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Denoising Single-Molecule FRET Trajectories with Wavelets
and Bayesian Inference
J. Nick Taylor,† Dmitrii E. Makarov,‡ and Christy F. Landes†*
†Department of Chemistry, University of Houston, Houston, Texas; and ‡Department of Chemistry and Biochemistry, University of Texas at
Austin, Austin, Texas
ABSTRACT A method to denoise single-molecule fluorescence resonance energy (smFRET) trajectories using wavelet detail
thresholding and Bayesian inference is presented. Bayesian methods are developed to identify fluorophore photoblinks in the
time trajectories. Simulated data are used to quantify the improvement in static and dynamic data analysis. Application of the
method to experimental smFRET data shows that it distinguishes photoblinks from large shifts in smFRET efficiency while main-
taining the important advantage of an unbiased approach. Known sources of experimental noise are examined and quantified as
a means to remove their contributions via soft thresholding of wavelet coefficients. A wavelet decomposition algorithm is
described, and thresholds are produced through the knowledge of noise parameters in the discrete-time photon signals. Recon-
struction of the signals from thresholded coefficients produces signals that contain noise arising only from unquantifiable
parameters. The method is applied to simulated and observed smFRET data, and it is found that the denoised data retain their
underlying dynamic properties, but with increased resolution.
INTRODUCTION
In the past decade several single-molecule techniques have

moved to the forefront of spectroscopic research, and their

application spans a broad scope from spectroelectrochemis-

try (1) to smFRET (2), which is particularly applicable to

biological systems (3–5). Many single-molecule studies

have exposed mechanistic and conformational heterogene-

ities in these biological systems (6–14). Although the realiza-

tion of heterogeneities provides the opportunity to expand

our understanding of biological systems, their detection

and characterization provides many experimental challenges.

The effects of experimental noise in single-molecule

studies often limit their scope. Low signal/noise ratios are

inherent to these experiments (15), and various statistical im-

plementations have been applied in attempt to reduce the

effects of experimental noise (16–26). These implementa-

tions include the use of Fisher information matrices to

achieve optimal time resolution (27) and positional accuracy

(28), statistical correlation functions to show single-molecule

kinetic heterogeneities (29), and hidden-Markov models to

extract the most likely sequence of events from smFRET

time trajectories (30). Most recently, statistical correlation

is combined with wavelet decomposition in attempt to

describe kinetic heterogeneities in single-molecule systems

(31). Despite the relative success of these implementations,

much remains left to be desired from the resolution of

single-molecule experiments. Physical events in these exper-

iments still remain hidden under guesses, optimization

parameters, and the artifacts of experimental noise.
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Reversible photoblinks that result in the fluorophore’s

occupation of a nonabsorbing and nonemitting, or dark, elec-

tronic state (32–34) are a problematic source of noise in

single-molecule experiments. Many of the aforementioned

implementations require preprocessed data that is free of

photoblinks, but their identification becomes an issue when

considering that smFRET experiments are most often de-

signed so that conformational shifts lead to changes in

smFRET efficiency (3–5). Furthermore, these events are

most often removed manually, leading to bias in the

smFRET time trajectories. Therefore, an unbiased method

of photoblink identification that recognizes photoblinks on

all timescales is desirable.

Many analyses also rely on the assumption that the

system’s states are well-defined, and that transitions among

these states are purely Markovian in nature (30,35). How-

ever, the observation of memory effects in single-molecule

enzymatic turnover (36), large variations in the folding

kinetics of a ribozyme (37), and the occurrence of overlap-

ping efficiency states in single DNA aptamer molecules

(12) all offer recent experimental results that violate these

assumptions. As such, a means of processing single-mole-

cule data that provides a more accurate representation of

a physical setting remains a pressing need.

A dual-component interpretation of noise in smFRET

photon distributions results in a quantifiable component

arising from known sources such as shot-noise and photo-

blinks, and an unquantifiable component arising from molec-

ular phenomena like conformational fluctuations. Methods

that discriminate the former component from the latter are

known in signal processing, and wavelet-based approaches

are directly applicable to time-series data (38–41). Similar to

Fourier transforms, wavelet transforms are mathematic

constructs that convert a time-series signal into a representation
doi: 10.1016/j.bpj.2009.09.047

mailto:cflandes@rice.edu


Denoising smFRET Trajectories 165
in another domain. Wavelet transforms, however, offer the

advantage of localization in both time and frequency (42).

The first and simplest of all wavelets was presented by Haar

(43). Since its invention a century ago, this wavelet and more

sophisticated varieties have evolved into important tools in

the fields of data compression and signal processing. Contri-

butions by Mallat (44), Daubechies (45), and others (46–48)

have extended the impact of such analyses to nearly all subdi-

visions of these fields. Wavelet-based analyses now enjoy

a broad range of applicability, and have supplanted the use

of the traditional Fourier transform in many areas (42,49).

A framework that paved the way for the use of wavelets in

signal processing was introduced as multiresolution analysis

in the late 1980s (44,45). The basic scheme decomposes the

signal into two components: an approximation component

containing coefficients that multiply a scaling function, and

a detail component containing coefficients that multiply the

wavelet function. Thresholding the detail components of a

signal’s wavelet decomposition that are smaller than a certain

value, a threshold, effectively removes noise components

from a noisy signal (50). There are many eloquent threshold-

ing methods (42,46,47,49,51), but our aim in thresholding

smFRET detail components is simple: we wish to discard

the noise components we can quantify while keeping those

we cannot.

We present an algorithm for quantifiable noise suppres-

sion in smFRET time trajectories. Bayesian methods make

use of observations in such a way as to provide insight

into unknown events based on known properties of a system

(52). Such methods are often used in model (53) and hypoth-

esis testing, and in the case of photoblinking events in

smFRET time trajectories, we use the power of Bayesian

inference to identify these events. We then use the Haar

wavelet to decompose each of the two photon signals

acquired in dual-channel smFRET experiments. Noise

parameters in each signal are quantified as a means of gener-

ating a universal threshold, and quantifiable noise is removed

from each photon signal via soft thresholding of the detail

components. Signals are then reconstructed from the highest

level approximations and thresholded details, producing

denoised signals that contain noise artifacts arising only

from unquantifiable sources.
ALGORITHMS

Parameters in smFRET trajectories

The acquisition of a two-channel smFRET time trajectory

results in two data vectors that contain acceptor and donor

photon counts in discrete time steps. The standard collection

window contains both acceptor and donor fluorophore pho-

tobleaching events, and results in three distinct regions

within each of these vectors: background, crosstalk, and

FRET regions. Fig. S1 in the Supporting Material illustrates

these regions in detail, and Part S1 describes the calculation
of the mean background intensities, the crosstalk parameter,

the calculation of the numbers of crosstalk photons, correc-

tion of the detected numbers of photons to obtain fluoro-

phore-emitted photon intensities, and the calculation of

smFRET efficiency in detail.

Bayesian inference to detect photoblinks

Photoblinks involving either fluorophore are characterized

by observation of a sharp drop in the detected number of

acceptor photons. In the instance of a donor photoblink,

photon counts on both channels fall to background levels

due to the donor’s occupation of a dark electronic state,

thereby rendering it unable to transfer energy to the acceptor

fluorophore. Similarly, during an acceptor photoblink, donor

emission is observed in the absence of energy transfer, and

the numbers of detected acceptor photons during fall to

levels similar to those observed in the crosstalk region.

A caveat arises in the preceding logic in that, if one is

searching for smFRET efficiencies approaching zero, then

one cannot distinguish low efficiencies from acceptor photo-

blinks. However, if experiments are designed such that low

efficiencies cannot be ‘‘real’’ observations, as will be ad-

dressed in more detail below, or if photoblinks are typically

on a much faster timescale than experimental observations,

this caveat can be avoided entirely.

As a means to detect photoblinks, Bayes’ Law (52) is used

to estimate the probability that the detected number of

acceptor photons NA arises due to a photoblink. To accom-

plish this, we need the conditional probability distributions

of NA given two alternatives, the ‘‘no blink’’ hypothesis

(NB) and the ‘‘blink’’ hypothesis (B). After we obtain these

distributions, we use Bayes’ Law to reverse this logic and

calculate the probabilities of each hypothesis given the

observation of acceptor intensity NA. This allows us to select

those time steps that arise due to a photoblink, and remove

them from the time trajectory in an unbiased manner. Details

of the algorithm’s implementation are described completely

in Part S2 in the Supporting Material.

Application of the Haar wavelet to denoise
smFRET trajectories

Denoising methods are generally designed to separate the

essential component of the signal from the random noise

generated by experimental error. The simplest example of

denoising is the removal of high frequency noise via the

application of a low pass filter to the original signal. Mathe-

matically, this is accomplished by suppressing the high

frequency Fourier components of the signal, which is

comprised of 1), applying the Fourier transform to the signal;

2), modifying the high frequency components according to

a certain rule; and 3), applying the inverse Fourier transform

to obtain the denoised signal.

From this example it is clear that there are two ingredients

in a denoising method: 1), the choice of the basis set used to
Biophysical Journal 98(1) 164–173



TABLE 1 Statistics of simulated data before and after
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represent the signal (e.g., the sine and cosine functions are

chosen as the basis for the Fourier transform); and 2), the

rule according to which certain components of the signal—

that are presumably associated with noise—are suppressed.

For example, the above smoothing method assumes implic-

itly that the signal is contained in the low frequency part of

the Fourier spectrum whereas the noise is associated with

high frequency components of the signal. A successful

method takes advantage of existing knowledge about the

noise. Furthermore, if the basis functions that are chosen to

represent the signal do so poorly (under the inevitable

constraint of using a finite basis set), the method will not

be successful. The keys then, to a successful denoising

method, lie in making the proper choices regarding basis

sets and noise suppression rules.

The orthonormal basis set used in the denoising method

presented here is comprised of the Haar (43) wavelet and

scaling functions. In general, wavelets offer the advantage

over more conventional basis sets that they are localized in

both the frequency and time domains. In contrast, the sines

and cosines of Fourier transforms are localized only in the

frequency domain. This time locality is particularly suitable

for nonstationary time series, as in the famous example of the

wavelet-denoised recording of Brahms at the piano (54).

Returning to the context of smFRET time trajectories, we

recall that the trajectory consists of two data vectors contain-

ing detected numbers of photons in discrete time steps. In

this discussion we consider only the acceptor photon trajec-

tory NA (¼ NA(0), NA(Dt),...), in discrete time steps Dt,
which is written in the form

NA ¼ SA þ sZ: (1)

Here, at each time step Dt, Z is a Gaussian white noise

component, and each element of Z is independently and iden-

tically distributed on a normal distribution with mean 0 and

variance 1, s is a known noise level, and SA is the ‘‘true’’

signal that we wish to recover. Similarly to the smoothing

method described above, we accomplish the recovery of

the true signal SA in three steps: 1), transform the observed

data NA into the wavelet domain; 2), suppress the presumed

noise component of the signal; and 3), invert the wavelet

transform to obtain the denoised signal. Part S3 in the Sup-

porting Material provides details regarding the specifics of

wavelet transformation of our smFRET data, and the rules

applied for noise suppression.
photoblink detection

Before blink filter After blink filter

Total data points 100,078 74,594

State 0.8 (N) 52,665 52,651

State 0.2 (N) 23,218 21,882

Blinks (N) 24,195 52

Blinks removed (%) — 99.8

Identified as blinks (N) — 25,484

State 0.8 removed (%) — <0.1

State 0.2 removed (%) — 5.8
APPLICATION TO SIMULATED smFRET DATA

Photoblink detection in simulated data

To assess the strengths and weaknesses of the photoblink

detection method, we generate simulated smFRET trajecto-

ries using the kinetic Monte Carlo method (55–58), and

apply the photoblink detection algorithm to the simulated

data. We simulate a three-state system that represents the
Biophysical Journal 98(1) 164–173
equilibrium of two efficiency states having central efficien-

cies of 0.8 and 0.2, respectively, as well as a photoblink state

that represents both acceptor and donor photoblinks. An

equilibrium constant, Keq, of 0.4 is chosen for the 0.8 4
0.2 equilibrium. The average photoblink lifetime is described

by exponential kinetics, and is chosen such that realistic pho-

toblinking statistics are obtained (59). The lifetimes of states

0.2 and 0.8 are also described by exponential kinetics, and

are chosen to mimic realistic physical conditions (60). After

the simulation generates the states that are present at each

time step, shot-noise laden acceptor and donor photon trajec-

tories are constructed from the simulated state trajectories.

The photoblink detection algorithm is applied to the con-

structed photon trajectories, and time steps identified as pho-

toblinks by the algorithm are removed. State lifetimes are

extracted from the simulated data both before and after pho-

toblink detection as a means to obtain the forward and back-

ward rate constants for transition between the two real states.

The equilibrium constant is estimated from the ratio of these

rate constants as well as the ratio of the occurrences of each

state in the efficiency distribution.

As shown in Table 1, the photoblink detection algorithm

removes 99.8% of the total number of generated photoblinks.

Additionally, the algorithm’s selectivity is shown by the

removal of only 1.8% of the actual data points. Even in the

presence of shot-noise, state 0.2 is only marginally affected

by the removal of photoblinks, as a meager 5.8% of the

data points originally assigned to this state are removed

during photoblink detection.

Fig. 1 illustrates the data simulation and the application of

the photoblink detection algorithm in more detail. A sample

acceptor and donor photon trajectory is shown in Fig. 1 a,

demonstrating the following chemical and photophysical

transitions: transitions between the two designated FRET

states, donor photoblinks, and acceptor photoblinks. Fig. 1

b contains the efficiency distribution of the simulated data

before photoblink detection, and Fig. 1 c shows the effi-

ciency distribution of the simulated data after photoblink

detection. This comparison shows that the denoising algo-

rithm effectively removes photoblinks, resulting in an effi-

ciency distribution that accurately reflects the two states of

the system, even though the shot-noise broadened signal

from state 0.2 overlaps with blink values.



FIGURE 1 Applying photoblink detection to simulated smFRET trajectories. (a) Sample acceptor (red) and donor (blue) photon trajectories. The mean of

the sum of acceptor and donor photon counts at each time step was held constant at 220. (b) Efficiency distribution of the model system before photoblink

removal. (c) Efficiency distribution of the model system after photoblink removal showing Keq to be 0.4. (d) The lifetime distribution of state 0.8 before photo-

blink detection overlaid by a fit to a single exponential decay. (e) The lifetime distribution of state 0.2 before photoblink detection overlaid with its fit to an

exponential decay. (f) The lifetime distribution of state 0.8 after photoblink detection overlaid with a fit to an exponential decay. (g) The lifetime distribution of

state 0.2 after photoblink detection overlaid with its fit to an exponential decay. (h) The fraction of total data points removed from a state’s efficiency distri-

bution versus the mean efficiency of the state.
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Effective blink removal also improves dynamic analyses.

Fig. 1, d and e, show the lifetime distributions before pho-

toblink detection for state 0.8 and state 0.2, respectively,

overlaid with their respective fits to single exponential

decays. Fig. 1, f and g, show the same data, after photo-

blink detection and removal. The simulated data shown

in Fig. 1 show that the removal of photoblinks from the

simulated data results in more accuracy in the extracted

kinetic rates. The ratio of forward to backward rate

constants before photoblink detection and removal ex-

tracted from Fig. 1, d and e, is 0.68, showing poor agree-
ment with the equilibrium constant of 0.4. However, the

corresponding ratio obtained after the removal of photo-

blinks extracted from Fig. 1, f and e, is 0.41, thus showing

excellent agreement with the equilibrium constant of 0.4. It

is therefore shown that carrying out Bayesian photoblink

removal on the simulated data results in a fitted equilibrium

constant that differs by only 2.5% from the actual value. In

comparison, the error before photoblink removal is 70%.

These results confirm that more accurate dynamic informa-

tion can be extracted from smFRET trajectories after the

removal of photoblinks.
Biophysical Journal 98(1) 164–173
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To address the resolution of photoblinks from states

having low central efficiencies, we carried out a series of

simulations as a function of mean state efficiency as a means

to determine a lower limit for this method. The results of

these simulations are shown in Fig. 1 h. We find that, to

distinguish photoblinks from actual data, a state’s mean effi-

ciency needs to be higher than a lower bound of ~0.2. It is of

note that this lower bound is a function of total acquired

photons per time step, and will move toward zero as the total

number of acquired photons increases. In the context of the

current discussion, the mean number of total photons per

time step is 220, and at this value the simulations confirm

that the algorithm, although removing all but a negligible

amount of photoblinks, leaves occurrences of states with

mean efficiencies higher than ~0.2 essentially unaltered.

It is also important to note that the effects of intermediate

timescale photoblinks that are less than one time step in dura-

tion. These photoblinks limit the Bayesian method presented

here in that, relative to the length of the event, intensity falls,

but does not fall low enough to be designated a photoblink.

As such, the time step remains. Such events fall into the

unquantifiable noise contribution discussed above.

Fig. S4 compares the performance of this method to

a more traditional method involving a simple thresholding

technique, and Fig. S5 analyzes the performance of the

Bayesian photoblink filter over a range of Keq.
Denoising an oscillatory system

As a means to quantify the effects of the wavelet denoising

algorithm to smFRET trajectories, simulated trajectories

were generated for two types of systems. The first, a two-

state equilibrium, was simulated using kinetic Monte Carlo

methods. Each of the simulated trajectories was denoised

by the wavelet denoising algorithm as well as the hidden-

Markov model (HaMMy) described by McKinney et al.

(30). Both methods are effective at denoising trajectories

comprised of well-defined FRET states. A figure showing

this comparison of the two methods is included as Fig. S6.

Additional details about the simulation are also included in

the Supporting Material.

The next simulation was carried out for a system without

defined FRET states. The wavelet denoising algorithm does

not make use of Markovian and/or distinct-state assump-

tions. Given that these assumptions are not valid in all cases,

wavelet denoising offers a significant advantage. Examples

include the wormlike multi-dT chains discussed by Murphy

et al. (61), the aV aptamer (12), or any system that undergoes

breathing dynamics with a continuously changing conforma-

tion. An example of such behavior is shown by green fluo-

rescent protein, which has been observed recently to exhibit

periodic oscillation between two conformational extremes

during the unfolding process (62).

As an extreme example of a system without well-defined

states, we simulate a system showing conformational oscilla-
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tion. Assuming the efficiency E of such a system oscillates

around a central value Ec with amplitude E0 according to

the equation E(t) ¼ E0cos(ut) þ Ec, the probability distribu-

tion p(E) of the efficiency is given by:

pðEÞ ¼ 1

p
�
E2

0 � ðE� EcÞ2
�1=2

: (2)

Although p(E) is weakly singular at E ¼ Ec 5 E0, the singu-

larities are readily removed when a discrete probability

distribution is used. The constructed trajectories are analyzed

by the wavelet-denoising algorithm, and again compared

with analyses produced by HaMMy.

Fig. 2 a shows a typical trajectory generated for these

analyses. The original, noisy efficiency trajectory (cyan) is

overlaid with the results produced by the wavelet denoising

algorithm (red) and HaMMy (black). Fig. 2 b depicts the effi-

ciency distribution of the noisy trajectory, and Fig. 2 c shows

that of the wavelet-denoised trajectory. Lastly, Fig. 2 d shows

the efficiency distribution as predicted by HaMMy. Each of the

efficiency distributions in Fig. 2, b–d, are overlaid with the

probability distribution p(E) in blue, depicted in discrete steps.

Although the period of oscillation is identified nicely by

HaMMy, it is obvious in Fig. 2 a that the assumption of

distinct states in the trajectory poses a major hindrance to

the hidden-Markov analysis. In fact, this is a system that

does not possess ‘‘states’’ and lifetimes, but a system that

merely oscillates between two efficiency extremes. This is

illustrated in the efficiency distributions shown in Fig. 2,

b and d, as well. Whereas the efficiency distribution in

Fig. 2 b shows the occupation of a broad range of efficien-

cies, that which is produced by HaMMy in Fig. 2 d shows

the molecule to occupy two major conformations.

In contrast, both the denoised trajectory and the denoised

efficiency distribution show improved agreement with the

noisy data. It is seen in the trajectories shown in Fig. 2

a that the denoised data constitutes a better representation of

this system’s dynamics than does that produced by the

hidden-Markov analysis. In comparing the efficiency distri-

butions, one can also see that, although there is a slight

discrepancy that arises at the efficiency extremes of Ec 5 E0

due to a small amount of remaining noise in the trajectories,

there is good agreement between the efficiency probability

distribution p(E) and the denoised distribution. The distribu-

tion produced by the wavelet denoising algorithm in Fig. 2

c is, therefore, a more accurate representation of the system’s

actual properties. Thus, the comparison shown in Fig. 2 shows

the value of the wavelet denoising algorithm when applied to

data derived from systems that exhibit nonMarkovian

kinetics, and/or do not possess distinct conformational states.
Denoising a system with indistinguishable states

Fig. 3 a depicts the efficiency distribution of a two-state equi-

librium that was simulated using kinetic Monte Carlo



FIGURE 2 Denoising an oscillatory

system. (a) The original, shot-noise

laden efficiency trajectory (cyan) is

overlaid with the denoised efficiency

trajectory (red) and the efficiency trajec-

tory generated by HaMMy (black). (b)

The efficiency distribution of the orig-

inal data. (c) The efficiency distribution

of the denoised data. (d) The distribu-

tion of efficiencies generated by

HaMMy. The efficiency probability

distribution p(E) is overlaid in blue on

each efficiency distribution.
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methods. As shown by this efficiency distribution, the two

states, having mean efficiencies of 0.89 and 0.81, are indis-

tinguishable in the presence of shot-noise. However, it is

clearly shown by Fig. 3 b that the states in the underlying

equilibrium are distinguishable after the trajectories are

denoised by the wavelet denoising algorithm.
To show the wavelet denoising algorithm’s value as

a companion to other methods, the hidden-Markov model of

HaMMy (30) was used to further identify the central efficiency

the states as well their relative populations, and the statistical

correlation method described by Schenter et al. (29) was

used to extract the kinetics that underlie the equilibrium. This
FIGURE 3 Denoising a system with

indistinguishable states. (a) The effi-

ciency distribution of the simulated

equilibrium showing the central effi-

ciency of each state, m1 and m2, as well

as the simulated equilibrium constant,

Keq. (b) The efficiency distribution

produced after denoising the trajectories

with the wavelet denoising algorithm.

(c) The distribution of efficiencies

produced by acting on the noisy trajec-

tories with HaMMy, showing the

central efficiencies of each state,

m1(obs) and m2(obs), as well as the equi-

librium constant, Keq(obs), produced by

this operation. (d) The distribution of

efficiencies produced by acting on the

denoised data with HaMMy, showing

central efficiencies of each state,

m1(den) and m2(den), as well as the equi-

librium constant, Keq(den), produced by

this operation. (e) Autocorrelation

curves produced from the trajectories

generated by HaMMy acting on the

noisy data (solid), the denoised data

(dotted), and the simulated state trajec-

tories (dot-dash). The average lifetimes

of each state, as extracted from the auto-

correlation curves, are shown in the

inset table for each of the simulated,

observed, and denoised data.

Biophysical Journal 98(1) 164–173
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method requires that a state be assigned to each time step in the

trajectories, and HaMMy was also used to accomplish this task.

Acting on the shot-noise laden trajectories of the distribution

shown in Fig. 3 a produces the idealized efficiency distribution

in Fig. 3 c. Carrying out the same operation on the denoised

trajectories produces the distribution shown in Fig. 3 d. It is

seen that, whereas HaMMy ably identifies the central effi-

ciency of each state, the equilibrium constant, Keq(obs), that

is produced by this operation differs from the actual equilib-

rium constant, Keq, by 58%. In contrast, the equilibrium

constant produced by acting on the denoised trajectories

with the hidden-Markov model, Keq(den), differs from the

actual value of Keq by only 4.4%. In addition, the central effi-

ciencies that are produced by acting on the denoised trajecto-

ries with the hidden-Markov model differ only trivially from

the actual efficiencies. It is quite obvious from this comparison

that the denoised data produces an accurate representation of

the thermodynamics that underlie the states this equilibrium.

The autocorrelation curves shown in Fig. 3 e were

produced from idealized trajectories produced by HaMMy.

Fitting these curves to exponential decays allows for the

extraction of rate constants, and thus for the extraction of

mean lifetimes of each state in the equilibrium. These life-

times are also reported in Fig. 3 e. Inspection of each of the
FIGURE 4 aV aptamer as a multiple state system. (a) The 2� of the aV aptamer

tration of 2 mM, before blink-filtering. (c) The blink-filtered efficiency distribution

observed efficiency distribution, before blink-filtering, resulting from the addition

e. (g) The denoised distribution corresponding to d.
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autocorrelation curves in Fig. 4 e reveals good agreement

between the denoised and simulated curves, but poor agree-

ment between the observed and simulated curves. Also, as

seen in Fig. 3 e, the lifetimes of each state, as calculated

from the autocorrelation of the noisy trajectories, are 0.632

s and 0.547 s. These values differ from the simulated lifetimes

by 34.6% and 3.4%, respectively. The lifetimes produced by

the autocorrelation of the denoised data are 0.91 s and 0.519 s,

respectively, and these values differ from the simulated life-

times by 5.9% and 1.9%, respectively.

Given the accuracy of each state’s central efficiency and of

the extracted equilibrium constant, we conclude that denois-

ing the trajectories of this simulated system with the wavelet

denoising algorithm successfully removes noise while retain-

ing the actual data. Furthermore, acting on the denoised trajec-

tories with the hidden-Markov model allows for the extraction

accurate kinetic data, thereby completely characterizing two

states in an equilibrium that were, before denoising, indistin-

guishable.
APPLICATION TO EXPERIMENTAL smFRET DATA

Application of the wavelet denoising algorithm and the

Bayesian photoblink filter to a single, experimental smFRET
. (b) The observed efficiency distribution of the aV aptamer at Mg2þ concen-

of the aV aptamer. (d) The denoised distribution corresponding to b. (e) The

of 2 mM VEGF. (f) The blink-filtered efficiency distribution corresponding to
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trajectory is illustrated by Fig. S7. Extension of this application

to a collection of experimental trajectories representing

a single-state system is shown in Fig. S8, and Fig. S9 describes

the application to a two-state experimental system.
The aV aptamer: a multistate experimental system

Trajectories acquired from studies reported previously (12)

on the aV aptamer and its interaction with its binding target,

vascular endothelial growth factor (VEGF), are chosen to

represent a multiple state system. These experimental studies

showed a highly dynamic secondary structure that ranged

from the closed hairpin, illustrated in Fig. 4 a, to an irresolv-

able continuum of open states with lower smFRET efficien-

cies. To complicate matters, the aptamer interaction with

VEGF was found to be similarly dynamic. Although the

smFRET studies suggested that the VEGF-bound aptamer

structure was the open state, quantitative analysis was

hampered by contributions of both shot-noise and structural

fluctuations to the measured smFRET distributions.

The global efficiency histogram containing ~15,000 data

points of the aV aptamer in 2 mM Mg2þ buffer solution is

shown in Fig. 4 b. The distribution shows a skewed mean

with an anomalously large standard deviation (SD) that is

a result of the trajectories containing photoblinks. Applica-

tion of the Bayesian photoblink filter to the trajectories

results in the distribution shown in Fig. 4 c. This efficiency

distribution has a mean efficiency of 0.9 with SD of 0.13.

Application of the wavelet-denoising algorithm to this

collection of trajectories results in the efficiency distribution

shown in Fig. 4d. We observe that the mean efficiency is

unaffected, and that the SD has been reduced by 25%. As

such, we conclude that the algorithm has the capability to

simultaneously refine the distributions of multiple, efficiency

states, even if the efficiency state distributions have signifi-

cant overlap.

Fig. 4 d shows a global efficiency histogram of the aV ap-

tamer while in the presence of VEGF that contains ~26,000

data points. Again, due to the presence of photoblinks in the

trajectories, the distribution shows an anomalously large SD.

Despite photoblinks, the VEGF-induced shift in the aptamer

conformational equilibrium shown previously (12) is seen

quite clearly in Fig. 4 e. It is not, however, clear that this shift

arises due to a shift in the conformational equilibrium until

the application of the Bayesian photoblink filter, which

results in the distribution shown in Fig. 4 f. This collection

of trajectories shows an overall mean efficiency of 0.87

with a large SD of 0.25 efficiency units, and shows that a shift

in the aptamer equilibrium is indeed observed in the presence

of VEGF.

The wavelet-denoised complement to this collection is

shown in Fig. 4 g. Again, the effects of the denoising algo-

rithm are quite clear. Whereas the mean efficiency once

again remains constant, the SD is decreased by 20%. More

importantly, the shape of the distribution is visibly refined.
Although the distribution is broadened, presumably by

effects of the fluorophores’ respective orientations (63–65),

efficiencies representative of a conformation yielding lower

efficiencies are noticeably increased, in good agreement

with the presumed interaction with VEGF (12). As a result

of Fig. 4, d and g. we conclude that, although improving

the finer aspects of the analysis, the application of the

wavelet-denoising algorithm does not affect the overall

outcome of the analysis of a system containing a complex

combination of multiple and overlapping efficiency states.

Furthermore, we conclude that the wavelet denoising algo-

rithm enhances the analysis of this system by confirming

the presence of a continuum of irresolvable conformations

in the aptamer conformational equilibrium, as in Fig. 4 c,

as well as improving the visibility of the presumed aV-

VEGF interaction as in Fig. 4 g.
CONCLUSIONS

In conclusion, we have developed methods to identify, quan-

tify, and remove two considerable sources of uncertainty in

smFRET time trajectories—photoblinks and shot-noise.

Using a two-component interpretation of noise observed in

such signals allows us to remove the component we can

quantify, thereby enhancing the accuracy of these measure-

ments. In addition, the development of an unbiased method

of photoblink detection eliminates the need to manually

preprocess the trajectories, and perhaps more importantly,

removes bias introduced into the measurement by manual

selection of photoblink regions.

The algorithms’ efficacy has been tested using simulated

data. Acceptor and donor photon trajectories containing pho-

toblinks were generated, and photoblink detection in these

trajectories resulted in nearly complete elimination of photo-

blinks with little effect on the actual data. Similarly, wavelet

denoising was applied to simulated acceptor and donor

trajectories, and significantly decreased the width of a state’s

efficiency distribution. Additionally, trajectories represent-

ing a system showing oscillatory behavior were simulated

as a means to show the efficacy of denoising in complex

systems. These simulations showed that the denoised data

formed a most accurate representation of the system at hand.

We have also shown that application of the Bayesian pho-

toblink detection method in combination with the application

of the wavelet denoising algorithm significantly improves

the quality of experimental smFRET data. This improvement

is observed both in the ensemble analysis of structural distri-

butions, and in kinetic analysis of dwell times. Although

there are caveats involved with the method of photoblink

detection, we have also shown that the caveats can be

avoided through establishment of a lower efficiency bound.

We expect that the methods presented here will have

immediate impact on the smFRET community. We also

expect the method to have a broad scope of applicability

because the wavelet denoising algorithm is not strictly
Biophysical Journal 98(1) 164–173
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limited to smFRET measurements. Many wavelet-based

applications have already been realized, and this particular

method requires only slight adjustment for application to

other types of time-series photon measurements, single-

molecule or otherwise.
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