the swimming axis is ~10.4t.
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chemoattractants. This new model, which can be refined by

using more beads if more quantitative predictions are

desired, strikes a balance between accuracy and simplicity

that will permit it to be used to determine the migration

behavior of particles near a swimming cell, cell-cell hydro-

dynamic interactions, the effect of the number and geometric

distribution of flagella on migration, the mechanism of

circular swimming near a wall, details of the tumbling

motion, and the effect of the Brownian motion on swimming

by adding a Brownian noise term (18) in Eq. 6.
APPENDIX

To estimate the accuracy of the discretized model, the components of the

mobility tensors of a discretized body along the long axis and of a flagellum

along the axial direction were separately computed by applying a force or

a torque, and then compared, respectively, with the analytical solution for

a prolate spheroid (26) and with the result of the resistive force theory for

the equivalent geometry of a flagellum of E. coli (12). The velocity and

angular velocity of the body along the long axis or of the flagellum along

the axial direction in the response to a force Fm and a torque Tm in the

same direction can be written as�
V
U

�
¼
�

b g

g a

��
Fm

Tm

�
: (8)

For a body of the geometry shown in Fig. 1, we found abs/ath ¼ 1.7,

bbs/bth ¼ 1.1, and gbs ¼ gth ¼ 0.0, where values with ‘‘bs’’ and ‘‘th’’ mean

those obtained from the bead-spring model and from the theory, respectively.

For a flagellum represented by a coarse model using 15 beads, we find

abs/ath ¼ 0.56, bbs/bth ¼ 0.90, and gbs/gth ¼ 0.12. We can refine the discre-

tized model by using more beads to obtain better agreement with the theoret-

ical values of the mobility tensor. For example, for a flagellum with 75 beads

of hydrodynamic radius 0.02 b, we find abs/ath ¼ 0.76, bbs/bth ¼ 1.1, and

gbs/gth ¼ 0.47.
SUPPORTING MATERIAL

Two movies are available at http://www.biophysj.org/biophysj/supplemental/

S0006-3495(09)01556-2.
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