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Stochastic Bistability and Bifurcation in a Mesoscopic Signaling System
with Autocatalytic Kinase
Lisa M. Bishop* and Hong Qian*
Department of Applied Mathematics, University of Washington, Seattle, Washington
ABSTRACT Bistability is a nonlinear phenomenon widely observed in nature including in biochemical reaction networks. Deter-
ministic chemical kinetics studied in the past has shown that bistability occurs in systems with strong (cubic) nonlinearity. For
certain mesoscopic, weakly nonlinear (quadratic) biochemical reaction systems in a small volume, however, stochasticity can
induce bistability and bifurcation that have no macroscopic counterpart. We report the simplest yet known reactions involving
driven phosphorylation-dephosphorylation cycle kinetics with autocatalytic kinase. We show that the noise-induced phenomenon
is correlated with free energy dissipation and thus conforms with the open-chemical system theory. A previous reported noise-
induced bistability in futile cycles is found to have originated from the kinase synchronization in a bistable system with slow
transitions, as reported here.
INTRODUCTION
Stochasticity in regulatory biochemical systems has become

increasingly prominent in the current thinking of cellular

biology (1–7). Simply put, a given biochemical reaction

network with a set of known enzymes, regulators, and their

interactions can behave significantly different in two types

of experiments. The first type is those carried out in the clas-

sical biochemical studies using large quantities of each mole-

cule in a milliliter aliquot. The second is those in a volume of

the size of a single cell, say 10 femtoliters, but with the same

concentrations for each type of molecule. The only difference

between these two experiments is that the former is 1011 times

larger in volume as well as in molecular copy numbers.

There are several examples that highlight the stark contrast

in macroscopic versus mesoscopic biochemical dynamics due

to the volume of the biochemical reaction system (8–13). Clas-

sical examples are transcriptional regulations where there is

only a single copy of DNA inside a cell, and cellular signaling.

In particular, Samoilov et al. have studied cellular signaling in

phosphorylation-dephosphorylation cycles (PdPC) with fluc-

tuating kinase activity (10). Through rigorous mathematical

modeling, they were able to show that a similar biochemical

reaction network will be unistable in a test-tube size experi-

ment but bistable in a cell size experiment. These results all

point to the importance of comparing both macroscopic and

mesoscopic biochemical network dynamics, and suggest the

possibility of rich, stochastic dynamics in single cells that

have no macroscopic counterpart (14–16).

In this article we examine the dynamics of a PdPC with

autophosphorylation in both deterministic, and stochastic

settings. We find that although there is no possibility for bist-

ability in the deterministic case for any parameters, the
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stochastic model allows an interesting stochastic bifurcation

that leads to bistability. This is the simplest biochemical

network yet known that exhibits this complex behavior.

Signaling systems such as this have been widely suggested

in the biochemical literature; for example, PdPC with auto-

phosphorylation has been implicated in the memory storage

in nervous systems as early as 1985 (17). We will give three

more-recent examples.

For the first example, in the Src family kinase (SFK)

signaling pathway, the phosphorylation of a membrane

receptor, called the SFK-dependent receptor, is catalyzed

by an activated SFK. The activation of an SFK in turn

depends on a phosphorylated receptor (18). Therefore, the

receptor phosphorylation is assisted by the phosphorylated

receptor, as shown in Fig. 1 A.

In the second example, in the endocytic pathway, the acti-

vation of Rab5, a GTPase, catalyzed by Rabex-5, a guanine

nucleotide exchange factor, is enhanced by the association of

Rabex-5 with a GTP-bound, active Rab5 via Rabaptin-5

(H. Zhu, H. Qian, and G.-P. Li, unpublished). Therefore,

the activation of the GTPase is itself assisted by the activated

GTPase Fig. 1 B. In biochemical kinetics, guanine nucleo-

tide-exchange factor protein plays exactly the equivalent

role to GTPase activation as a kinase does to protein phos-

phorylation (20,21).

In the third example, Ferrell and his colleagues have

carried out an extensive study of the switchlike behavior of

mitogen-activated protein kinase as it effects the maturation

of the Xenopus oocyte (22,23). They have proposed a model

for typical PdPC in cell signaling with added positive feed-

back in the form of autophosphorylation. This model was

investigated from a thermodynamic standpoint in Qian and

Reluga (24) and it was shown that a free energy dissipation

is necessary for the existence of switching behavior. The bi-

stable switching in the earlier work, however, is macroscopic
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FIGURE 1 Two examples of autophosphorylation in cell biology. (A) In

Src family kinase (SFK) signaling pathway, the phosphorylation of a

membrane receptor, from R to R*, is catalyzed by an activated SFK. The

activation of the SFK, however, is assisted by its association with phosphor-

ylated receptor and the formation of R*SFK complex. Dephosphorylation of

R* is catalyzed by a protein tyrosine phosphatase (PTP). (B) In endocytic

pathway, the activation of Rab5 GTPase, from its GDP-bound state GGDT

to GTP-bound state GGTP, is catalyzed by activated Rabex-5, a guanine

nucleotide exchange factor. The activation of the Rabex-5, however, is

assisted by its association with the GGTP via another regulator called Rabap-

tin-5. The GTP hydrolysis carried out by Rab5 is accelerated by a GTPase

accelerating protein (GAP).

2 Bishop and Qian
(25). Indeed, cubic nonlinearity had to be assumed for the

model with bistability.

All these examples can be summarized into the simple

biochemical kinetic system given in Eq. 1. We shall show

that the very simple autophosphorylation cycle has a sto-

chastic bifurcation resulting in bistability. Finally, we inves-

tigate the effect of coupling the bistable network with

a canonical PdPC model. This system is in fact the fluctu-

ating kinase system discovered by Samoilov et al. (10).

We explain the underlying cause of the bistability previously

seen (10,26) and show that, by taking full advantage of the

canonical PdPC system, we are able to intensify the manifes-

tation of the bistability.
DETERMINISTIC DYNAMICS

Consider the reaction scheme for PdPC with autocatalytic

kinase in Eq. 1. This scheme depicts the molecular elements

E, E*, and ATP combining in the forward reaction at a rate of

k01 to produce 2E* and ADP. The backward reaction occurs

at a rate of k0�1 and is autocatalytic because E* serves as

a catalyst for itself. The second reaction can be interpreted

in a similar manner.

E þ E� þ ATP #
k
0
1

k
0
�1

E� þ E� þ ADP;

E�#
k2

k
0
�2

E þ Pi:

(1)
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We shall assume that the total concentration of the enzyme,

ET ¼ [E] þ [E*], is a constant. Modeling this system using

deterministic kinetics based on the Law of Mass Action, we

find, consulting the standard results, that the quadratic

nonlinear system does not admit bistability. On the other

hand, if one considers Michaelis-Menten kinetics as shown

in Eq. 9, the strong nonlinearity leads to bistability for a

certain range of parameters. This article focuses on the for-

mer but we shall give a discussion of the latter for complete-

ness and comparison.

Macroscopic Mass Action kinetics

Following the Law of Mass Action (27), let J 5 denote the

forward and backward reaction fluxes and [X] be the concen-

tration of the molecule X. We write the rates for the chemical

reaction in Eq. 1 as follows:

J þ1 � J�1 ¼ k01½ATP�½E�½E�� � k0�1½ADP�½E��2;
J þ2 � J�2 ¼ k2½E�� � k0�2½Pi�½E�:

The dynamics of concentrations of the activated kinase,

E*, is given by the deterministic ordinary differential equa-

tion

d½E��
dt
¼ J þ1 � J�1 �

�
J þ2 � J�2

�
¼ bk1½E�½E�� � bk�1½E��2�k2½E�� þ k�2½E�

; (2)

where bk1 ¼ k
0
1½ATP�, bk�1 ¼ k

0
�1½ADP�, and k�2 ¼ k0�2[Pi].

By setting Eq. 2 to zero and using the conservation equation

[E] þ [E*] ¼ ET the equation can be reduced to a single

steady-state variable [E*]ss:

�
�bk1 þ bk�1

�
½E��2ssþ

�bk1ET� k2 � k�2

�
½E��ssþ k�2ET ¼ 0:

(3)

Rewriting the equation for steady-state fraction of activated

kinases, f ¼ [E*]ss/ET, yields the weakly nonlinear

(quadratic) equation,

ð1 þ 1=ðmgÞÞqf 2 � ðq� 1� mÞf � m ¼ q; (4)

where

q ¼ bk1ET=k2; m ¼ k�2=k2; g ¼ bk1k2=
�bk�1k�2

�
: (5)

The parameters, q, m, and g represent, respectively, the acti-

vating signal as a control parameter, the basal level of

phosphorylation, and finally the energy from ATP hydro-

lysis, which can be written as DGATP ¼ �RT ln g, where

R is the gas constant and T is the temperature in Kelvin

(20,21,26,28).

Because the zero-order term in Eq. 4 for f is negative, we

expect one positive and one negative root, resulting in, at

most, one biologically relevant steady state. The activation

curve in Fig. 2 shows the fraction of activated kinase f
written as a function of the activating signal q:
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FIGURE 2 Level of activation in response to signal q, the ratio of kinase

to phosphatase concentrations, of an autophosphorylated system modeled

with Mass Action kinetics (solid) from Eq. 6; Michaelis-Menten kinetics

(dotted) from Eq. 17; and contrasted with a system without autophosphory-

lation (dashed) from Eq. 7. Symbols: g ¼ 108, m ¼ 0.01, K3 ¼ 0.1, and

K4 ¼ 1.
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f ¼
q� 1� mþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðq� 1� mÞ2þ 4mq½1þ 1=ðmgÞ�

q
2q½1 þ 1=ðmgÞ� : (6)

In Fig. 2 we also compare the activation curve for an autophos-

phorylated system modeled by Mass Action, Eq. 6, with the

activation curve for PdPC without autophosphorylation (20):

f ¼ q þ m

q þ m þ 1 þ 1=ðmgÞ: (7)

The effect of autophosphorylation is to delay the onset of the

activation, giving rise to a more cooperative transition.

Consider Eq. 7 in the limit of m¼ 0 and mg¼N. In this limit,

dephosphorylation is completely irreversible; the activation

exhibits a transcritical bifurcation at q¼ 1. Transcritical bifur-

cation is also called soft-mode instability in the engineering

literature, because the transition is continuous. The saddle-

node bifurcation leading to bistability is called hard-mode

instability, because the transition is discontinuous.

In a one-dimensional model involving only uni- and bimo-

lecular reactions, it is generally thought that bistability is not

possible due to the weak nonlinearity (29). By the Law of

Mass Action, reactions of this nature yield equations of

one variable that are in the form of

dx

dt
¼ a2x2 þ a1x þ a0: (8)

These equations can have only two roots and one of them

must be unstable. Given the stable, xs, and the unstable

root, xus, we can easily reason that bistability is not possible.

If xus < xs, then for initial concentrations x0 < xus the concen-

tration x(t) will be negative and not biologically relevant.

Similarly if xs < xus and x0 > xus, the concentration over

time will go toward positive infinity, which is also not

biologically relevant. Thus, a deterministic model of this
nature, based solely on Mass Action kinetics, does not

have the capacity for bistability.

Michaelis-Menten kinetics

Michaelis-Menten kinetics introduces a strong nonlinearity

into the system, resulting in a hyperbolic term that permits

bistability under certain parameters. Existence of bistability

in this system due to Michaelis-Menten has been documented

by Lisman (17) and discussed generally in Shiu (30). Fig. 2

shows an example of not only how autophosphorylation

with Michaelis-Menten kinetics differs from standard PdPC

but also how the addition of Michaelis-Menten kinetics

changes the Mass Action dynamics. Under Michaelis-

Menten kinetics, a saddle-node bifurcation can occur.

To quantify the conditions under which bistability occurs,

we rewrite the reaction system in which the E* still serves as

the autocatalytic kinase, and we have explicitly written the

phosphatase P. To avoid cluttering, ATP, ADP, and Pi will

be absorbed into the rate constants:

E þ E�#
k1

k�1

EE�#
k2

k�2

E� þ E�

E� þ P #
k3

k�3

E�P #
k4

k�4

E þ P:
(9)

In the reactions, the total kinase and phosphatase are con-

served:

½P� þ ½E�P� ¼ PT; (10)

½E� þ ½E�� þ ½EE�� þ ½E�P� ¼ ET: (11)

Assuming that both intermediate complexes EE* and E*P
are in steady state, we solve for the concentrations of the

complexes in terms of the enzymes:

½EE�� ¼ ½E�½E
��

K1

þ ½E
��2

K2

; (12)

½E�P� ¼ ½E
��½P�
K3

þ ½E�½P�
K4

: (13)

Here we have the Michaelis constants:

K1 ¼
k�1 þ k2

k1

; K2 ¼
k�1 þ k2

k�2

;

K3 ¼
k�3 þ k4

k3

; K4 ¼
k�3 þ k4

k�4

:

(14)

Using Eqs. 10 and 13, we can solve for the concentration of

the phosphatase:

½P� ¼ PT

1 þ ½E
��

K3

þ ½E�
K4

: (15)

Applying the Law of Mass Action to Eq. 9 and incorporating

the above assumptions yields an ordinary differential equa-

tion (ODE) for the change of [E*] over time:
Biophysical Journal 98(1) 1–11



FIGURE 3 Level of activation in response to signal q, the ratio of kinase

to phosphatase concentrations of an autophosphorylated system according to

Michaelis-Menten kinetics in Eq. 17 plotted in the dashed curves. (Top to

bottom) The Michaelis constants in Eq. 14, (K3, K4) ¼ {(0.1, 1), (0.5, 2)

(2,10), and (N, N)}, and (solid curve) K3 ¼ K4 ¼N shows that first-order

Michaelis-Menten reduces to the Mass Action model from Eq. 6. Other

parameter values are g ¼ 108, m ¼ 0.01, and ET ¼ 1.
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d½E��
dt
¼ k2

 
½E�½E��

K1

þ ½E
��2

K2

!
� k�2½E��2

þ
�

k�4½E� � k4

�
½E��
K3

þ ½E�
K4

��
PT

1 þ ½E
��

K3

þ ½E�
K4

:

(16)

Assume the concentration of the substrate-enzyme complex

is small, changing Eq. 11 to [E] þ [E*] ¼ ET. As in the

previous section, consider the fraction of phosphorylated

kinase in which f ¼ [E*]/ET and 1 � f ¼ [E]/ET. The steady

state of Eq. 16 can be reduced to a cubic equation in the

single variable f with parameters q, m, and g:

f q

�
1� f

�
1 þ 1

mg

���
1 þ ET

�
1� f

K4

þ f

K3

��
þm� f ð1 þ mÞ ¼ 0;

(17)

q ¼ ETk1k2ðk�3 þ k4Þ
PTk3k4ðk�1 þ k2Þ

; m ¼ k�3k�4

k3k4

; g ¼ k1k2k3k4

k�1k�2k�3k�4

:

(18)

Due to the strong cubic nonlinearity Eq. 17 has the capacity

for bistability, but the presence of the bistability is dependent

on the magnitude of the Michaelis constants. This demon-

strates that introducing the intermediate complex EE* into

the autophosphorylation reaction has no effect on the

steady state whereas introducing the complex E*P does.

For large K3 and K4, the equation reduces to the Mass Action

activation curve from Eq. 6 and the ODE does not display

bistability. However, if K3 and K4 are small, i.e., the dephos-

phorylation reaction is zeroth order, the solution of Eq. 17

can exhibit bistability in the deterministic dynamics (see

Fig. 3).
STOCHASTIC DYNAMICS

Consider the autophosphorylation reaction system in Eq. 1 in

a very small volume, such as a cell. Instead of measuring the

concentration of activated molecules, [E*], we now measure

the number of phosphorylated, E*, molecules N. The discrete

valued random variable N(t) takes on values 0 % N(t) % Nt,

where Nt is the total number of kinase molecules analogous to

the total concentration ET. According to the Chemical Master

Equation (20,31), the probability of having n activated kinase

molecules at time t, p(n, t) ¼ P{N(t) ¼ n}, follows

dpðn; tÞ
dt

¼ �½k1nðNt � nÞ þ k�1nðn� 1Þ þ k2n

þ k�2ðNt � nÞ�pðn; tÞ þ ½k1ðn� 1ÞðNt � n þ 1Þ
þ k�2ðNt � n þ 1Þ�pðn� 1; tÞ þ ½k�1ðn þ 1Þn
þ k2ðn þ 1Þ�pðn þ 1; tÞ:

(19)
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Here we have k51 ¼ bk51=V, where V is the volume of the

system.

Steady-state behavior

Setting the right-hand side of Eq. 19 to zero we can solve for

pss(n), the steady-state distribution of the number of active

kinase,

pssðnÞ ¼ C
Yn�1

j¼ 0

ðk1j þ k�2ÞðNt � jÞ
ðk�1j þ k2Þðj þ 1Þ; (20)

where C is a scaling parameter. For certain parameter values

the distribution in Eq. 20 can be bimodal, as seen in Fig. 4,

where the bimodality appears as a sudden peak at zero as the

k�2 parameter value is decreased. This bistability is sur-

prising, as the stochastic model is based on the same reaction

system with a weak nonlinearity where deterministic bist-

ability is not possible.

The bimodal probability distribution can be related to

traditional deterministic dynamical systems by considering

the peaks of the probability distribution to correspond to

stable steady states and the troughs to correspond to unstable

steady states. To compute the extrema of the distribution set

pss(n) ¼ pss(n þ 1):

ðk�1n þ k2Þðn þ 1Þ ¼ ðk1n þ k�2ÞðNt � nÞ0: (21)

If the system considered has a large number of molecules, we

can safely assume n þ 1 z n. Then the equation simply

becomes Eq. 3 if we recognize the correspondence between

n and [E*] as well as Nt and ET. The expected deterministic

outcome is obtained.

However, in a cell with a small volume and a sufficiently

small number of molecules, we shall not approximate n þ
1 z n. This results in the quadratic equation
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FIGURE 4 Two views of the steady-state distribution of the number

of active kinase, N, from Eq. 20. Parameter values are k1 ¼ 5, k�1 ¼ 10,

k2 ¼ 10, Nt ¼ 30, and k�2 varied.
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FIGURE 5 Stochastic bifurcation plot of the fractional steady-state values

of activated kinase, n/Nt from Eq. 22, as a function of the volume V. The

solid curves represent the maxima of the steady-state distribution, and the

dashed curve represents the minimum of the distribution. Parameter values,bk1 ¼ 5, bk�1 ¼ 10, k2 ¼ 10, Et ¼ 30, and k�2 ¼ 0.2. The dashed line inter-

sects the zero axis at V ¼ 1.67, beyond which there is only one nonzero

maximum in agreement with the range from Eq. 24.
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ðk1 þ k�1Þn2�ðk1Nt � k�1� k2 � k�2Þnþ k2� k�2Nt ¼ 0:

(22)

To be biologically relevant we require both roots to be posi-

tive, yielding a positive minimum and maximum, so the

following relations must hold:

k2 � k�2Nt > 0; k1Nt � k�1 � k2 � k�2 > 0: (23)

With both a positive minimum and maximum we are guaran-

teed to have two peaks, with one of them at either n ¼ 0 or

n ¼ Nt. The other peak is near the steady state predicted by

the deterministic model above.
Stochastic bifurcation

This bistability is a uniquely stochastic phenomenon and it is

important to determine under what conditions this bistability

can occur. Here we consider two key quantities: the volume

of the system V and the available free energy g, as bifurca-

tion parameters.

For a constant concentration Et, where Et¼ Nt/V, we solve

for the range of volume values for which the system is

bimodal:

0 <
bk�1bk1Et � k2 � k�2

< V <
k2

k�2Et

: (24)

The bifurcation diagram in Fig. 5 shows the two bifurcations

that occur in the nonlinear system dynamics. For very small

values of volume there is a single maximum at zero, as all of

the extrema in Eq. 22 are negative. There is then an interval

in which two maxima exist, one of which is at zero. Once V
reaches its upper limit there is a single nonzero maximum.

Note that the lower bound on the volume is due to the

restraint that the discriminant of Eq. 22 be positive. Equation

24 demonstrates that a small volume system is required to

observe the stochastic bistability. Although the first bifurca-

tion is saddle-node type, the second is in fact a transcritical

bifurcation (32) and seems not to be the standard ‘‘cusp

catastrophe’’, as found in nonlinear dynamical systems.

Considering the next bifurcation parameter g, which

measures the chemical driving force exerted onto the system:

DGATP ¼ RT ln g. Clearly, as g increases, the larger driving
Biophysical Journal 98(1) 1–11
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FIGURE 6 Stochastic bifurcation plot of the fractional steady-state values

of activated kinase, n/Nt from Eq. 22, as a function of the parameter g.

Parameter values, bk�1 ¼ 10, k2 ¼ 10, Nt ¼ 30, and k�2 ¼ 0.2. The value

g was varied by varying k1.
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force makes the system irreversible (26). Let [ATP] be varied

through k1, but hold the rest of the parameters constant.

Substituting k1 ¼ gk�1k�2/k2 into Eq. 24 results in a lower

bound for values of g for which there are two steady states:

k2ðk�1 þ k2 þ k�2Þ
Ntk�1k�2

< g: (25)

There is no upper bound; because the free energy goes to

infinity, the capacity for bistability remains. Fig. 6 shows

the bistability is dependent on the available free energy

and, in fact, persists for large values of g.

All-or-none behavior of kinase activity

The most significant insight from the previous analysis is that

autophosphorylation reaction in a small volume can exhibit

a two-state, all-or-none behavior. All the kinase molecules

are either inactive or mostly active. This mechanism synchro-

nizes the kinase activity in signal transduction pathways.

To understand this behavior, we estimate the rate of the

transition from none-to-all activity. Following Vellela and

Qian (33), consider the matrix version of the chemical master

equation,

dp

dt
¼ Qp; (26)

where p ¼ (p(0,t), p(1,t), p(2,t),., p(N,t))T is the vector of

probabilities for each of the states and Q is the stochastic

matrix

Q ¼

0BB@
�n0 m1 0 /
n0 �n1 � m1 m2 /
0 n1 �n2 � m2 /
« « « /

1CCA; (27)

where nn and mn are the rates of n /n þ 1 and n /n � 1,

respectively. For the system in Eq. 1 we have the birth and

death rates

vn ¼ ðk1n þ k�2ÞðNt � nÞ; mn ¼ ðk�1ðn� 1Þ þ k2Þn:
(28)

Due to the properties of stochastic matrices, Q has eigen-

values l0 > l1 > l2 > .> lN, where l0 ¼ 0 with the cor-

responding positive eigenvector v0, which represents the

steady-state probability distribution pss. All the remaining

eigenvalues li for i¼ 1.N are strictly negative. For systems

with bistability, l1 is particularly small in magnitude and

represents the two-state transition (33). This smallest

nonzero eigenvalue can be written as

l1 ¼ �
1

tð0;m�Þ �
1

tðm�; 0Þ; (29)

where t(m*, 0) is the mean first-passage time (MFPT) from

the nonzero maximum m* to zero, and t(0, m*) is the MFPT

from zero to m*.
Biophysical Journal 98(1) 1–11
Mean first passage time

The MFPT can be calculated through analytical formulae

(29,34). The first formula can be used to calculate the time

to move to zero assuming m � n R 2:

tðm; nÞ ¼ 1

mnþ 1

þ
XNt

i¼ nþ 2

n1/ni�1

m1/mi

þ
Xm�1

s¼ nþ 1

"
m1/ms

n1/ns

XNt

i¼ sþ 1

n1/ni�1

m1/mi

#
:

(30)

The second equation calculates the time to move from zero to

some nonzero state:

tð0;mÞ ¼ tð0; 1Þ þ tð1; 2Þ þ . þ tðm� 1;mÞ; (31a)

tð0; 1Þ ¼ 1

n0

; tðj; j þ 1Þ ¼ 1

nj

þ
mj

nj

tðj � 1; jÞ: (31b)

For parameter values that result in bistability, k1 ¼ 5, k�1 ¼
10, k2 ¼ 10, k�2 ¼ 0.001, and Nt ¼ 30, we have the nonzero

peak value of m* ¼ 10. We analytically obtain t(m*, 0) ¼
149.85 and t(0, m*) ¼ 36.11. These values compare favor-

ably with that calculated from simulation statistics, shown

in Table 1. The ratio t(0, m*)/t(m*, 0) presents the relative

probability for the two states. This can be compared with

the analytic ratio, 0.242, of the probability of being under

the first peak to the probability of being under the second

peak.

Leading nonzero eigenvalue

Table 2 shows the top five eigenvalues of Q calculated using

MATLAB (The MathWorks, Natick, MA), along with the L2

norm of the residual vector,



TABLE 1 Mean first-passage times obtained from simulations

Total run time (s) t(0, m) t(m, 0) t(0, m)/t(m, 0)

1000 63.36 188.51 0.336

10,000 35.37 120.33 0.294

20,000 28.55 124.90 0.229

50,000 34.19 130.37 0.262

100,000 32.63 140.02 0.233

500,000 31.98 142.32 0.225

The value t(0, m*) is the average time from zero to the nonzero maximum

m*, and t(m*, 0) is the average time from m* to zero. Parameters used in the

calculations: k1 ¼ 5, k�1 ¼ 10, k2 ¼ 10, k�2 ¼ 0.001, and Nt ¼ 30.
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FIGURE 7 Comparison of MATLAB solution to l1 with eigenvalue

computed from Eq. 29 using the analytic MFPT as in Eq. 30 and Gardiner

(31). Parameter values, bk1 ¼ 5, bk�1 ¼ 10, k2 ¼ 10, and Et ¼ 30. (a)

k�2 ¼ 0.2; (b) k�2 ¼ 0.001.
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ri ¼ Qvi � livi: (32)

Fig. 7 a compares the computed eigenvalues l1 with the

analytics MFPT. For these parameters a close match between

simulated data and analytical results is not achieved. Table 2

shows that k�2 ¼ 0.2 l1 and the next largest eigenvalue l2

differ by only one order of magnitude. To see good agree-

ment between l1 and the MFPT, we expect jl1j << l2,

which is true for k�2 ¼ �0.001 and confirmed in Fig. 7 b.

Assume k�2 and V are sufficiently small so we have two

distinct peaks in the steady-state probability distribution.

The dynamics of the self-activation of kinase can now be

viewed as two discrete states of kinase activity, a and a0,
and the system is reduced to

a #
kþ

k�
a
0
: (33)

Let a correspond to the zero state, and let a0 correspond to

the nonzero state in which the number of activated kinase

is m*. Fig. 8 shows an example trajectory for PdPC with

autophosphorylation that highlights the bistability and the

two-state nature of the system. Let kþ be the rate of moving

from zero to m* active kinase, and k� the rate of moving

from m* to zero. Then kþ ¼ 1/t(0, m*) and k� ¼ 1/t(m*, 0).

Considering the system as a two-state Markov chain

greatly reduces the model. Instead of considering the system

as a set of Nt states, we now know that, probabilistically, it is

most likely in one of two states, a or a0, and can consider

only the rates at which the system switches between the

two states.
TABLE 2 The top five eigenvalues of matrix Q, li, and their

residuals ri

i li(k�2 ¼ 0.2) krik2 li(k�2 ¼ 0.001) krik2

0 0 1.051 � 10�11 0 8.75 � 10�12

1 �16.7481 4.02 � 10�12 �0.0838 1.98 � 10�12

2 �130.4791 9.98 � 10�12 �129.1947 1.047 � 10�11

3 �144.5977 1.014 � 10�11 �129.3656 1.033 � 10�11

4 �232.4093 8.96 � 10�12 �226.2637 1.058 � 10�11

Calculated using MATLAB, with k�2 ¼ 0.2 in columns 2 and 3, and k�2 ¼
0.001 in columns 4 and 5. Other parameters used are bk1 ¼ 5, bk�1 ¼ 10,

k2 ¼ 10, V ¼ 3, and Nt ¼ 90. The residual is defined in Eq. 32.
BISTABILITY IN PDPC WITH SLOWLY
FLUCTUATING TWO-STATE KINASE ACTIVITY

Consider the following standard PdPC system, a futile cycle

(35)

X þ E þ ATP #
k
0
þ 3

k�3

XE #
kþ 4

k
0
�4

X� þ E þ ADP

X� þ E2 #
kþ 5

k�5

X�E2 #
kþ 6

k
0
�6

X þ E2 þ Pi

; (34)

in which E is a kinase to the substrate X, and E2 is a phospha-

tase. Depending upon the relative amount of substrate to that

of kinase and phosphatase, the enzyme-catalyzed reactions
Biophysical Journal 98(1) 1–11



FIGURE 8 Stochastic trajectory of the activated kinase in a fluctuating

autophosphorylation reaction Eq. 1. The sample trajectory was generated

using the Gillespie algorithm with parameter values, bk1 ¼ 5, bk�1 ¼ 10,

k2 ¼ 10, k�2 ¼ 0.001, and Nt ¼ 30. For each segment of nonzero fluctua-

tions, the average was taken and plotted (dashed line). This plot represents

a two-state trajectory as in Eq. 33.

X� ¼
q� 1� bKm2

�
Km1

Km2

þ q

�
þ
��

q� 1� bKm2

�
Km1

Km2

þ q

��2

þ 4bKm2ðq� 1Þq
�1=2

2ðq� 1Þ=XT
; (37)
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FIGURE 9 Solution equation, Eq. 37, applied to the deterministic

Michaelis-Menten model for the PdPC system in Eq. 34 without fluctuating

kinase activity.
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can be either first order or zeroth order. There is no bistability

(20,36). We will focus on zero-order reactions in which the

reaction rate is independent of the number of reactant mole-

cules present.

Samoilov et al. considered noise in the kinase (10). The

level of active kinase fluctuates via an autocatalytic reaction,

exactly as in Eq. 1. Assuming that unphosphorylated E
serves as the kinase in Eq. 34, they found that the fluctuating

kinase led to bistable behavior in the number of X molecules.

This interesting result was attributed to the noise introduced

through the fluctuating kinase. Further investigation by

Miller and Beard (26) showed that the bistability requires

a high thermodynamic energy input to the futile cycle.

The stochastic bistability examined in the previous

sections can be used to explain this noise-induced phenom-

enon. In fact, the fluctuating two-state aspect of the kinase

activity is the underlying cause of the bistability observed

in the X molecules in Eq. 34. For each state of kinase activity,

the system in Eq. 34 evolves to a distinct steady-state value

of X resulting in bistability in X molecules.

As before, assume that the total concentrations of the

enzymes are constant, XT ¼ [X] þ [X*] þ [XE] þ [X*E2],

E2
T ¼ [E2] þ [X*E2], and E1

T ¼ [E] þ [XE1] þ [E*].

Again folding the concentrations of [ATP], [ADP], and

[Pi] into the rate constants kþ3, k�4, and k�6, we use the

parameter values from Samoilov et al. (10) unless otherwise

noted:

k1 ¼ 5; k�1 ¼ 10; k2 ¼ 10; k�2 ¼ 0:2; kþ 3 ¼ k
0
3½ATP�¼ 40

k�3 ¼ 10; 000; kþ 4 ¼ 10; 000; k�4 ¼ k
0
4½ATP� ¼ 10�10

kþ 5 ¼ 200; k�5 ¼ 100; kþ 6 ¼ 5000; k�6 ¼ k
0
�6½Pi� ¼ 10�10

ET
2 ¼ 50;XT ¼ 2000;ET

1 ¼ 30

:

(35)
Biophysical Journal 98(1) 1–11
Note that the Michaelis constants for kinase and phosphatase

are

Km1 ¼
k�3 þ kþ 4

kþ 3

¼ 500; and Km2 ¼
k�5 þ kþ 6

kþ 5

¼ 25:5:

(36)

Both are much smaller than XT ¼ 2000, the total substrate

concentration. As a result, the kinase and the phosphatase

in Samoilov et al. (10) are highly saturated, and both the

phosphorylation and dephosphorylation reactions are zeroth

order (36–38).

The steady-state level of X* for the zeroth order Michae-

lis-Menten model of Eq. 34 without fluctuating kinase has

been well studied (20,36) and can be written as
where bKm2 ¼ Km2=XT and q ¼ k4E1
T/(k6E2

T). Fig. 9 shows

the steady-state value of X* molecules without fluctuating

kinase as a function of q.

The rate constants in the fluctuating, autophosphorylation

reactions from Eq. 1 resulted in bistability in the previous

sections and are much smaller than those in the PdPC for

X* in Eq. 34. (The exception to this are the backward rates

k�4 and k�6 which appear in Samoilov et al. (10) as zero,

but are included here to allow the system to be completely

reversible. Neglecting these two reactions has no conse-

quence on the kinetics.) From the previous sections we

know that for these parameters the kinase E* in Eq. 1



FIGURE 10 Stochastic trajectories from Gillespie simu-

lation of X* in PdPC cycle in Eq. 34 with fluctuating E

given in Eq. 1. One can see the effect of the kinase bistabil-

ity on the fluctuation of X* molecules.
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fluctuates between zero and some nonzero value, m, with the

rates of fluctuation even slower.

Consider two scenarios. First, let the activated kinase E*

be zero. When E* is zero, the faster PdPC system for the

substrate X* evolves to some steady-state X*S1. Second, after

some time the slower kinase cycle switches to its nonzero

maximum E* ¼ m and the faster cycle allows the substrate

to evolve to X*S2. In this way, the bistability in the autocat-

alytic kinase manifests itself in the PdPC for X*.

Using the Gillespie algorithm we simulate the system as in

Stochastic Dynamics. Fig. 10 shows a sample trajectory. The

upper figure shows the bistability observed in the literature

(10,26). The lower figure shows the bistability previously

noted in the number of active kinase molecules. Comparing

the upper and lower figures we see the correlation between

the bistability in E* and the observed bistability in X*.

Using values from the simulation we can see that two

steady states from the stochastic model are in agreement

with the two solutions from the deterministic Michaelis-

Menten model in Eq. 37. Taking the mean of the simulated

X* values while E*¼ 0, we get X*S1¼ 293. The mean value

of nonzero E* is 2, and the resulting X* steady state is

X*S2 ¼ 185. These are comparable to the analytic solutions

of Eq. 37, X*S1 ¼ 316 and X*S2 ¼ 183.
The range of possible X* values goes from zero to XT ¼
2000. For these parameters, the two steady states of the X*

molecule only differ by <150 molecules. By taking full

advantage of the fact that the phosphorylation and dephos-

phorylation reactions are zero order, we shall show below

that a much more pronounced bistability can be obtained.

Consider a classic PdPC system such as Eq. 34. For

systems operating in the zeroth order parameter regime,

small changes in q can yield large changes in the amount

of X* molecules, effectively changing X* ¼ 0 to X* ¼ XT

(36). An example is shown in Fig. 9, where X* varies from

very low to very high values over a small range of q.

Recall q ¼ k4ET
1=ðk6ET

2 Þ (20). For these parameters, the

total kinase, E1
T, fluctuates between E1

T ¼ 30 and E1
T ¼

28, resulting in a q-fluctuation between q ¼ 1.2 and q ¼
1.12. Fig. 9 confirms that for these low q-values, the fluctu-

ations in X* values remain in a low range. This raises the

question: can we cause the bistability to be more pronounced

and take advantage of the full range of possible X* values?

By manipulating the system to increase the range of q-fluc-

tuations, this is indeed possible.

Let us use E* as the activated form of the kinase in the

PdPC cycle in Eq. 34, replacing E with E*. This does not

change the coupled reaction from Eq. 1. We now have
FIGURE 11 Sample trajectory for modified system with

E* as kinase. Here X* is plotted. Parameters are changed, so

E2 ¼ 5. k1 ¼ 2 and k�2 ¼ 0.05.

Biophysical Journal 98(1) 1–11



FIGURE 12 Probability distribution

from Gillespie simulation where E* acts

as the kinase replacing E in Eq. 34.

Phosphatase values are varied to alter

q-values. k1 ¼ 2 and k�2 ¼ 0.05;

remaining parameters are as in Eq. 35.
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q ¼ k4E*T/(k6E2
T). Let k1 ¼ 2, and k�2 ¼ 0.05 and E2

T ¼ 5.

When E*T ¼ 0, we clearly have q ¼ 0. When E* is in its

nonzero state, it fluctuates about a mean of E*T ¼ 6, which

results in q ¼ 2.4, yielding a large value of X*. A sample

trajectory using these parameters is shown in Fig. 11,

showing the extreme bistability in X*.

Fig. 12 displays the role of the phosphatase, E2
T, to the

existence of bistability. For large E2
T, small q, we expect

very few X* molecules. As we reduce E2
T, increasing q,

the bistability appears and in fact the system moves toward

having all X* molecules.

This example shows that the complex dynamics of the

PdPC with fluctuating kinase in fact can be understood

from the bistability in the autophosphorylated kinase system

reported in this article. We have also demonstrated that by

taking full advantage of the zero order PdPC system, one

can obtain an extremely strong bistability.
CONCLUSION

The bistability in the active kinase E is a uniquely stochastic

phenomenon. For macroscopic chemical kinetics in terms of

Mass Action ODEs, one cannot have two fixed point in the

positive region, as this implies the dynamics will be either

going to infinity or negative; neither is physically meaning-

ful. A stronger nonlinearity is required to see bistability in a

deterministic model and can be achieved through the addi-

tion of Michaelis-Menten kinetics. However, from the

weakly nonlinear deterministic model, we discover a sto-

chastic model that generated a unique bistability.

The bistability is intimately related to the zero state being

an absorbing state when k�2 ¼ 0. In that case, the stochastic

system exhibits the Keizer’s paradox, which has been exten-

sively studied in Vellela and Qian (29). If the k�2 is very

small, then there will be a significant stationary probability

at the zero state, with the balance being at the macroscopic

steady state. The bistability is also a distinctly nonequilib-

rium driven phenomenon: chemical free energy input is

a necessary condition for producing the bifurcation that
Biophysical Journal 98(1) 1–11
allows for bistability as well as the system being mesoscopic,

i.e., a relatively small volume size.
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