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Abstract
Whole-body optical molecular imaging of mouse models in preclinical research is rapidly developing
in recent years. In this context, it is essential and necessary to develop novel simulation methods of
light propagation for optical imaging, especially when a priori knowledge, large-volume domain and
a wide-range of optical properties need to be considered in the reconstruction algorithm. In this paper,
we propose a three dimensional parallel adaptive finite element method with simplified spherical
harmonics (SPN) approximation to simulate optical photon propagation in large-volumes of
heterogenous tissues. The simulation speed is significantly improved by a posteriori parallel adaptive
mesh refinement and dynamic mesh repartitioning. Compared with the diffusion equation and the
Monte Carlo methods, the SPN method shows improved performance and the necessity of high-order
approximation in heterogeneous domains. Optimal solver selection and time-costing analysis in real
mouse geometry further improve the performance of the proposed algorithm and show the superiority
of the proposed parallel adaptive framework for whole-body optical molecular imaging in murine
models.
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1. INTRODUCTION
As a strategy that reflects genomic and proteomic changes and interactions in vivo and at the
macroscopic level, photonics-based molecular imaging has gained an indispensable position
in the biological and medical research fields [1][2]. With very high sensitivity, low cost and
easy operation, it is applied extensively in multiple biomedical research fields, such as
oncology, gene therapy, and drug metabolism [3][4]. Typical tomographic optical molecular
imaging includes bioluminescence tomography (BLT) [5] and fluorescence molecular
tomography (FMT) [6]. Without tissue autofluorescence generated by external illumination,
BLT is purported to have higher sensitivity than FMT. However, illumination provides many
source-detector pairs for FMT, which make it become potentially easier and more accurate to
reconstruct the internal sources compared with BLT [2].

Although optical tomography in molecular imaging is striving to reconstruct the information
of the light source inside small animal models (the inverse problem), reflecting molecular and
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cellular changes, the essential problem in optical imaging is to develop fast, precise and
efficient simulation algorithms of light propagation in biological tissues, that is the forward
problem [7]. Through modeling individual photon trajectories, the Monte Carlo (MC) method
and its variants can precisely depict light propagation information in tissues. The MC method
is called as “gold standard” because of its accuracy. However, tracking a large number of
photons results in slow simulation speeds, especially in complex heterogeneous geometries.
A deterministic full description of light propagation can be obtained by the radiative transport
equation (RTE) [8]. The RTE doesn’t consider statistical Poisson noise in photon propagation
and therefore, it can reflect small changes of optical signals in the simulation. The diffusion
equation (DE) is widely applied in optical imaging. In the DE, light propagation is assumed to
be isotropic, which is not accurate when the light source is near surface and in anisotropic
tissues with high absorption [7]. Complex living tissues and optical spectrum characteristics
of existing optical probes aggravate the DE’s application range [9]. It is necessary to solve the
RTE and its approximations for optical molecular imaging. Discrete ordinates (SN) and
spherical harmonics (PN) methods, as two usual approximation methods, can obtain more
precise numerical solution of the RTE with the increase of N depicting their approximation
degree to the RTE [10]. Recently, several researchers have obtained desirable results using
these approaches [11][12]. However, in order to generate precise solutions, one has to set N as
big as possible and N(N + 2) and (N + 1)2 coupled equations corresponding to SN and PN
methods need to be solved. This computational complexity results in long computational times
with sequential execution even in high performance computers, restricting its application. In
order to improve the simulation precision and speed, Cong et al propose an integral equation
based on a generalized delta-Eddington phase function [13]. Based on a simplified spherical
harmonics method, Klose et al deduce a set of coupled partial differential equations (PDEs) to
reduce the computation time of PN methods [9].

Optical molecular imaging is an ill-posed problem by nature. Current research has shown that
a priori knowledge is indispensable to reconstruct source information [14]. Source spectrum
and small-animal anatomical information can significantly improve reconstruction results
[15][16]. Numerical methods, especially the finite element method (FEM), become necessary
when the heterogeneity of the small animal and the complex geometries of organs are
considered. Using high order approximations to the RTE, multi- and hyper-spectral
measurements further increase computation burden [17]. Simulation on a single PC is too
costly, especially in the large-volume domain (eg whole-body mouse and fine mesh). Parallel
computation strategy is an efficient method to perform simulations with large dimensionality.
High-performance computer clusters dedicated to parallel computations are in general
available at many research institutions. The adaptive finite element method is another approach.
Not only has it improved simulation speed and precision of light propagation, but also has been
successfully applied in source reconstruction [18][19]. Through local mesh refinement, the
quality of reconstructed source distributions is remarkably improved. In fluorescence optical
tomography, based on diffusion theory, Joshi et al consider multiple area illumination patterns
to combine the parallel strategy and adaptive finite element method [20]. However, the parallel
framework that each node of the cluster is responsible for one or multiple measurements is
challenged when high order approximations to the RTE are applied. Therefore, a novel parallel
framework with adaptive FEM needs to be developed for the simulation of light propagation
in the large-volume domain with a complicated physical model.

In this paper, a novel parallel adaptive finite element framework is proposed to meet the current
demand for whole-body small animal molecular imaging simulations. This framework
efficiently tackles the computational burden through the combination of domain decomposition
and local mesh refinement. To solve the computational load imbalance problem, dynamic
repartitioning is implemented after the mesh is adaptively refined. Further, a set of coupled
PDEs based on SPN method is used to realize the light propagation simulation. We also
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optimally select the preconditioner and iterative algorithm through comparing current popular
methods in real heterogeneous mouse geometry to further accelerate the simulation speed.
Regarding the Monte Carlo method and diffusion equation, comparison of the results illustrates
the need for high order approximation in the heterogeneous phantom, further demonstrating
the superiority of the parallel adaptive framework. The next section introduces the proposed
simulation framework that incorporates parallel adaptive strategy and SPN approximation.
Experimental setups, simulation results and relevant discussions are demonstrated in Section
3. Finally, the conclusion and discussion are provided in Section 4.

2. Algorithms
2.1. Radiative Transfer Equation and SPN Approximation

The radiative transfer equation (RTE) is an approximation to Maxwell’s equations. It comes
from an energy conservation principle, that is the radiance ψ(r, ŝ, t) is equal to the sum of all
factors affecting it (including absorption μa(r), scattering μs(r), and obtainable energy Q(r, t,
ŝ) ) when light crosses a unit volume, where ψ(r, ŝ, t) denotes photons in unit volume traveling
from point r in direction ŝ at time t [21]. In the RTE, some wave phenomena such as polarization
and interference are ignored. When the signals are measured in optical imaging, light source
intensity is generally assumed to be invariant. Therefore, the time-independent RTE in 3D is
used [22]:

(1)

where p(ŝ, ŝ') is the scattering phase function and gives the probability of a photon
anisotropically scattering from direction ŝ to direction ŝ'. Generally, the Henyey-Greenstein
(HG) phase function is often used to characterize this probability [23]:

(2)

where g is the anisotropy parameter; cos θ denotes scattering angle and is equal to ŝ • ŝ' when
we assume that the scattering probability only depends on the angle between the incoming and
outgoing directions. The HG phase function is easily expanded by the Legendre polynomial.
Therefore, it is convenient for numerical computation.

When photons reach the body surface of a mouse, that is r ∈ ∂Ω, some of them are reflected
and can’t escape from the mouse body Ω because of the mismatch between the refractive indices
nb for Ω and nm for the external medium. When the incidence angle θb from the mouse body
is not beyond the critical angle θc (θc = arcsin(nm/nb) based on Snell’s law), the reflectivity R
(cos θb) is given by [24]:

(3)

where θm is the transmission angle. Furthermore, we can get the exiting partial current J+(r)
at each point r where the external source S(r) = 0 [9]:

(4)
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After a series of deductions is performed in the planar geometry with PN method, the 3D
SP7 approximation are obtained by replacing 1D diffusion operator with its 3D counterpart
[9]:

(5a)

(5b)

(5c)

(5d)

where μan = μ s(1 − gn) + μ a(n = 1, 2, 3, 4, 5, 6, 7); φi(i = 1, 2, 3, 4) is the composite moments
relevant to the Legendre moments. The Legendre moments can be obtained by expanding ψ
with the PN approximation. The detailed deductions are described in [9]. We use

(6)

to depict the effect of reflectivity in different angular moments on SPN approximation, the
corresponding boundaries are given [9]:

(7a)

(7b)

(7c)
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(7d)

The coefficients A1,…,H1, …,A4, …,H4 can be found in [9]. Furthermore, the exiting partial
current J+ is obtained at each point r where the source S(r) = 0:

(8)

where the coefficients J0, …, J7 can also be found in [9]. Note that SP5, SP3, and SP1 (diffusion
equation) can be obtained correspondingly by setting φ4 = 0, φ4 = φ3 = 0, φ4 = φ3 = φ2 = 0. In
order to describe the proposed algorithm, the general equation for Equs. 5a– 5d is followed:

(9)

2.2. Weak Formulation
When we select an arbitrary continuous test function υ, Equ. 9 is integrated over the whole
domain Ω, the corresponding weighted residual formulation is as follows:

(10)

After applying the Gauss divergence theorem and regarding Robin boundary conditions (Equs.
7a–7d), we may get the general weak formulation for Equ. 9:

(11)

v· φi can be obtained through solving the boundary equations (7a–7d), and expressed by the
linear combination of φ1, φ2, φ3 and φ4.

2.3. Finite Element Formulation
In the framework of adaptive finite element analysis, let { 1, … l, …} be a sequence of
nested triangulation of the given domain Ω based on the adaptive mesh evolution, where the
sequence gradually changes as elements are refined and coarsened when l is increased. The
spaces of linear finite elements l are introduced on the discretized levels l, satisfying
ോ1 ⊂ … ⊂ l ⊂ … ⊂ H1(Ω). We only consider the lth discretized level which includes

N l elements and N l vertex nodes.  is the nodal basis of the space l. We use
 (i = 1, 2, 3, 4) to represent the finite dimensional approximations to φi on the lth level. When

the standard Lagrange-type finite element basis is used, we have
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(12)

Considering Equ. 11 and Equs. 5a–5d, we have

(13)

where

(14)

and

(15)

τe and ∂τe are the volumetric and boundary elements respectively. When all the matrices and
vectors on each element are assembled, the FEM-based linear system on the lth level is as
follows:

(16)

Here, the domain to be solved is decomposed into several subdomains depending on CPU
numbers. Each processor of the cluster is responsible for matrix assembly in its subdomain.

2.4. Iterative Methods and Preconditioners
Compared with the diffusion equation, the linear equation lΦl = bl has larger dimensionality
in the high order SPN approximation. Fortunately, by observing the relevant coefficients in

Equs. 5a–5d and Equs. 7a–7d, we may find that each  is symmetric and each  is equal

to  . This means that the mass matrix l is sparse, symmetric, and positive definite. Iterative
methods, especially the conjugate gradient (CG) method, are suitable for this type of linear
equation [25]. However, with the increase of l, the size of l becomes more and more larger
and its condition number is worse. It is therefore difficult to improve simulation performance
only using the CG method. Currently, with the development of computer hardware and
computational techniques, scalability has become an important goal to develop numerical
algorithms. Generally, if an algorithm is considered scalable, the time used to obtain the
solution should be essentially invariable as the problem size and the computing resources
increase [26]. Preconditioning is an important method to obtain scalable simulations. Several
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types of preconditioners have been developed with parallel mode. For the specified problem,
it is important to decide which preconditioner is the best by relevant testings. Three main types
of parallel preconditioners are as follows [27][28]:

Incomplete factorization methods [29] In nature, preconditioning is to find a matrix
P which makes P−1A have better spectral characteristic than A. Therefore, some
classical preconditioners are based on direct factorization methods, leading to
incomplete factorization methods for saving computational time in fully factorization.
Incomplete LU (ILU) factorization is the most popular method in this type. By
decomposing A into L ̃Ũ − R, we may define P = L ̃Ũ, where R is the residucal of the
factorization. Generally, an ILU factorization with less accuracy, such as ILU(0),
takes lower preprocessing time, but requires more iterations to converge in
preconditioned CG method. Therefore, it is necessary to find the suitable factorized
degree of ILU, that is deciding the level k in ILU(k). For a sparse matrix, to efficiently
implement the ILU method, reordering strategy and blocking technique are used to
reduce fill-ins in L and U. The latter belongs to domain decomposition-type methods
and is more suitable for the problems arising from discretization of PDEs over a given
domain.

Sparse approximate inverse [30] The common idea of sparse approximate inverse
is to obtain a sparse matrix P ≈ A−1. This method assumes that A is a sparse matrix.
Although the inverse of a sparse matrix is generally dense, many entries of the inverse
matrix are small. It is possible to get a sparse approximation of A−1. There are two
types of approximate inverse methods which are classified by judging the expression
of the inverse matrix. One classical method for finding an approximate inverse in one
matrix is based on the minimization of the Frobenius norm of the residual matrix

. The factored approximate inverse method is the other representative
method which generates two or more matrices. Because sparse approximate inverse-
based preconditioning operation is composed of matrix-vector products, it is attractive
as a parallel preconditioner.

Multigrid/Multilevel methods [31] Multilevel methods, especially the multigrid
method, have been very popular in PDE-based applications because of its desirable
performance. It is easy to understand this method using the Fourier analysis of the
residual in each iteration. The “high-frequency” components related to larger
eigenvalues in the matrix A rapidly converge after several iterate steps, however, the
convergence corresponding to “low-frequency” components is slow. Using several
grids with different discretized degrees, that is with the multigrid method, the solution
on the fine mesh is corrected by that on the coarse mesh. The establishment of
geometric multigrid preconditioners depends to a large degree on the underlying mesh
and is time-consuming. The algebraic multigrid (AMG) method exploring the
characteristic of the underlying matrix and realizing convergence of the components
with “different frequencies” is extensively applied. On the adaptively refined mesh,
the AMG also shows the preferable performance in preprocessing. A parallel AMG
preconditioner, that is BoomerAMG, is developed to meet the needs of parallel
computation.

2.5. Adaptive Mesh Evolution and Loading Balance
2.5.1. Adaptive Mesh Evolution—Compared with the fixed or uniformly refined meshes,
adaptively refined mesh needs to consider a posteriori error estimation and the processing of
hanging nodes. A posteriori error estimators decide which element should be refined or
coarsened based on current solution. In the parallel mode, local error indicators are suitable
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which reduce communications between processors. In this application, the gradient-jump error
indicator is applied [32]. For the SPN, the indicator is as follows for element τe [33]

(17)

where wi is a weighted factor corresponding to φi, Ri,τe is the local residual for φi, which is
defined by

(18)

vτe is the outward unit normal for element τep, and hτe is the diameter of τep. With ητe, a
statistical strategy is used to decide the proportion of refined and coarsened elements [34]. In
this method, the mean (m) and standard deviation (σ) of the distribution of the obtained indicator
are computed. The refinement and coarsening ratios (γr and γc) are set to select elements. By
judging whether the log-error of one element is higher than (m + γrσ), or lower than (m −
γcσ), it is correspondingly refined or coarsened. Note that it is difficult to coarse a unstructured
mesh beyond its initial level. Therefore, only the refined elements can be coarsened in the
implementation.

The algebraic constraint method is selected to deal with hanging nodes [34]. The geometric
method needs to consider the elements adjacent to the refined one. Generally, hanging nodes
are dealt with by dividing the neighbor element into several subelements. Different types of
elements need different constraint strategies. In the 3D simulation, the geometric method
usually increases the processing complexity. Fox example, when a tetrahedron is locally refined
by “red-green” method, four constraint cases need to be considered [35]. The algebraic
constraint method deals with hanging nodes by constraining the corresponding degree of
freedom at the matrix level. It is more flexible and easily realized.

2.5.2. Loading Balance—Parallelization of simulations with adaptive mesh evolution as a
dynamic method bring new challenges. It is difficult to a priori know the element distribution
in the final mesh. Imbalance loading deteriorates parallel performance and dynamic
repartitioning of the mesh is indispensable to obtain loading balance. A k-way partitioning
method is used to perform the partitioning after mesh refinement [36]. This method obtains
superior performance by reducing the dimension of the mesh, partitioning it with smaller size,
and refining it to the original.

3. Results and discussions
In biological tissues, blood and water play an important role in absorbing near-infrared (NIR)
photons. Oxy-hemoglobin (HbO2) and deoxy-hemoglobin (Hb) are the main absorbers in blood
[21]. The absorption coefficients of tissues are mainly decided by the concentration of three
substances. With respect to the scattering coefficient, research has indicated that there is a small
change in the NIR domain. Generally, it is an inverse power function of the wavelength [16].
Alexandrakis et al estimate the absorption (μa) and reduced scattering  coefficients by
compiling relevant data in [16]. The high scattering characteristic of tissue means . If

 is close to μa, diffusion theory is not accurate. Figure 3 is about the  ratio for main
organs in a mouse, which is calculated based on the formulas and data in [16]. At the shorter
wavelength (440–650nm), almost all of the biological tissues have small  ratios. Even
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though the spectrum of many applied bioluminescent and fluorescent probes is in this
wavelength band, shorter wavelengths are heavily absorbed and therefore wavelengths less
than 600 nm are not very important for in-vivo applications. However, the wavelength is
between 650 – 800nm where NIR photons easily propagate, tissues with rich blood vessels,
such as muscle and liver, also have small  ratios, illustrating the necessity of developing
new mathematical models.

Currently, many open-source, high-quality software packages are developed to meet the need
of FEM-based simulation. This not only alleviates unnecessary effort and improves the
efficiency, but also provides a platform to objectively evaluate various numerical algorithms.
Here, we select libMesh as the basis development environment [37]. LibMesh provides almost
all of the components used in parallel PDE-based simulation with unstructured discretization.
Its design concept is also to use existing software packages as far as possible. PETSc developed
by Argonne National Laboratory (ANL) is used to solve the linear systems in parallel mode
[38]. By default, METIS realizing the k-way partitioning algorithm is used to dynamically
partition the whole domain in libMesh.

In the following simulations, we first use the simple homogeneous and heterogeneous
phantoms to verify the SPN method and evaluate its performance in three dimension.
Subsequently, we use a whole-body digital mouse to further test the proposed algorithm [39].
We select the tetrahedron as the basis element of the mesh because of its flexibility in depicting
complex geometries. We set the refinement and coarsening ratios (γr and γc) to 85% and 2%.
Simulation for fluorescence imaging includes two phases, that is excitation and emission. Its
emission process is similar to bioluminescence imaging. Therefore, we set the external source
S to 0 for better comparison. Note that it is simple to realize photon propagation simulation for
fluorescence imaging using the proposed algorithm. All the simulations are performed on a
cluster of 27 nodes ( 2 CPUs of 3.2GHz and 4 GB RAM at each node) which is available at
our lab.

3.1. Homogeneous Phantom Cases
The maximal diameter of a normal mouse is about 35mm [39]. In order to better demonstrate
the simulated results, we set the dimensions of the cylindrical homogeneous phantom to
17.5mm radius and 40.0mm height. Its center was at the coordinate origin. A solid spherical
source was placed at half-radius position on the negative X-axis for observing the effect of
different distances from source on the exiting partial current J+(r). The source radius was
0.01mm and was consider as a point source to reduce the effect of source shape. Because a
posteriori error estimation depends on the variables φi, we select the fixed mesh for objective
comparison. Figure 2(a) shows the discretized mesh which has the average element size of
1mm and includes 42524 nodes and 229019 elements. The Monte Carlo method can incorporate
the Poisson noise into the simulation in a natural way. Its simulated results are very close to
real measurements. An in-house MC-based simulator was coded to generate the exiting partial
current based on the method in [40]. Its speed was fast because of the use of analytic geometry
which was valid to this particular phantom geometry.

The ratio of  to μa, the anisotropy g, and the refractive index nb have significant effect on
J+(r). We consider these factors to observe their effect on the SPN approximation. In the MC
simulation, 5 × 106 ~ 2 × 107 photons are tracked depending on the  ratio to avoid the
effect of a small amount of photons. The data from the MC simulation was normalized by the
ratio of the average values obtained from SP7 approximation and the MC method, which
ignores the effect of the source intensity. In the first group of experiments, we set g, nb and
nm to 0.0, 1.0 and 1.0 respectively, which means that the phantom is isotropic and its refractive
index matches that of the medium. The scattering coefficient μs was fixed to 0.5mm−1. The
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absorption coefficient μa was adjusted to obtain different  ratios. The compared results
are shown in Figure 3. The detected circle for J+ is shown in Figure 2(a). Figure 3(a) shows
the compared results when μa is set to 0.005mm−1. The  ratio is 100.0 and therefore the
phantom had high scattering characteristic. Although there are some fluctuations in the
compared results of MC/SPN(N = 1, 3, 7) because of the noise in the MC data, all the ratios
are very close to the standard value “1.0”. The maximal value of the relative errors obtained

by  only is 2.15%. All of these results show the consistency of different SPN
approximations in the 3D high scattering domain. Furthermore, we set the  ratio to 5.0,
Figure 3(b) shows the compared results. With the increase of μa, the values of J+ become
smaller and the noise is comparatively large. Therefore, the fluctuations become larger.
However, MC/SP3 and MC/SP7 always waver around “1.0” and MC/SP1 is far from “1.0”
which shows the accuracy of the high order SPN approximation in the high absorption
homogeneous medium. When μa is adjusted to 0.25mm−1, the much larger fluctuations of MC/
SP1 shown in Figure 3(c) further demonstrate the inaccuracy of diffusion equation in the high
absorption domain.

In order to observe the effect of the refractive indices mismatch on J+, all the settings were the
same with the first group of experiments but nb was adjusted to 1.37. Figure 4 shows the
compared results. The distinct difference from the previous case is that the errors between MC/
SP1 and MC/SP7 become larger when the values of J+ are comparatively large, as shown in
Figures 4(b) and 4(c). These errors cause a significant deviation on MC/SP1 from “1.0”. In the
reconstruction, strong signals have much more effect than weak ones. Therefore, the accuracy
of high order SPN approximation shows its ability to better tolerate the refractive indices
mismatch.

Finally, the anisotropy factor was considered in the simulation. For retaining the  ratios,
we set g to 0.9 and μs was correspondingly adjusted to 5.0mm−1. The compared results are
shown in Figure 5. The high order SPN approximations obtain similar performance with in the
pervious two groups of experiments. However, because diffusion equation can’t describe the
anisotropic characteristic of the medium, the relative errors have comparatively large
fluctuations. Note that though SP7 has better performance than SP3, the improvement is
negligible relative to the MC-based statistical noise. Therefore, SP3 is an optimal choice for
simulation and reconstruction on a 3D homogeneous phantom.

3.2. Heterogeneous Phantom Cases
A heterogeneous phantom was considered for testing the SPN approximation, which is shown
in Figure 2(b). This phantom was obtained by placing a cylinder with 6.0mm radius and
36.0mm height into the used homogeneous phantom. The center of the internal cylinder was
at (0.0, 8.75, 0.0). The average element size of the discretized mesh was 1.0mm. The source
settings were the same as that in the homogeneous phantom. In the simulations, the absorption
coefficient μa of the external cylindrical component in the phantom was fixed to 0.005mm−1.
μs was adjusted depending on g, guaranteeing that the ratio of  to μa was 100.0. The refractive
index was set to the same value with that of internal phantom. According to the homogeneous
phantom cases, g and nb of the small cylindrical component of the phantom were adjusted.
Figure 6, Figure 7 and Figure 8 show the compared results corresponding to Figure 3, Figure
4 and Figure 5. When the  was set to 50.0, the similar performance was observed (Figure
6(a), Figure 7(a) and Figure 8(a)) with that in the homogeneous phantom indicating that the
program can primely deal with the simulation with discontinuous coefficients. When we
reduced the  ratio of the small cylinder to 5.0 and 2.0, on the whole, it was a little difficult
to observe the difference between diffusion equation and SP7 approximation regarding the
MC-based statistical noise, especially when the relative errors were below 15%. The distinct
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difference between them can be observed from Figure 6(c) and Figure 7(c) though SP7
approximation becomes less accurate compared with MC method for depicting photon
propagation. Because of the effect of the anisotropy factor, the performance of SP7
approximation is further deteriorated, as shown in Figure 8(c). It is necessary to use the higher
order approximation for heterogeneous phantom especially regarding the weak measured
signals on the surface.

3.3. Digital Mouse Cases
The whole-body mouse is the final test object of the proposed algorithm. To realize numerical
simulation, a microMRI-basedmouse volume (MOBY) was applied. Furthermore, a
commercial software Amira 3.0 (Mercury Computer Systems, Inc. Chelmsford, MA) was used
to obtain the discretized mesh of MOBY. In the mesh generation, the simplified surface mesh
was first obtained from the segmented mouse images. In order to retain the shape of organs,
the surface mesh had 18708 points and 39007 triangles and a maximal element size of
1.5mm. Then, we obtained the volumetric mesh as coarse as possible. The final mesh
initializing the simulation only had 21944 points. Almost all of the organs were depicted in
the discretized mesh shown in Figure 9. Optical properties of organs were obtained by the
formulas in [16].

In the mesh generation, surface mesh simplification is liable to remove the small mesh domains.
In order to preserve the shape of sources as far as possible, two cubic sources with 2.5mm width
were set in the left kidney and liver. The optical properties of organs at 700nm were used for
simulation. Figure 10 shows the mesh distribution using dynamic mesh repartitioning when
10 CPUs are used and five adaptive mesh refinements are performed. Based on a posteriori
error estimation, the elements refined were centered on the vicinity of sources. Comparing
Figure 10(a) with Figure 10(c), the parallel performance of the simulation will be significantly
affected if only initial mesh partitioning is used in the whole simulation. The final meshes of
SP1 and SP7 approximations had 49695 and 52047 points respectively. When 40 CPUs were
used, the cost time of SP1 and SP7 was 275.83s and 698.13s only using CG method. Note that
SP1 only required 1176 iterations after the final mesh refinement, whereas SP7 required 4210
iterations because of the ill-conditioned characteristic of the matrix. Therefore it is necessary
to find good solvers for the high order SPN approximation. It is difficult to use the same
geometries in the Monte Carlo method, therefore we didn’t obtain the simulation results based
on the MC method. For comparison, a fine mesh of MOBY mouse was generated for obtaining
the standard solution. The mesh had the average element size of 0.7mm and includes 188343
nodes and 2052092 tetrahedral elements. The solutions based on diffusion equation and SP7
were further obtained on the fine mesh. The relative errors of J+ on the adaptive refined and

fine meshes were calculated by . Although the
discretized points number of the adaptive refined mesh is about 1/4 of that of the fine mesh,
the average relative errors of SP1(adaptive)-to-SP1(fine) and SP7(adaptive)-to-SP7(fine) only
were 6.74% and 5.3%, showing the superiority of the adaptive strategy. However, the average
relative errors of SP1(adaptive)-to-SP7(fine) reached 86.3%, indicating the necessity to use
high order approximation in optical molecular imaging.

3.3.1. Preconditioner Selection—To improve the simulation speed, we anticipate to get
the best preconditioner for the proposed algorithm by comparing current popular
preconditioners. Hypre developed by Lawrence Livermore National Laboratory (LLNL) was
used to help us select suitable preconditioner [41]. Hypre can provide several parallel
preconditioners for realizing scalable computation, mainly including BoomerAMG [26]
(parallel algebraic multigrid), ParaSails [30](parallel sparse approximate inverse
precondintioner), and Euclid [29](parallel ILU preconditioner). In this context, we tested
multiple groups of parameters settings in preconditioners to obtain the best performance. For

Lu and Chatziioannou Page 11

Commun Numer Methods Eng. Author manuscript; available in PMC 2010 January 4.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



SP7 approximation, Figure 12(a) shows the comparison of total simulation time. BoomerAMG
and ParaSails have almost similar performance. The parallel ILU preconditioner takes a longer
time than only using CG method, which is not suitable for the proposed simulation.
Furthermore, Figure 12(b) shows the running time of solver. When CPU number is less than
10, BoomerAMG takes shorter time than ParaSails. However, as the CPU number increases,
ParaSails shows its superiority. In order to check the scalable characteristic of preconditioners,
the cost time per degree of freedom is shown in Figure 12(c) when using 40 CPUs. The cost
time of BoomerAMG and ParaSails is almost invariable with the increase of the matrix
dimension, which shows that both of BoomerAMG and ParaSails are scalable. However,
ParaSails takes less time. Therefore, Parasails is better selection when parallel simulation is
performed in the proposed method.

3.3.2. Time-costing Analysis—The proposed parallel adaptive element algorithm may be
divided into five main modules, that is Matrix Assembly, Solver, Error Estimation, Hanging
Node Constraint and Mesh Partition. Their cost time has a significant impact on the simulation
performance. Figure 13 shows the change of their cost time and percentages of total simulation
time depending on CPU number. The optimal selection of preconditioner reduces the time
percentage of module Solver. Due to the use of the domain parallel and local a posteriori error
estimator, the time of modules Matrix Assembly and Error Estimation is significantly reduced
with the increase of CPU number. When a higher order approximation is used, there are much
more variables at the discretized points of the mesh and this improvement becomes more
significant. Module Mesh Partition realizes dynamic repartitioning, the time of which is almost
negligible though it successfully tackles loading imbalance. Note that the time of Module
Hanging Node Constraint is independent on CPU number. It is important to improve the parallel
performance of this module in future research.

4. Conclusion
In this paper, we proposed a parallel adaptive finite element method to simulate photon
propagation with SPN approximation. The combination of parallel mode, adaptive mesh
evolution strategy and dynamic mesh repartitioning provides an elegant solution for the
numerical simulation at the whole-body mouse level. Optimal solver selection improves
numerical efficiency. The simulation results demonstrate that SP3 approximation is a good
choice for the homogeneous domain especially with high absorption characteristics. Higher
order approximation compared with SP7 is necessary for the heterogeneous high absorption
domain. Time-costing analysis further shows the predominance of the proposed algorithm for
such applications. Note that many approximations to RTE may be considered as a group of
PDEs [10]. The proposed parallel adaptive algorithm is also a preferable framework for photon
propagation simulation for these approximations. This work provides an efficient numerical
simulation method and leads to high-performance significant investigations for optical
molecular imaging.
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Figure 1.
The  ratio of main organs in a mouse.  and μa are obtained from [16]. A small figure
with different scale from the big figure is provided for better showing the data.

Lu and Chatziioannou Page 15

Commun Numer Methods Eng. Author manuscript; available in PMC 2010 January 4.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 2.
The discretized meshes of the used homogeneous and heterogeneous phantoms. The black
circles denote the detection position for comparison.
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Figure 3.
Comparison between diffusion equation, Monte Carlo method and SPN approximations in the
homogeneous phantom when g = 0.0 and nb = 1.0. The  ratios of (a), (b) and (c) are 100.0,
5.0 and 2.0 respectively. MC/SPi (i = 1, 3, 7) denote the ratios and “SPj to SP7” (j = 1, 3) are
the relative errors.

Lu and Chatziioannou Page 17

Commun Numer Methods Eng. Author manuscript; available in PMC 2010 January 4.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 4.
Comparison between diffusion equation, Monte Carlo method and SPN approximations in the
homogeneous phantom when g = 0.0 and nb = 1.37. The  ratios of (a), (b) and (c) are
100.0, 5.0 and 2.0 respectively. MC/SPi (i = 1, 3, 7) denote the ratios and “SPj to SP7” (j = 1,
3) are the relative errors.
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Figure 5.
Comparison between diffusion equation, Monte Carlo method and SPN approximations in the
homogeneous phantom when g = 0.9 and nb = 1.37. The  ratios of (a), (b) and (c) are
100.0, 5.0 and 2.0 respectively. MC/SPi (i = 1, 3, 7) denote the ratios and “SPj to SP7” (j = 1,
3) are the relative errors.
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Figure 6.
Comparison between diffusion equation, Monte Carlo method and SPN approximations in the
heterogeneous phantom when g = 0.0 and nb = 1.0. μs and μa of the big cylindrical component
of the phantom are fixed to 0.5mm−1 and 0.005mm−1 respectively. To the small cylindrical
part, the  ratios of (a), (b) and (c) are 50.0, 5.0 and 2.0 respectively. MC/SPi (i = 1, 3, 7)
denote the ratios and “SPj to SP7” (j = 1, 3) are the relative errors.
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Figure 7.
Comparison between diffusion equation, Monte Carlo method and SPN approximations in the
heterogeneous phantom when g = 0.0 and nb = 1.37. μs and μa of the big cylindrical component
of the phantom are fixed to 0.5mm−1 and 0.005mm−1 respectively. To the small cylindrical
part, the  ratios of (a), (b) and (c) are 50.0, 5.0 and 2.0 respectively. MC/SPi (i = 1, 3, 7)
denote the ratios and “SPj to SP7” (j = 1, 3) are the relative errors.
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Figure 8.
Comparison between diffusion equation, Monte Carlo method and SPN approximations in the
heterogeneous phantom when g = 0.9 and nb = 1.37. μs and μa of the big cylindrical component
of the phantom are fixed to 5.0mm−1 and 0.005mm−1 respectively. To the small cylindrical
part, the  ratios of (a), (b) and (c) are 50.0, 5.0 and 2.0 respectively. MC/SPi (i = 1, 3, 7)
denote the ratios and “SPj to SP7” (j = 1, 3) are the relative errors.
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Figure 9.
The discretized initial mesh of the MOBY mouse used in the proposed algorithm. Different
mesh colors denote different organs.
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Figure 10.
Dynamic mesh repartitioning. (a) is the initial mesh partitioning. (b) and (c) denotes the third
and fifth mesh partitionings.
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Figure 11.
Comparison between diffusion equation and SP7 approximation in the MOBY mouse.
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Figure 12.
Comparison of time depending on CPU number between using different preconditioners.
“None” denotes that only CG method is used in solver. (a) and (b) are the time of total
simulation and solver. (c) denotes the cost time per degree of freedom depending on the mesh
refinement number of times.
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Figure 13.
Relationship between the cost time of different main modules and CPU number. (a) and (b)
denote their absolute time and percentages of total time.
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