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This paper describes an algorithm for extracting pulmonary vascular trees (arteries plus veins) from three-dimensional (3D)
thoracic computed tomographic (CT) images. The algorithm integrates tube enhancement filter and traversal approaches which
are based on eigenvalues and eigenvectors of a Hessian matrix to extract thin peripheral segments as well as thick vessels close
to the lung hilum. The resultant algorithm was applied to a simulation data set and 44 scans from 22 human subjects imaged
via multidetector-row CT (MDCT) during breath holds at 85% and 20% of their vital capacity. A quantitative validation was
performed with more than 1000 manually identified points selected from inside the vessel segments to assess true positives (TPs)
and 1000 points randomly placed outside of the vessels to evaluate false positives (FPs) in each case. On average, for both the
high and low volume lung images, 99% of the points was properly marked as vessel and 1% of the points were assessed as FPs. Our
hybrid segmentation algorithm provides a highly reliable method of segmenting the combined pulmonary venous and arterial trees
which in turn will serve as a critical starting point for further quantitative analysis tasks and aid in our overall goal of establishing
a normative atlas of the human lung.
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1. Introduction

The pulmonary arterial and venous structures deliver deoxy-
genated blood to the lung periphery and return oxygenated
blood to the systemic circulation. These highly complex
branching structures support the primary function of the
lung that is to bring blood into close proximity with
incoming fresh gas delivered to the terminal air sacs (alveoli)
through the process of respiration. In clinical practice, it is
of great importance, for instance, to be able to characterize
the vascular trees for the detection of pulmonary emboli
(localized blockages), detection of signs of pulmonary
hypertension, and for the differentiation between vasculature
and focal opacities (for detection of lung cancer and other
localized pathologies). The vascular trees can also serve as a
roadmap for the tracking of lung tissues across lung volume
changes or across time as the lung is serially monitored.
Recent advances in MDCT scanner technology enable the
scanning of the entire lung with nearly isotropic submil-
limeter voxel dimensions (on the order of 0.4 mm). Vessel

segments with radii of 2 mm or less are readily detectible
in those images. While detectible, manual segmentation of
these complex tree structures, even if an individual were
willing to take the time, has been found to present a near
impossible task due to the following reasons.

(i) It is difficult to determine boundaries of a vessel
consistently, especially thin segments, due to the
partial volume effects and image noise.

(ii) Volumetric lung scans of the adult human consist
of more than 500 slices and the vascular tree, in a
bipodial fashion, rapidly branch as one tracks the
vessels from their central to peripheral locations, with
the full tree structure consisting of more than 23
generations.

In addition, manual measurements of the vessels for assess-
ment of diameters and branching angles are unreliable.
The measurement of diameter requires the determination
of cross-sectional planes perpendicular to the local segment
centerlines. Similarly, a plane that includes both parent and
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child segments around the branchpoint needs to be localized
for branching angle measurements. Both measurements are
difficult to perform manually via 2D images because of
problems of for-shortening in projected view. Therefore,
highly automated segmentation of the pulmonary vascular
tree based on 3D image analysis plays an important role
in detecting and characterizing the vessel structure. The
segmentation results are sought as we seek to build a lung
atlas [1] in which we will establish normative values against
which an individual can be compared for the detection of
disease.

There is great interest in identifying branchpoints of the
vascular trees as a set of landmarks that may allow matching
of the lung across volume changes [1]. During a respiratory
cycle, the lung nonrigidly deforms its shape and individual
lobes rotate independent of each other [2]. Branchpoints of
the vascular tree can serve as possible landmarks inside the
lung. Even though the registration may require separation of
arterial and venous trees, segmentation of the entire vascular
trees provides branchpoint information required for this
purpose. Eventually the arterial and venous trees can readily
be separated by scanning during the infusion of iodinated
contrast agent and scanning during the arterial phase of the
infusion.

Several 3D vessel segmentation algorithms have been
presented to date. Tube enhancement filters based on a
combination of the eigenvalues of a Hessian matrix have been
reported in [3–5]. Segmentation can be performed simply by
thresholding of the filter output. The filters have an ability
to handle a range of radii by multiscale implementation.
Lorigo et al. [6] reported a vessel segmentation algorithm
based on a “codimension two” level set method. Vasilevskiy
and Siddiqi [7] used gradient flows implemented using a
level set method for 2D and 3D vessel segmentation. Aylward
and Bullitt [8] reported an intensity ridge traversal method
to extract vessels. A tracking direction was estimated by an
eigenvector of the Hessian matrix at each tracking front
position. Boldak et al. reported model-based vessel tracking
[9]. Mayer et al. presented pulmonary vessel segmentation
in contrast-enhanced CT data [10]. Fridman et al. [11]
used cores [12, 13] to track the vascular tree from a seed
point. Agam et al. reported a method for vascular tree
segmentation using correlation-based enhancement filters
and a fuzzy shape representation of the data [14]. An
approach based on mathematical morphology and discrete
geometry operators was recently reported in [15]. Use of
vascular tree segmentation for detection, segmentation, and
analysis of pulmonary lobes and sublobes was presented in
[16].

The eigenvalues and eigenvectors of the Hessian matrix
are implicitly or explicitly used in some of the above algo-
rithms and the algorithms have worked well for extracting
vessels in several organ systems imaged by CT or MR. The
tube enhancement filters can extract both thin segments and
thick segments without using seed points. However, such
filters produce disconnections around the junctions since
they are based on a cylindrical vessel segment model. Seg-
mentation results obtained from vessel traversal algorithms
generally have better connectivity between segments but

often miss peripheral thin segments. Our goal outlined in
this paper has been to develop an algorithm that extracts
peripheral thin segments as well as thick segments from
thoracic CT images with better connectivity. The major
contribution of the reported work is the development of
an algorithm which extracts detailed pulmonary vascular
trees by a novel integration of the tube enhancement filter
and vessel traversal approaches. Our approach builds on
several previously developed and proven methods for vessel
enhancement and vessel traversal. However, when applying
these algorithms individually to extract pulmonary vessels,
several additional issues need to be resolved, which is the
topic of this paper. The presented method integrates existing
conceptual modules in a way that the final approach is free of
the inherent limitations of the individual building blocks.

2. Method

Our integrated algorithm consists of three major steps: (1)
tube enhancement based on the cylindrical shape model
using an eigenvalue of the Hessian matrix serves as a filter
to extract vessels and to produce information that is used to
determine a set of seed points in the following vessel traversal
step. (2) The traversal step starts from each seed point until
one of the eigenvalues of the Hessian matrix changes its
sign twice, signifying that the front point of a trajectory has
reached a junction. (3) Branchpoint analysis is accomplished
by applying a thinning method which then allows for the
selection of objects with many branchpoints, serving as a
means of distinguishing between vascular trees and noise
components.

2.1. Vessel Enhancement. A vessel segment in a 3D image
is often modeled as having a cylindrical shape with a 2D
Gaussian-like intensity distribution within its cross-sectional
plane. A combination of the eigenvalues of the Hessian
matrix is often used to characterize and enhance its shape
in the image. Since pulmonary vessels consist of segments
with a wide range of radii, a multiscale approach needs to
be considered. In this vessel enhancement process, important
components to be discussed include

(i) the filter output function.

(ii) segment radius information for multiscale integra-
tion.

2.1.1. Hessian Matrix-Based Vessel Enhancement. Based on
the cylindrical vessel model, the eigenvalues of the Hes-
sian matrix are commonly employed recently as efficient
criteria to differentiate tube structures from other image
components. Let three eigenvalues of the Hessian matrix
at a point be λ1, λ2, and λ3 and let their corresponding
eigenvectors be e1, e2, and e3, respectively. Suppose that the
eigenvalues meet the condition λ1 ≤ λ2 ≤ λ3. Based on the
model, when a point is close to the center of a segment, λ1

and λ2 take on large negative values whereas λ3 takes on a
small value. Figure 1 illustrates a cylindrical vessel model,
with the eigenvalues/eigenvectors at the center of the model.



International Journal of Biomedical Imaging 3

e2

e3

e1

λ1

λ2

λ3

Figure 1: An illustration of a vessel model. It is assumed that the
model has a cylindrical shape with a 2D Gaussian-like intensity
distribution at each cross section. The arrows show the eigenvectors
of a Hessian matrix at the center. The length of the arrows represents
the absolute value of corresponding eigenvalues.

According to the model, the following criteria are typically
used to construct a filter output function.

(1) Locality: λ1 and λ2 are large negative values.

(2) Elongation: λ3 is much less than λ1 and λ2 (λ3/λ1 ≈ 0
or λ3/λ2 ≈ 0).

(3) Symmetry: λ1 and λ2 are of almost the same values
when a point is close enough to the center of a
segment (λ2/λ1 ≈ 1).

These criteria capture the characteristics of the model so
as to differentiate tube structures from sheet and blob
shaped structures when a point is within a vessel segment
and close to its center. However, pulmonary vascular trees
include many junctions, and criteria 2 and 3 above are
not always satisfied around the branchpoints. λ1 and λ2

do not always satisfy criterion 3 above, especially in the
thin segments and around the junctions. In addition, λ3

sometimes takes large positive values even when a point
is within a straight segment, which implies criterion 2 is
not always met. Figure 2(a) shows a trajectory by a white
tube starting from a point demarcated by the left most
white arrow. The tracking front advances left to right in the
figure. The gray parts on the trajectory indicate the points
where λ3 takes on negative values. These approximate to the
junction locations. Figure 2(b) shows changes of the three
eigenvalues of the Hessian matrix as the front point of the
trajectory advances. λ1 and λ2 always take on large negative
values compared to λ3. Intensity gradually changes towards
junctions when the point is in a straight segment and it
may cause λ3 to take on a positive value. When the point
is around a junction, intensity decreases rapidly towards the
segmental direction and it causes λ3 to take on a negative
value. For these reasons, λ3 fluctuates along the trajectory.
Also, λ2 oscillates with its phase opposite to λ3 since λ2 takes
relatively smaller values when the point is around junctions.
Based on this observation, the filter output function F(x) is
defined as follows:

F(x) = max
σ f ∈S

−
σ2
f λ2

I(x)
, (1)

where σ f is the standard deviation of a Gaussian function
convoluted with an image so as to take second derivatives

in the volume coordinate, and I(x) is the intensity value at
the point. S is a discrete set of σ f for multiscale integration.
This equation only takes into account criterion 1. Thus, it
may also enhance blob structures, typically image noise as
well as cylindrical structures. According to our experience,
in thoracic CT images, the noise will not be enhanced
to the same degree as are vessels since contrast between
parenchymal background and pulmonary vessels is relatively
high compared to the noise. Most of the visible thin
vessel segments exhibit intensity over−700 H.U. (Hounsfield
Units) while lung parenchyma is typically between −800
and −900 H.U. This results in a 100 to 200 H.U. difference.
Since Gaussian noise with standard deviation σ = 20 can
be considered typical for CT images [8], a difference greater
than 100 H.U. is not caused by noise. The noise can be
eliminated by postprocessing discussed in Section 2.3. F(x)
takes a maximum value when σ f is the closest to the radius
of a target segment among other σ f in the range S. Therefore,
S should include appropriate values that cover all the radii of
the vessel segments in the lung. However, when S contains
a wide range of values, and the filter output is calculated
at a nonvessel point close to a junction or multiple thin
segments are close to each other, F(x) gets larger than it
should. This is caused by a Gaussian function with a large
σ f that excessively smoothes the region. Figure 3(b) shows
the result when a fixed range of S was used for all voxels
in the image. The filter overly extracted nonvessel regions
around the junction. In order to avoid the inappropriate
enhancement, large σ f should be included in S only when
it needs to be used for the detection of a thick segment. This
requires a priori knowledge of the thick vessels. In thoracic
images, thick vessels can easily be extracted by a simple
intensity-based thresholding. We applied thresholding with a
fixed value to obtain thick segments, and a discrete distance
transform is applied to estimate an approximate radius r. By
using a distance transform value d, the radius r is estimated
as r =

√
d + 1 − 1 [voxel]. We used −600 [H.U.] for

both TLC and FRC scans as the threshold value. Using the
radius information, range S is determined depending on the
distance d as follows:

S =

⎧
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(2)

Figure 3(c) shows the result using (2). The segmented region
properly resides in the visible vessels.

2.1.2. Lung Segmentation. The filter output function takes
large values not only at the tube structures but also at
the edges of large concave structures such as bones and
the heart. In addition, the function takes a relatively long
time to be calculated for a whole volume. Typically, the
lung occupies only 25% of the entire volume. Therefore,
lung segmentation significantly reduces the computational
cost of the tube enhancement filter. For simplicity, a lung



4 International Journal of Biomedical Imaging

(1)

(2)

(3)
(4)

(a)

(1)
(2)

(3)

(4)

−250

−200

−150

−100

−50

0

50

V
al

u
e

ch
an

ge
s

of
th

e
ei

ge
n

va
lu

es

0 50 100 150 200 250 300

Distance from the seed point

λ1

λ2

λ3

(b)

Figure 2: A trajectory of vessel segments and value changes of the eigenvalues along the trajectory. Left-most white arrow in (a) shows the
starting point of the trajectory that advances left to right. The trajectory is calculated with fixed σ f = 1. λ3 oscillates as the front advances
and takes negative values close to the junctions indicated by dark gray regions on the trajectory. λ3 takes large values at location (1) and (2)
making absolute value of the ratio λ3/λ2 larger. At locations (3) and (4), the ratio λ2/λ1 becomes small.

(a) (b) (c)

Figure 3: Segmentation results by thresholding the filter output with a fixed value (−600 [H.U.]). (a) Original CT image visualized using a
window of 1500 H.U. at the level of −400 H.U. (b) A fixed S = {1,

√
2, 2, 2

√
2, 4} is used for all voxels. (c) (2) is used to determine S. In (b),

nonvessel regions around a junction are also extracted as vessels whereas segmented regions reside within the visible vessels in (c). It should
be noted that while vessel segments do not appear to be connected in this image, they are connected in the neighboring slices. In the event
that they were not connected, the local disconnections would be fixed by the tracking process described in Section 2.2.

segmentation method based on intensity thresholding and
3D labeling is employed. Obviously any existing lung seg-
mentation algorithms such as [17] can also be used for this
purpose.

The lung segmentation requires three seed points. They
should be located in the left lung, right lung and trachea,
respectively. Both left and right lungs are extracted by a
simple thresholding with a fixed value and 3D labeling with
the two seed points in the lung. The trachea and two or three
subsequent branches are also segmented by thresholding
with a fixed value and 2D labeling based upon connectivity
between neighboring slices and the seed point. This airway
segmentation is performed to eliminate the trachea from
the lung segmentation result. Although the segmentation
results from this very simple approach often contains part of
the mediastinal region, it significantly reduces the number
of voxels outside of the lung which would have otherwise
been processed in the filtering step. It also greatly reduces

the possibility of extracting false vessels caused by structures
outside of the lung region. In our experiments, it took well
under a minute to perform the lung segmentation while the
lung segmentation served to reduce the tube enhancement
filter processing time by more than four minutes.

2.2. Connectivity Improvements. Initial segmentation can be
obtained by thresholding the filter output. However, since
the segmentation works on a voxel-by-voxel basis, the result
contains local disconnections and small holes. These are
caused mainly by image noise and the difference of the
intensity distribution on a cross-sectional plane between
straight segments and junctions. The cross-sectional shape
of a vessel contour at a junction becomes an ellipse. It
causes lower filter output and local disconnections around
junctions, especially where very thin segments bifurcate
from a thick segment. The vessel traversal approach is
suitable for improving connectivity and for filling small holes
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in a segment. The connectivity improvements include the
following processes:

(i) initialization including automated localization of
seed points,

(ii) tracking terminations at junctions,

(iii) radius estimation for boundary recovery.

2.2.1. Initialization. The vessel traversal requires a set of
seed (starting) points. Since points near the center of a
segment are generally less influenced by noise, seed points are
preferentially identified at segment centers. According to the
vessel model, the intensity function takes a local maximum
at the center of a segment. The local maximum position
xmax in the volume coordinate can then be calculated by the
following equation [18]:

xmax = x + p = x − (∇I , e1)
λ1

e1 − (∇I , e2)
λ2

e2, (3)

where ∇I is a gradient vector at x, e1 and e2 are eigenvectors
corresponding to the eigenvalues λ1 and λ2. The operator (, )
takes the inner product of the two vectors in the equation.∇I
is estimated by using σ f which maximizes (1) in S (i.e., the
gradient is calculated as a convolution of the first derivative
of a 3D Gaussian function and σ f ). Since estimation of xmax

is sensitive to image noise, x is considered to be located close
enough to the center when the following conditions are met:

px ≤ 0.5, py ≤ 0.5, pz ≤ 0.5, (4)

where px, py , and pz are the components of the vector p.
Nonetheless, many points in the airway wall are also included
as tracking seed points if only these conditions are taken into
account, because the local intensity structure on the airway
wall is quite similar to that of a thin segment. Many of those
points in the airway wall can be differentiated since the cross-
sectional shape at the points is elliptical compared to that of
the thin vessel segments. Therefore, an additional condition
is applied

λ2

λ1
≥ 0.5. (5)

Since (3) is based on the cylindrical vessel model, estimation
of the local maximum position is inaccurate if a point
is close to a junction. In that case, all three eigenvalues
of the Hessian matrix take negative values. Therefore, one
additional condition is added

0 ≤ λ3. (6)

If the eigenvalues satisfy conditions (4), (5) and (6), then the
point is considered to be the center of a vessel segment and is
registered as a seed point for the tracking process.

2.2.2. Termination Criteria. Starting from a seed point, the
front position of a trajectory advances in the continuous 3D
space of the volume coordinate according to the estimated
tangent direction [8] with the step size of 0.2 voxel. At the

Discarded

Termination
point

Figure 4: An illustration of the tracking process from a thin
segment. The seed point is shown by a gray sphere. At the seed
point, the tracking front can take both e3 or −e3 as the initial
direction. Either way, tracking will be terminated after λ3 changes
its sign twice and becomes a positive value. The sign of λ3 becomes
negative before the front reaches a junction center. To ensure
that the branch is reconnected by tracking, the process needs to
wait until the sign changes twice—which indicates that the front
truly passed through the junction area. Then the intensity value
at the termination points is examined and either trajectory whose
intensity value at the termination point is less than the other will be
discarded. The other will be used for boundary recovery with the
radius estimation.

seed point, λ3 is a positive value since the seed point satisfies
condition (6). As the front position advances, λ3 changes
its sign when it approaches a junction. A sign change of λ3

along a trajectory is illustrated in Figure 2. λ3 takes a negative
value around the branchpoints and becomes positive when
the front is remote from the junctions. The primary purpose
of this tracking is to fix local disconnections associated with
junctions. Therefore, once the front reaches a branchpoint,
tracking is no longer needed. In addition, there are many
seed points available for tracking. Thus, once a segment is
connected to its parent segment, tracking can be terminated.
This will prevent performing the tracking multiple times for
a segment.

At a seed point, the tracking direction can be either e3 or
−e3. One of them leads to a thicker segment and the other
leads to a peripheral child branch. Local disconnection is
often observed at a junction of a thick and a thin segment.
Therefore, the tracking front should advance towards the
thick segment in order to fill the potential gap between the
two segments. Since a thick segment generally has higher
CT values, the intensity value at the terminated point can
be the criterion for selecting the trajectory which leads to
the thicker segment. After tracking in both directions, the
trajectory whose intensity value at the termination point is
higher than the other is selected for radius estimation and
the other is discarded. Figure 4 depicts the process.

2.2.3. Radius Estimation. After tracking, spheres with an
estimated radius are drawn at each tracking front position
to fill possible holes and gaps between two segments. The
intensity value around a point x can be estimated using
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the gradient ∇I and the Hessian matrix by the following
quadratic equation;

I(x + Δx) ≈ I(x) + (∇I ,Δx) +
1
2

(Δx, HΔx). (7)

We determined Δx as the radius of the sphere at the point
when the estimated intensity value I(x + Δx) reaches half
value of I(x) from background value. Intensity decreases
toward both the e1 and e2 directions and it tends to decrease
faster along either e1 or −e1 compared with any other
direction since the absolute value of λ1 is bigger than λ2.
Therefore, Δx is made parallel to e1 to estimate the smallest
distance to the outside of the vessel from the point. Then,
Δx can be expressed as Δx = te1, where t is the minimum
absolute value of the following equation:

t =
−(∇I , e1)±

√

(∇I , e1)2 − λ1

(

I(x)− Ibg

)

λ1
.

(8)

The background value is determined by Ibg = min I(x ±
iσopte1) where i = 1, 2, 3 and σopt is the optimal σ f which
maximizes the filter output function (1) at the closest voxel
from x. σopt at each voxel can be obtained in the vessel
enhancement step and is reused to avoid expensive multiscale
filtering in this step. The Hessian matrix and gradient vector
are calculated by convoluting the second- and first- order
derivative of Gaussian function with σopt. The intensity
value I(x) is obtained by convoluting Gaussian function
with σopt at x, and Ibg is evaluated directly from the image
using trilinear interpolation. The radius can be estimated at
every front position. The minimum estimated radius along
a trajectory is used for drawing spheres at each positions on
the trajectory.

2.3. Connected Components with Many Branchpoints. The
vascular tree can be characterized as an object with many
branchpoints. An object that contains small numbers of
branchpoints can be considered as noise or part of other
structures. Therefore, a thinning algorithm [19] is applied
to each object in the result to obtain the number of
branchpoints in the object from its graph representation.
Empirically determined, an object which has 100 or more
branchpoints, is extracted as a vascular tree. The value 100 is
chosen empirically by taking into account that the thinning
algorithm may produce false branches.

3. Experiments

3.1. Materials

3.1.1. Simulation. The algorithm was first applied to a set
of computer-generated tree structures. Figure 5 shows the
surface model of the tree structure and a cross-sectional
image of one of the noisy phantom instances. This model
was originally developed to represent an airway tree [20],
yet it is appropriate also for use as a model for simulating
a pulmonary vascular tree since the pulmonary arterial tree
follows the airway tree out into the lung periphery and

(a) (b)

Figure 5: Visualization of the phantom data. (a) Surface display
of the simulated vascular tree. (b) Cross-section of a phantom
subjected to Gaussian noise of standard deviation σ = 30. The
model contains 62 branchpoints and 125 segments. Intensity values
at the center of the segments vary depending on the radius of the
segment to mimic vessels in typical thoracic CT images. Gaussian
noise with different standard deviations was added.

thus has the same general geometric relationships as the
airway tree. The model contained 62 branchpoints and 125
segments. Each segment was characterized by a starting
point, an end point and the associated radius. Branching
angles were different for each bifurcation and their average
was 83.9 degrees. The segments become thinner every time
they bifurcate. 3D Gaussian spheres were moved along the
linear segments to generate the tree structure in a 3D image
whose dimension was 250 × 250 × 250 voxels. The radius of
a segment decreases from the starting point to the end point
of a segment so that it becomes the same as the radius of a
child segment in order to allow smooth connection. Standard
deviation of the 3D Gaussian spheres σr changes as the radius
varies. In this phantom setting, maximum σr was six voxels
and minimum σr was approximately one voxel in the volume.
We also rotated the model in 11 different angles in 3D space
and generated the structure in 3D images. Intensity value at
the center of a segment mildly decreased from the starting
point of a segment toward its end point along the tangent
direction. This made thick segments brighter compared to
the thin segments. The thickest segment had a value of −200
[H.U.] at the center whereas the thinnest had a value of
−700 [H.U.] at the center. The background value was −900
[H.U.] to simulate a typical background intensity in the
parenchymal region in lung CT images. Gaussian noise with
a standard deviation σ = 20, 30, 40 was added to each image.
After the result was obtained, a thinning method [19] was
applied to obtain its graph representation so as to evaluate
how many branches were correctly extracted and how many
false branches were extracted by the segmentation algorithm.
Both missing and extra branches were counted manually.

3.1.2. Clinical Data. The segmentation algorithm was
applied to 44 CT scans from a total of 22 human subjects
with lung volume held at 85% (for simplicity referred
to as total lung capacity or TLC) and 20% (referred to
functional residual capacity or FRC) of the subject’s vital
capacity. Both TLC and FRC scans were performed without
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imposition of an X-ray contrast agent. Subjects were healthy
volunteers except for three who had mild chronic obstructive
pulmonary disease (COPD) judged both by pulmonary
function tests and visual assessment of the CT images. All
images were scanned by a 4-slice MDCT scanner (Philips
Mx8000, Philips Medical Systems, Cleveland, Ohio). In-
plane pixel sizes of the CT images ranged from 0.52 mm to
0.88 mm, slice thickness was 1.3 mm, and slice increment
was 0.65 mm. Trilinear interpolation was applied to obtain
isotropic voxels. The resulting voxel dimension after the
interpolation was about 0.6 mm. Approximately 550 and 500
slices per case were available for each TLC and FRC scan,
respectively.

In order to evaluate the segmentation results quantita-
tively, more than 1000 points in the vessels were manually
identified in each CT data set to form a validation set to
assess the true positive (TP) rate. The points were defined
by an experienced observer trained and supervised by a
pulmonologist. TP rate is defined as the ratio between the
total number of points detected by the algorithm and the
total number of points in the data set. We consistently chose
the center point of the vessels as a member of the TP point set
because the center line is more important than vessel borders
in defining the vessel geometry. Each lung was divided into
four distinct regions in terms of radial distance from the
hilum so as to avoid biased distribution of the test points. At
least 100 points were identified in each region. Figure 6 shows
the four regions in each lung. Region A is the closest to the
hilum and region D is close to the pleural surface. Region A
contains a greater number of thicker segments than the other
regions.

To evaluate the false positive (FP) rate, 150 points were
randomly placed in each region, and the points within
the vessels were manually eliminated such that all points
represented nonvessel regions. This left approximately 120
points per region which were located in the parenchyma,
airway walls and pulmonary fissures. False positive rate is
defined as the ratio between the total number of points
included by the segmentation result and the total number of
points in the data set.

3.2. Implementation Issues. We implemented this algorithm
with a multithreaded process for the tube enhancement filter
and the vessel traversal. Since the filter works on a voxel-
by-voxel basis, it can be processed in parallel. Similarly,
the vessel traversal from a seed point can be executed in
parallel without depending on other seed point locations.
Other processes such as lung segmentation and connected
component analysis were implemented as serial processes.
We used a Linux-based computer with dual Xeon 3.6 GHz
processors (hyperthreading on) and 4 GB of memory for our
experiment. The processing time varies depending on the
size of the lung to be processed. Therefore, TLC scans take
longer time than processing FRC scans. It took less than
one minute (30 to 50 seconds) to obtain lung segmentation
result. Then it took about one to three minutes to complete
the tube enhancement filter process. The vessel traversal took
15 to 20 minutes. The connectivity components extraction
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Figure 6: Eight distinct regions were delineated based upon their
radial distance from the hilum. Two points were manually placed in
each lung as landmarks denoting the hilum and the lung was three-
dimensionally divided into a total of eight regions depending on the
distance from the hilar points. Note that this interaction step is only
used for the validation purposes.

calculations were on the order of one minute. The overall
process required between 20 to 25 minutes to obtain a final
result. The memory requirement is on the order of three
times that required to hold the original volume. In our
implementation, the program required approximately 900
MB for processing a volume consisting of 512 × 512 × 595
voxels.

3.3. Results

3.3.1. Simulation. The segmentation algorithm has one
major parameter, the threshold of the filter output used
to obtain the initial segmentation. When it is decreased,
more vessels and noise elements are extracted, increasing
the TP rate as well as the FP rate. On the contrary, less
vessels (and noise elements) are extracted if the threshold is
increased, causing a lowering of the TP and FP rates. Since
the threshold is a tradeoff between TP and FP rates, four
thresholds were selected empirically and were tested by use
of the simulation. Figure 7 shows average number of false
(extra) branches and missing branches as a function of the
threshold value. When the threshold setting was 0.06, the
segmentation results were missing less than one branch per
volume on average. However, the number of extra branches
increased rapidly when noise levels went up. On the contrary,
when the threshold was 0.09, the results missed 3.5 to 4.5
out of 125 branches on average whereas they had less extra
branches than other threshold settings. In [8], a noise level
σ = 20 was used to represent typical noise in CT images. For
comparison, σ = 40 represents noise in ultrasound images.
When the threshold was 0.07, the algorithm missed less than
one branch on average for all noise levels and the results
contained one or less extra branches in the case of σ = 20, 30.
Derived from this result, a threshold value of 0.07 was used
for the following experiments using the clinical data sets.

3.3.2. Clinical Data. Figure 8 shows volume-rendered images
of the segmentation results from both TLC and FRC scans
of one subject. Both results include peripheral thin segments
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Figure 7: Average number of false (extra) branches and missing branches of the phantom evaluated by graph representation of the
segmentation results. The false branches and missing branches were counted manually. (a) A total number of false branches (false positives).
(b) A total number of missing branches (true negatives).

close to the pleural surface. Since the scale of these images
is the same, they also show how the lung geometry changes
between the two volumes scanned. Table 1 shows a summary
of the TP rate for both TLC and FRC scans. TP rate for
TLC scans was 99.6% from the total of 16933 validation
points and 99.5% from 15,281 points in right and left lungs,
respectively. Similarly, TP rate for FRC scans was 99.0% from
13356 points and 98.2% from 10646 points in right and left
lungs, respectively. Since the lung volume of FRC scans is
less than that of TLC scans, there were less validation points
for FRC data sets. Also, especially in the FRC scans due to
increased compliance, motion artifacts may have contributed
to a small increase in the error rate. Table 2 shows a summary
of the FP rates for both TLC and FRC scans. A total of 11,925
points and 9620 points were used in right and left lung of
the TLC scans, respectively, yielding FP rates of 1.21% in the
right and 0.99% in the left lung. For FRC scans, a total of
11752 points in right lung and 8722 points in left lung were
used and FP rates of 0.96% and 0.88% in the right and left
lungs were obtained.

4. Discussion

In this section, the parameters affecting segmentation results
will be discussed first followed by the performance difference
between the left and right lungs. We will also discuss the
difference of the validation results between TLC and FRC
scans. Finally, we summarize the new contribution of the
reported method.

4.1. The Threshold for Obtaining Initial Segmentation Result.
The threshold for obtaining initial segmentation from the
filter output influences the final result—when set close to
zero, more objects including noise and other structures
are obtained; less vessel segments and less noise result for

(a) (b)

(c) (d)

Figure 8: Two examples of segmentation results. (a) and (c) are the
results from a TLC scan. (b) and (d) are from the associated FRC
scan of the same subject. All images are shown at the same scale.
Note the breathing-related changes of lung vasculature caused by
regional lung parenchymal expansion between the TLC and FRC
lung volumes.

larger threshold values. The threshold value thus affests
the mehod’s sensitivity and specificity. In the simulation,
four different values were used to determine an appropriate
value for pulmonary vascular segmentation from clinical CT
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Table 1: True positive rate in TLC and FRC scans.

Left Right

A B C D Total A B C D Total Overall

TLC 98.8% 99.8% 99.6% 99.7% 99.5% 99.4% 99.8% 99.7% 99.5% 99.6% 99.6%

FRC 97.8% 98.5% 98.1% 97.8% 98.2% 99.0% 99.3% 99.2% 98.6% 99.0% 98.6%

Table 2: False positive rate in TLC and FRC scans.

Left Right

A B C D Total A B C D Total Overall

TLC 1.48% 1.00% 0.73% 0.86% 0.99% 2.09% 1.08% 1.39% 0.99% 1.39% 1.21%

FRC 1.47% 0.86% 0.53% 0.86% 0.88% 1.37% 0.95% 0.73% 0.77% 0.96% 0.93%

images. 0.07 was empirically determined to be the best choice
and was used for in vivo human images; 0.08 was shown
to be an alternative based on the results of the simulation.
When 0.08 is used for in vivo human lung images, the TP rate
was 99.3% and 97.0% for TLC and FRC scans, respectively.
The FP rate was 0.76% and 0.50% for TLC and FRC scans,
respectively. In TLC images, the TP rate decreased merely
0.3% whereas the FP rate dropped by 0.45%. Therefore, the
0.08 setting was particularly appropriate for TLC images.

4.2. The Difference in TP and FP Rates between the Left
and the Right Lungs. The TP rate in the region A for both
TLC and FRC scans was lower than in the other regions.
Region A is close to the hilum and contains many thick
vessels. This region also contains thin segments bifurcating
from the thick segments, some of which were missed by the
segmentation. Radii of those missing segments were typically
1 to 2 mm and they emanated from segments whose radii
were 5 to 8 mm. Vessel traversal was sometimes terminated
prematurely before the front merged to the centerline of
the thick segments. This observation calls for an additional
traversal improvement in such highly asymmetric branches.
In addition, some data sets had cardiogenic motion artifacts,
particularly in the left lung regions, which caused branches
to be missed.

The FP rate in region A was noticeably higher than in
the other regions. This was mainly caused by thick airway
walls in the region. Anatomically, many arterial segments
run along with the airway segments, and sometimes they
appear attached to each other in the CT image. This causes
misdetection of the airway wall. Complete elimination of
the airway wall may require a priori knowledge of the
location of the airway tree. An integration of the airway tree
segmentation [21, 22] will likely solve this problem.

4.3. The Difference in TP and FP Rates between TLC and
FRC Scans. Image quality between TLC and FRC scans is
substantially different. The lung is less dense at TLC than
FRC and parenchymal density at TLC is more homogeneous.
In FRC scans, parenchymal density increases and becomes
less homogeneous. The density of the parenchyma increases

typically by 100 to 200 Hounsfield units compared to that
in the TLC scans. The image quality of FRC scans is also
degraded by motion artifacts caused largely by cardiogenic
motion which is accentuated by the fact that the lung is more
compliant. The motion artifacts are more prominent in the
left lung both because the heart is usually leftward shifted
within the thorax. The overall TP rate in the FRC scans was
less than that in the TLC scans by 0.6%.

4.4. Applications. The pulmonary arterial tree feeds the pul-
monary capillaries which in turn drain into the pulmonary
veins. The segmentation results demonstrated here contain
only one or two connected trees in each lung, inferring
that they may be implicitly connected in some locations.
The total number of generations in the segmented trees can
serve as a clinically important index. However, the arterial
and venous trees must be evaluated separately. It is difficult
to automatically estimate the number of generations in the
segmented trees because of the implicit connections. This
calls for an algorithm that separates arterial and venous tree.

The visual evaluation of the segmentation results indi-
cates inclusion of peripheral thin segments close to the
pleural surface. The algorithm, as currently completed and
described, can be useful for clinical applications which
do not require arterial and venous separation such as the
detection of pulmonary emboli [23], the evaluation of the
pulmonary vasculature in pulmonary hypertension and in
the characterization of pulmonary nodules [24].

An interesting byproduct of the vascular tree segmen-
tation is that it depicts the pulmonary fissures as regions
void of the vessel segments. Pulmonary fissures are visible
structures in the lung, which separate each lung into lobes.
The left lung has two lobes and the right lung has three
lobes. Pulmonary fissures are very thin spaces and are
often obscured by partial volume effects. Figure 9 shows the
fissures visible in the segmentation results as void regions.
Lobe segmentation has required fissure detection based upon
identification of the fissure itself as has been reported in
[25, 26]. Rough localization of pulmonary fissures using
the vascular tree segmentation results avoids detection of
the fissure itself and can be performed by searching in the
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(a) (b)

Figure 9: The extracted vascular tree of the right lung. Horizontal
fissure is recognizable by the sparse region of the vascular tree in (a).
Similarly, void region of the vascular tree describes the existence of
oblique fissure in (b).

sparse region of the vessel segments. This helps in limiting
the region of interest to search for exact pulmonary fissure
locations and may help to provide a fissure definition in the
cases where the actual fissure is incomplete.

The main purpose of the presented paper was to report
on a practical method for extraction of pulmonary vessels
together with its validation on clinical CT images. The main
novel aspects of the reported work are the following.

(i) Development of a simple yet practical tube enhance-
ment filter output function (1).

(ii) Seed point determination for vessel traversal from
output of the tube enhancement filter.

(iii) Fast radius estimation based on the quadratic Taylor
expansion.

5. Conclusion

We have developed an algorithm to extract the pulmonary
vascular trees from thoracic 3D CT images. The algorithm
was applied to 44 volumetric CT scans consisting of 22
high volume scans and 22 low volume scans. It yielded
99.6% TP rate and 1.2% FP rate for the high volume
scans, 98.6% TP rate and 0.9% FP rate for the low volume
scans. The values for the TP and FP evaluations of these
in vivo human data sets show a reliable performance and
suitability of the proposed algorithm for future clinically
relevant applications.
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