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Abstract
The directed movement of chromosomes during mitosis and meiosis relies on microtubule-mediated
connection between the spindle poles and kinetochores assembled on chromosomes. The molecular
basis for the dynamic interaction between microtubules and kinetochores is just beginning to be
unveiled. Here, focusing on the mitotic centromere kinase Aurora B, we review our current
understanding of the signaling pathways that correct erroneous microtubule attachment at
kinetochores. We evaluate several potential models that may explain how maloriented attachments
can be recognized and processed by the Aurora B pathway.

Introduction
To direct chromosome movement during mitosis, the kinetochore, a proteinaceous structure
assembled on centromeric DNA, dynamically captures microtubules. Importantly, all the
microtubules attaching to a kinetochore on one chromatid must link to only one of the two
spindle poles, while those attaching to its sister kinetochore must link to the opposite pole.
Although the back-to-back orientation of the kinetochore arrangement may contribute to this
correct, amphitelic attachment [1*], cells are equipped with machinery to correct the aberrant
microtubule attachment geometries found in monotely, syntely and merotely (Figure 1) [2].
Furthermore, some of these aberrant attachments and lack of attachments activate the spindle
assembly checkpoint (SAC, or mitotic checkpoint), which delays sister chromatid separation
and mitotic exit [3].

How is an improper microtubule-kinetochore attachment recognized and repaired? Elegant
work in budding yeast and grasshopper spermatocytes has demonstrated that tension at
kinetochores/centromeres is a key factor in to stabilizing bi-oriented attachments [4,5]. Upon
biorientation during mitosis, tension is generated by microtubules pulling at the kinetochore
of each sister chromatid, held together by cohesion near or at centromeres. Indeed, studies in
budding and fission yeast have shown that centromeric cohesion is important for accurate
mitotic chromosome segregation [6,7]. In the case of a maloriented chromosome where tension
is lost, a signaling cascade removes improper attachments, which in turn is believed to activate
the SAC [3]. Multiple lines of evidence suggest that centromeric Aurora B kinase activity plays
a major role in correcting these improper attachments and in SAC signaling [8,9]. Here, we
will restrict our focus to the regulation of Aurora B activation with regard to the correction of
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improper microtubule attachment, and review several speculative models that may explain how
this process is controlled.

Aurora B is required for correcting erroneous microtubule attachments at
kinetochores

The chromosomal passenger complex (CPC), which contains the kinase Aurora B, INCENP,
Dasra (also known as Borealin and CSC-1) and Survivin plays multiple roles at multiple places
during mitosis (Figure 2) [10,11**]. Upon entry into mitosis, the CPC is first localized to both
chromosome arms and the inner centromere, a region located between sister kinetochores. As
the cell cycle progresses to metaphase, the amount of CPC localized to the chromosome arms
decreases and it is mainly detected at the inner centromere [12]. When sister chromatids
separate in anaphase, the CPC dissociates from centromeres and relocalizes to the spindle
midzone.

During metaphase, the CPC is critical for the recruitment of a growing number of proteins to
the kinetochore and centromere: outer kinetochore proteins, including those involved in SAC
signaling (Mad1, Mad2, Bub1, BubR1, Mps1 and Cenp-E) [13–15]; proteins responsible for
microtubule-kinetochore interactions (Cenp-E, Ndc80, Knl1, Mis12, Zwilch, p150Glued,
MCAK, Dam1 and Plk1) [16–21]; and other inner centromeric proteins such as the Shugoshin
family proteins (Sgo1, Sgo2) and MCAK [20,22,23*]. Therefore, the CPC is one of the most
upstream regulators of centromere/kinetochore function.

If CPC function is compromised, chromosomes with syntelic and merotelic attachments are
frequently observed [14,24,25] due to the failure of improper connections to detach [8,9].
Aurora B-dependent phosphorylation of some key substrates is believed to facilitate the
destabilization of aberrant attachments. Accordingly, both the CPC and activated Aurora B are
preferentially enriched at merotelically attached kinetochores. This has been determined by
using phospho-specific antibodies against the active forms of Aurora B and INCENP [26].
Several studies also indicate that Aurora B-mediated phosphorylation is less abundant on
kinetochores at metaphase than at prometaphase when proper attachment has not yet occurred
[17,18,27].

The mechanisms by which Aurora B kinase activity destabilizes improper microtubule
attachments are not completely understood. However, several key substrates have been
elucidated. The Ndc80/Hec1 complex is a major attachment module for microtubules at the
outer kinetochore. In the absence of tension, it was proposed that Aurora B phosphorylates
Ndc80, which decreases its affinity for microtubules (Figure 2) [28,29]. In addition, Dam1, a
protein that allows kinetochores to track depolymerizing plus ends of microtubules in budding
yeast, is negatively regulated by Ipl1 (Aurora B)-mediated phosphorylation [30].

Aurora B also regulates the microtubule-depolymerizing enzyme MCAK [17–19].
Interestingly, this appears to be both positive and negative regulation as Aurora B-mediated
phosphorylation of MCAK suppresses its depolymerizing activity, but also controls its
accumulation at centromeres [17–19]. Although MCAK accumulation can lead to microtubule
destabilization, it remains unclear how Aurora B-mediated suppression of MCAK activity
contributes to this process [31].

Regulators of the Aurora B pathway
The Aurora B pathway can be regulated by controlling the level of kinase activation directly
or by controlling the balance of phosphorylation and dephosphorylation of its substrates.
Biochemical and structural evidence suggest that for Aurora B to be fully active, it must
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phosphorylate residues at the C-terminus of INCENP. However, it is predicted that the
phosphorylation sites on INCENP are improperly oriented with respect to the active site of the
kinase for phosphorylation to occur in cis and that this reaction is carried out in trans [32].
Indeed, high local concentrations of the CPC lead to full activation of Aurora B kinase, even
in the presence of counteracting phosphatase activity [33*]. Furthermore, both chromatin and
microtubules also lead to activation of the Aurora B kinase pathway, possibly through a similar
mechanism of enrichment and trans-autoactivation and/or yet unknown allosteric mechanisms
[33*,34]. Interestingly, another inner centromeric protein, TD-60, was shown to enhance the
activation of Aurora B by microtubules [35*]. As detailed in the models below, these activities
are key to our understanding of CPC function at the centromere during mitosis (Figure 2).

Two protein kinases recruited to kinetochores can also directly stimulate the kinase activity of
Aurora B (Figure 2). Chk1, a protein kinase involved in the DNA damage checkpoint, is
transiently localized to kinetochores and controls kinetochore microtubule attachments by
activating Aurora B [36*]. Mps1, a protein kinase required for the SAC, controls kinetochore
microtubule attachment and correction [37*,38**]. Mps1 stimulates Aurora B activity via
phosphorylation of Borealin (Dasra B), modifications critical to error correction of microtubule
attachments [38**]. These results suggest that Mps1 and Chk1 stimulate Aurora B activity to
correct maloriented attachments in vertebrate cells.

In addition to these positive regulators of Aurora B, a number of negative regulators are
believed to be important for limiting Aurora B activity. Several pieces of evidence suggest that
protein phosphatase 1 (PP1) is the major counteracting phosphatase of the Aurora B pathway
(Figure 2) [16,39,40]. In vertebrates, PP1α and PP1γ xare localized to the outer kinetochore
[41,42], where they may remove Aurora B-dependent marks. PP1 probably serves two
functions with respect to Aurora B: setting a threshold of kinase activity to counteract random
fluctuations in Aurora B activity and allowing for rapid re-attachment of microtubules after
removal of incorrectly attached ones.

Another potentially important negative regulator of the Aurora B pathway is the kinetochore
kinase, BubR1 (Figure 2). In BubR1-depleted cells, the majority of kinetochores fail to attach
to microtubules. However, this attachment defect is due in part to an increase in Aurora B
activity upon BubR1-depletion [43,44]. Since Aurora B is required for the phosphorylation
and kinetochore localization of BubR1 [14,25,45], BubR1 could act as a negative feedback
regulator of the Aurora B pathway.

Potential mechanisms by which Aurora B regulates connections between
kinetochores and microtubules

What is the mechanism by which tension and/or microtubule attachment status is sensed and
how is this state translated into regulation of Aurora B kinase activity? Here we discuss three
mechanisms by which the presence or absence of tension/attachment might modulate the
Aurora B kinase pathway, with a focus on correction of aberrant microtubule attachments
(Figure 3).

Model 1:Tension-regulated separation of Aurora B from its kinetochore substrates
It has been proposed that it is the physical distance between Aurora B and its kinetochore
substrates that determines whether microtubule-kinetochore connections are maintained [8,
18]. When sister chromatids are under tension, the distance between pairs of kinetochores is
increased relative to a relaxed state. Aurora B remains at the inner centromere, and therefore
its kinetochore substrates are no longer co-localized with the kinase (Figure 3) [18]. Under this
model, this leads to a situation in which phosphorylation of key kinetochore substrates (e.g.
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Ndc80) is low and microtubule-kinetochore interactions are stabilized. In turn, PP1, localized
to kinetochores in metaphase, dephosphorylates kinetochore substrates to maintain correctly
attached microtubules [41,42]. Conversely, when there is little or no tension, Aurora B is
physically closer to its substrates and phosphorylation is high, thus leading to destabilization.
Reinforcement of this state might occur through the action of kinetochore kinases such as Mps1
and Chk1, which directly activate Aurora B [38**] [36*].

This model assumes that tension-dependent changes in distance between Aurora B and its
substrates are enough to prevent interaction. In mammalian cells, differences of roughly 1–3
μm are seen between kinetochores under tension and those in a relaxed state [46]. As the CPC
has been shown to be a highly elongated complex with maximum lengths of up to ~40–50 nm
[47], it is possible that tension can physically separate Aurora B from its substrates. However,
for this model to work, diffusion of the CPC must be very low. As there are conflicting reports
on the dynamics of the CPC at the centromere [48–50], this point needs further investigation.

Furthermore, this model may not explain Aurora B-dependent error correction mechanisms
during meiosis. In mouse spermatocytes, the CPC remains closely associated with kinetochores
during metaphase I and metaphase II [51,52]. Upon progression from prometaphase II to
metaphase II, the inner-centromeric fraction of the CPC diminishes while the adjacent
kinetochore fraction remains [51]. In addition, this model does not readily explain why full
enrichment of the CPC at inner centromeres may not be absolutely essential for the error
correction process in vertebrate cells [15,53], while it was proposed that Sgo2-dependent
centromeric localization of the CPC is critical for this process in fission yeast [23*]. To further
validate this model, it is important to quantify the spatial distribution of Aurora B-dependent
phosphorylation at centromeres and kinetochores in the absence and presence of tension.
Recent developments such as the Aurora B activity FRET sensor and chromatin micro
patterning will be helpful in addressing this issue [54**].

Model 2: Microtubule-dependent regulation of Aurora B
Microtubule-mediated regulation of Aurora B may play a major role in transducing the force
of microtubule-kinetochore connections to Aurora B activity [55]. In budding yeast, there is
recent evidence that the CPC may act as a molecular bridge between microtubules and the
centromere. This suggests that the CPC is both the tension-sensor and the master-regulator of
error correction [55], though it remains possible that the microtubule-binding domain may have
other functions. In this model, under conditions of low tension, Aurora B activity is high leading
to a weakening of microtubule attachments. Upon correct bi-orientation, tension is now applied
to the CPC “bridge” which in turn causes a conformational change that leads to inhibition of
the kinase.

This model is simple and direct in that there is a discrete conformational change that is
transformed into a chemical signal that regulates microtubule attachment. However, it is not
clear whether this mechanism is feasible in metazoans where the CPC is localized to the inner
centromere and therefore may not directly interact with microtubules at the outer kinetochore.
One possibility is that the forces of tension are transduced through multiple components that
ultimately impinge upon the CPC and activate it in the manner detailed above. Alternatively,
the simple act of binding of microtubules to the CPC could be responsible for Aurora B
activation, assuming that microtubules interact with the CPC specifically at centromeres with
maloriented kinetochores (Figure 3) [35]. Merotelic attachments, although still localized near
the metaphase plate, have been suggested to cause an increased frequency of microtubule plus
ends at the inner centromere [56].

Interestingly, removal of the domain of INCENP that is required for microtubule-mediated
Aurora B activation (Boo Shan Tseng and H. F., unpublished results) does not affect its ability
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to correct improper attachments in HeLa cells [57*]. Rather, this mutant is defective in
activating the SAC in response to unattached kinetochores [57*]. To make sense of this
conflicting data, it is important to show that the CPC-microtubule interaction occurs at
maloriented attachments in vivo and that this interaction plays a role in error correction. In
addition, biophysical studies are needed to demonstrate whether Aurora B kinase activity can
be regulated by microtubule-dependent tension.

Model 3: Modulation of Aurora B activity through structural changes in centromeric
chromatin

Here we consider a third model, in which changes in the centromeric chromatin structure
regulate Aurora B activity, as previously indicated [8]. Tension generated by microtubules
pulling on kinetochores can provide enough force to potentially unwind nucleosomes at the
centromere (discussed in [58]). Therefore, tension might affect the distribution of CPC
molecules at the centromere. We propose that under low tension, chromatin is in a compact
state resulting in a high effective concentration of the CPC. This may increase the likelihood
that one CPC molecule phosphorylates another, which has been shown to lead to sustained
activation of the kinase. When the centromere is under tension, this mechanism may be
suppressed due to a decreased local concentration of the CPC and/or physical disruption of its
oligomerization state. Monitoring the dynamics of CPC inter-molecular interactions under
conditions of both high and low tension will aid in the validation of this model.

Alternatively, chromatin-mediated activation of Aurora B may be sensitive to the structure or
the topological orientation of the DNA. The fact that topoisomerase II is required for Aurora
B-mediated phosphorylation indicates that unresolved topological constraints could interfere
with Aurora B activation [59**]. Strikingly, the inner centromeric ATPase PICH controls
topoisomerase II-dependent decatenation of centromeric DNA during mitosis, and is required
for proper chromosome alignment [60*,61**] (Lily Wang and Erich Nigg, personal
communication). Thus, the topological status of centromeric DNA may be carefully regulated
during mitotic progression. A reconstituted CPC-chromatin system is needed to elucidate
whether changes in chromatin structure/topology can alter Aurora B kinase activity.

Conclusions
It is readily apparent that Aurora B represents a hub, in which many pathways converge to
transduce the mechanical forces imposed by microtubule-kinetochore attachments into
chemical signals that regulate such attachments. We have yet to understand the molecular
nature by which improper attachments are removed and reestablished, but we have some
valuable clues. It is important to remember that the Aurora B kinase pathway interacts with
several centromeric/kinetochore kinases (Bub1, BubR1, Mps1 and Plk1) as well as
phosphatases (PP2A-Sgo1, PP2A-Sgo2 and PP1) (Figure 2). The extent to which each of these
effectors regulates Aurora B kinase activity and localization also depends on the nature of the
microtubule-kinetochore connection. Therefore, a small perturbance to this system could result
in an amplified Aurora B response due a complex network of feedback loops. A full
understanding of the kinetic parameters governing each interaction in this complex network,
in conjunction with computational modeling, will be key to tackling this exciting problem.
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Figure 1.
Classification of kinetochore microtubule attachments.
Amphitelic attachment: this is the correct attachment, in which all the microtubules attached
to a kinetochore connect one spindle pole, while all those attached to its sister kinetochore link
to its opposite pole. Monotelic attachment: a kinetochore attaches to microtubules that link to
one spindle pole, while its sister kinetochore does not attach to any microtubules. Syntelic
attachment: both sister kinetochores are linked to the same pole by microtubules. Merotelic
attachment: a kinetochore attaches to microtubules from more than one spindle pole, a situation
that results in a lagging chromosome during anaphase. Kinetochores are in yellow,
microtubules in green, chromosomes in light blue and centrosomes in orange.
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Figure 2.
Aurora B pathway control of microtubule attachment.
The CPC, composed of Aurora B, INCENP, Dasra (Borealin) and Survivin, is localized to
inner centromre, where it signals to correct mal-oriented kinetochore-microtubule attachments.
Aurora B can be autoactivated by phosphorylation in trans, but the reaction is inhibited by
phosphatases. Upon loss of tension between sister chromatids, inner centromeric Aurora B is
activated, where activation may occur directly or indirectly. At the kinetochore, Aurora B
phosphorylates Ndc80, leading to destabilization of microtubules at kinetochores. Lack of
tension activates the Plk1 dependent phosphorylation of BubR1, a modification which is
critical for microtubule attachment [62]. Once microtubule attachment is established, BubR1
is inactivated [63]. Upon bipolar attachment, the Aurora B pathway and the Polo pathway are
inactivated, possibly through the action of PP1.
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Figure 3.
Three models of how the Aurora B pathway is controlled by microtubule attachment or tension.
Each model is a simplified enlargement of the inter-kinetochore regions of chromosomes under
tension or in a relaxed state. Kinetochores are in orange, microtubules in green, and
chromosomes are in light blue. Arrows indicate activation.
Model 1: Tension-regulated separation of Aurora B from its kinetochore substrates
The distance between active Aurora B at inner centromeres and its kinetochore substrates
increases upon bioriented attachment. This increased distance would decrease the likelihood
of Aurora B binding kinetochore substrates, which is reinforced by PP1 phosphatase.
Model 2: Microtubule-dependent regulation of Aurora B
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Inner centromeric Aurora B on misaligned chromosomes is more accessible to microtubules
than at the metaphase plate. Interactions with microtubules stimulate the kinase activity of
Aurora B resulting destabilized microtubule attachments.
Model 3: Modulation of Aurora B activity through structural changes in centromeric
chromatin
Assuming that the CPC is activated by chromatin through a clustering mechanism, the lack of
tension may cause a compaction of chromatin at the centromere leading to kinase activation.
However, under tension, the chromatin fibers are stretched resulting in a lower effective
concentration of the CPC and thus activity. Chromatin fibers are modeled as thin black lines.
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