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Introduction

Nitric oxide (NO) is a gas that in animals participates in a 
broad spectrum of functions in the cardiovascular, immune 
and nervous systems.1,2 In higher plants, NO plays pivotal roles 
in controlling physiological function during plant growth and 
development, including seed germination, primary and lateral 
root growth, flowering, pollen-tube growth regulation, fruit 
ripening, senescence, defence response and abiotic stress, as 
well as being a key signaling molecule in different intracellu-
lar processes.3-8 Nitric oxide is a radical molecule, given that it 
has an unpaired electron in its π orbital, and this characteristic 
gives NO special properties. Nitric oxide can react with dif-
ferent macromolecules (proteins, lipids, nucleic acids, etc.) and 
diffuse through cell membranes. The term reactive nitrogen 
species (RNS) has also been introduced in the biological litera-
ture to designate nitric oxide and other NO-related molecules, 
such as S-nitrosothiols (RSNOs), peroxynitrite (ONOO-), 
dinitrogen trioxide (N

2
O

3
) and nitrogen dioxide (NO

2
) among 

others, which have relevant roles in multiple physiological pro-
cesses of animal and plant cells.6,9,10 These molecules directly 
or indirectly are involved in post-translational modifications in 
cell signaling under physiological and pathological conditions 
including binding to metal centres, S-nitrosylation of thiol 
groups and nitration of tyrosine.11

Among these modifications, S-nitrosylation is the most 
studied in plants.12 It consists of the binding of a NO group 
to a cysteine residue of a protein and can alter their function.13 

In animal organisms, the S-nitrosylation process is involved in 
a certain number of patho-physiological situations which can 
contribute to the generation of nitrosative stress.14 However, 
in plant cells much less information is available on this post-
translational modification. By proteomics approaches, some 
putative protein targets for S-nitrosylation in plants have been 
identified, including cytoskeleton, metabolic, redox-related, 
stress-related and signaling/regulating proteins.15 For instance, 
in crude extracts of Arabidopsis cell cultures, glyceraldehyde-3-
phosphate dehydrogenase undergoes a reversible inhibition by 
NO15 and similar behaviour has been described for the methi-
onine adenosyltransferase 1.16 On the other hand, Arabidopsis 
nonsymbiotic hemoglobin (AHb1) scavenges NO with the 
production of S-nitrosohemoglobin and reduces NO emission 
under hypoxic stress.17 Another example is the Arabidopsis 
type-II metacaspase AtMC9, which blocks the autoprocessing 
and activation of AtMC9 zymogen through S-nitrosylation of 
its catalytic cysteine residue.18 It has been also shown that the 
S-nitrosylation in the conserved Cys53 of the transcription fac-
tor AtMYB2 inhibits its binding to DNA.19 More recently, it 
has been demonstrated that S-nitrosylation of Arabidopsis thali-
ana salicylic acid-binding protein 3 (AtSABP3) at cysteine 280, 
during the establishment of plant disease resistance against 
a virulent Pseudomonas syringae pv. tomato strain DC3000 
(avrB), suppresses both the binding of the immune activator, 
salicylic acid (SA) and the carbonic anhydrase (CA) activity of 
this protein, indicating that S-nitrosylation participates in the 
mechanism of plant-defence response.20 Thus, this review will 
focus on plant nitration, which is the other post-translational 
mediates by RNS, with special emphasis in protein nitration.

Protein Nitration

Nitration is a general chemical process for the introduction of 
a nitro group (-NO

2
) into a chemical compound. In the case of 

proteins, there are several amino acids which are preferentially 
nitrated, such as tyrosine (Y), tryptophan (W), cysteine (C) 
and methionine (M). However, most studies concern tyrosine 
nitration, which consists of the addition of a nitro group to 
one of the two equivalent ortho-carbons of the aromatic ring 
of tyrosine residues (Fig. 1A). This addition changes tyrosine 
into a negatively charged hydrophilic nitrotyrosine moiety and 
causes a marked shift of the local pKa of the hydroxyl group 
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from 10.07 in tyrosine to 7.50 in nitrotyrosine.21 Tyrosine 
nitration is considered to be a selective process, and proteins 
usually have approximately 3 to 4 mol% of Tyr but only one 
or two of these tyrosines may become preferentially nitrated, 
this depending on several factors, such as protein structure, 
nitration mechanism and environment, where the protein is 

located.22 At present, tyrosine nitration has been 
shown to be capable of changing the function of 
a protein in several ways: (1) gain of function as 
well as no effect on function; and (2) inhibition 
of function being a much more common conse-
quence of protein tyrosine nitration.23 However, in 
other cases, it has been reported that nitration of a 
tyrosine residue may either prevent further phos-
phorylation or stimulate phosphorylation.24,25

Protein Tyrosine Nitration as a Marker 
of Nitrosative Stress

In mammals, protein tyrosine nitration has been 
detected in many tissues under normal physiological 
conditions26 and some of the nitrated proteins have 
been identified.27 Therefore, the available infor-
mation indicates that low levels of tyrosine nitra-
tion may be a physiological regulator of a signaling 
pathway. On the other hand, tyrosine nitration is 
being intensively studied because it can be used 
as a marker of certain pathologies and nitrosative 
stress.21,22,28-32 Until now, several proteomic studies 
have identified a relatively low number of nitrated 
proteins. Thus, a proteomic approach together with 
the use of a monoclonal antibody against nitroty-
rosine has identified about 40 different proteins 
during inflammatory challenge in rat lung and 
liver. The proteins identified were involved in dif-
ferent functions, such as oxidative stress, apoptosis, 

ATP production and fatty acid metabolism.33 More recently, also 
with the use of antibody against nitrotyrosine, another proteomic 
identification of tyrosine nitration targets in kidney of hyperten-
sive rats revealed the existence of 22 differentially nitrated pro-
teins.34 However, only catalase and glyceraldehydes-3-phosphate 
dehydrogenase were coincident targets in the three rat organs 
analysed. In any case, new studies are starting to point out the 
possible involvement of tyrosine nitration in signaling pathways 
mediated by NO.35,36

In plants, much less information is available on protein nitra-
tion under normal conditions, although previous data indicate 
the existence of a basal nitration present in the plant tissues ana-
lyzed. Figure 2 shows a representative immunoblot probed with 
an antibody against nitrotyrosine of different organs of healthy 
pea plants; it is possible to appreciate that the nitrated protein 
profiles are different (Corpas et al. unpublished results).

On the other hand, there are published data describing quan-
titative and qualitative changes in the profile of nitrated proteins 
under biotic and abiotic conditions. Some examples are: (1) in 
nitrite reductase antisense tobacco leaves, the induction of several 
tyrosine-nitrated polypeptides with molecular masses between 
10- and 50-kDa has been reported;37 (2) In tobacco BY-2 suspen-
sion cells treated with a fungal elicitin, the induction of tyrosine 
nitration in proteins with molecular masses in the range 20–50 
kDa has been also demonstrated;38 (3) In olive plants under 
salt stress (200 mM), a significant increase of the L-arginine-

Figure 1. Schematic reaction of nitration in different biomolecules. (A) Protein ty-
rosine nitration. (B) Nitration of γ-tocopherol. (C) Nitration of oleic acid.  
(D) Nitration of guanine.

Figure 2. Representative immunoblot showing the pattern of protein 
tyrosine nitration (NO2-Tyr) in different organs (root, stem, leaf, flower 
and fruit) of pea plants after 71 days of growth under optimal condi-
tions. The numbers on the right side of the immunoblots indicate the 
relative molecular masses of the protein markers.
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dependent NOS activity, total S-nitrosothiols (RSNO) and 
number of proteins that underwent tyrosine nitration in the 
molecular-mass range 44–60 kDa has been also reported;39 (4) 
In pea plants exposed to different types of environmental stress, 
the profile of nitrated proteins showed a significant intensifica-
tion of immunoreactive bands in the range 29–59 kDa with low 
temperature, high temperature, high light intensity and continu-
ous light;40 and (5) In sunflower, the infection by the pathogen 
Plasmopara halstedii induces an increase in proteins that undergo 
tyrosine nitration accompanied by a rise in RSNOs.41 All these 
data indicate that a boost in the number of proteins or an intensi-
fication of specific proteins resulting from tyrosine nitration could 
be considered as an indicator of nitrosative stress in plants,42 as 
has been demonstrated in animal cells. However, no nitrated pro-
teins in plant cells are yet known.

Nitration of Other Biological Macromolecules:  
Vitamin E, Lipids and Nucleic Acids

The nitration process can affect the functions of other biomol-
ecules, including vitamin E, lipids and nucleic acid. Vitamin 
E occurs in nature in 8 structurally related forms, including 
4 tocopherols (α, β, γ and δ) and 4 tocotrienols (α, β, γ- and 
δ). Whereas α-tocopherol is present mainly in green tissues, 
γ-tocopherol is often the most prevalent form of vitamin E 
in plant seeds43,44 and in products derived from them, which 
are used for human nutrition. As a result, γ-tocopherol is the 
major lipid-soluble dietary antioxidant. It has been shown that 
γ-tocopherol can be nitrated to form 5-nitro-γ-tocopherol (Fig. 
1B). In humans, the concentration of this compound rises in 
the plasma of people with coronary heart disease45 and in the 
brain of Alzheimer patients.46 In plants it has been proposed 
that γ-tocopherol exerts its influence on seedling development 
by controlling the content of nitric oxide (NO) in germinating 
seeds.47 More recently, Desel et al. (2007) have shown the pres-
ence of 5-nitro-γ-tocopherol,48 which it can act as scavenger of 
RNS when overproduced.49

Fatty acid nitration is a newly discovered mechanism that gen-
erates biologically active nitrolipids possibly involved in signaling 
or pathological processes.50,51 Thus, it has been demonstrated that 
nitrated membranes and lipids from lipoproteins can transduce 
NO-signaling reactions and mediate regulatory pathways for 
anti-inflammatory processes.52,53 For example, nitroalkene iso-
mer derivatives of linoleic acid (LNO

2
) and oleic acid (OA-NO

2
) 

(Fig. 1C) have been detected in human blood. They have the 
capacity to regulate gene expression and PPAR (peroxisome pro-
liferator-activated receptor) activation due to their electrophilic 
reactivity.32,54 Alternatively, nitroalkene can react with glutathi-
one (GSH) to form GSH-nitroalkene adducts which represent 
an important mechanism in the regulation of cellullar response. 
More recently, in vivo and in vitro studies revealed that nitroalk-
enes serve as protective mediators in rat lungs by inducing the 
cytoprotective enzyme heme oxygenase-1.55

In addition, nucleotides within DNA and RNA can undergo 
nitration by various RNS (Fig. 1D). Thus, 8-nitroguanine has 
been found to act as a pro-oxidant to stimulate superoxide gen-
eration by NADPH cytochrome P450 reductase and nitric oxide 
synthases. Once formed in cells, 8-nitroguanine may impart 
pathophysiological consequences due to its mutagenic and pro-
oxidant properties, as well as serving as a footprint of biological 
nitration.56-59

Unfortunately, research in nitrolipids or 8-nitroguanine is in 
an early stage of investigation and there is virtually no informa-
tion available regarding these two nitration processes in plant 
systems, this being a new area of RNS metabolism that needs to 
be explored.

Conclusions and Perspective

In plant systems, the nitration process is a new area of research 
and the efforts should be focused on identifying and quantify-
ing specific targets during natural plant development and under 
environmental conditions. Thus, protein targets of tyrosine nitra-
tion it could be expected to change among plant species, organs, 
developmental stages and environmental conditions. Moreover, 
a rise in the nitration process under stress conditions has been 
considered a potential marker of nitrosative stress. However, 
accumulated evidence indicates that under physiological condi-
tions nitration is involved in signaling and acts as a regulatory 
mechanism. Therefore, the study of the function and metabolism 
of nitrated bio-molecules in plants is a new area of research in the 
metabolism of nitric oxide.
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