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The small phenolic molecule salicylic acid (SA) plays a key 
role in plant defense. Significant progress has been made recently 
in understanding SA-mediated defense signaling networks. 
Functional analysis of a large number of genes involved in SA 
biosynthesis and regulation of SA accumulation and signal 
transduction has revealed distinct but interconnecting path-
ways that orchestrate the control of plant defense. Further 
studies utilizing combinatorial approaches in genetics, molecular 
biology, biochemistry and genomics will uncover finer details of 
SA-mediated defense networks as well as further insights into 
the crosstalk of SA with other defense signaling pathways. The 
complexity of defense networks illustrates the capacity of plants 
to integrate multiple developmental and environmental signals 
into a tight control of the costly defense responses.

Plants have evolved sophisticated defense mechanisms to ward 
off attacks from pathogens. In addition to pre-formed physical/
chemical barriers, plants can actively monitor the presence of 
pathogens and subsequently activate defense signaling networks, 
which in turn restrict the further growth and spread of  pathogens.

The small phenolic compound salicylic acid (SA) plays a central 
role in plant defense signaling. It is required for recognition of 
pathogen-derived components and subsequent establishment of 
local resistance in the infected region as well as systemic resistance 
at the whole plant level.1-3 SA accumulation is inducible upon 
infections of various pathogens, treatment with elicitors from 
pathogens, and stress conditions.3-5 Exogenous application of SA 
and its synthetic analogs to plants is sufficient to invoke disease 
resistance.6-9 Disruption of SA accumulation and/or signaling by 
mutations or by a transgenic SA hydrolase encoded by the bacte-
rial gene nahG greatly compromises defense against pathogens.10 
In addition, the phytohormones jasmonic acid (JA) and ethylene 
(ET) regulate SA-mediated defense as well as many aspects of plant 

development. Emerging evidence also implicates additional phyto-
hormones in plant defense, two of which, auxin and abscisic acid, 
were recently shown to impact the SA pathway.11,12

The past two decades have witnessed exciting progress made 
towards a comprehensive understanding of defense networks in 
the model plant Arabidopsis, especially those regulated by SA. The 
discovery of an expanding array of genes involved in SA-mediated 
defense suggests the complexity of defense networks. Surprisingly, 
information on functional relationships among many defense genes 
is sparse. Connecting the dots (genes) on the defense map to form 
pathways, which are further interconnected into complex defense 
networks, still remains a challenging task. This review focuses on 
our current understanding of the interactions among genes that 
regulate three key sub-circuits of the SA pathway: SA biosynthesis, 
SA accumulation and SA signal transduction. Discussions of the 
crosstalk between components involved in the SA pathway and 
those in other defense pathways can be found in some excellent 
reviews.13-17

SID2-Dependent and SID2-Independent SA Biosynthesis

The Arabidopsis SA INDUCTION-DEFICIENT 2 (SID2) 
gene encodes isochorismate synthase, which presumably converts 
chorismate to isochorismate. In addition to reduced SA accumula-
tion, sid2 mutants show enhanced disease susceptibility (eds) to 
various pathogens, which can be rescued by SA treatment.18,19 
These observations provide the first genetic evidence that a 
chorismate-derived pathway is critical for SA biosynthesis. This 
pathway is likely evolutionarily conserved since a prokaryotic 
SID2 homologue is functional in producing SA when expressed 
in plants.20,21

A number of studies indicate that the amino acid phenyla-
lanine, itself a derivative of chorismate, also contributes to SA 
production in a SID2-independent pathway.22-24 Recently, using 
the Arabidopsis mutant accelerated cell death 6-1 (acd6-1) that 
constitutively expresses high SA levels, Lu et al. observed that the 
sid2-1 mutation, when introduced into the acd6-1 background, 
suppressed the majority of but not all SA accumulation. This 
result highlights the activation of SID2-independent SA produc-
tion in acd6-1.25 It is possible that one or more SID2-independent 
pathway(s) produce small amount of SA while SID2 mediates the 
bulk synthesis of SA (Fig. 1).
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Multiple Pathways Feed into the Regulation of SA 
Accumulation

Protein sequence analysis indicates that the majority of SA 
regulators lack distinct enzymatic motifs, suggesting that, unlike 
SID2, these proteins are not directly involved in SA biosynthesis. 
Just how these regulators affect SA accumulation still remains 
to be determined, but mutant analysis has revealed two types of 
regulatory mechanisms. Loss of function mutations (LOFs) in the 
positive regulators lead to reduced SA accumulation, coinciding 
with an eds phenotype, whereas in the negative regulators, LOFs 
often give rise to increased SA accumulation associated with an 
enhanced disease resistance (edr) phenotype.

The positive SA regulator EDS1 represents an important node 
in the defense networks26 (Fig. 1). EDS1 is a putative lipase that 
confers basal defense against viral, bacterial and fungal pathogens 
in addition to being a necessary component required by a subset 
of plant resistance (R) genes.27-31 EDS1 physically interacts with 
two putative lipases, PHYTOALEXIN DEFICIENT 4 (PAD4) 
and SENESCENCE-ASSOCIATED GENE 101 (SAG101), 
both of which share homology with EDS1.32,33 Several lines of 
evidence indicate that PAD4 and SAG101 act in separate path-
ways to transduce EDS1 signaling: (1) expression of PAD4 and 
SAG101 at the RNA and/or protein levels is EDS1-dependent; 
(2) the three proteins are not found in the same complex; and 
(3) double mutant pad4-1sag101 plants exhibit an additive eds 
phenotype upon pathogen infection, compared with the single 
mutants.33,34 Like eds1 mutants, pad4-1 is severely impaired in 
SA accumulation.35 It is possible that the EDS1/PAD4 complex 
plays a major role in SA-mediated defense, but the role of the 
EDS1/SAG101 complex in SA-mediated processes awaits further 
investigation.

Another positive SA regulator, NONRACE-SPECIFIC 
DISEASE RESISTANCE 1 (NDR1), appears to act indepen-
dently of EDS1 since the two proteins are differentially required 
for the function of distinct classes of R proteins.30,36,37 Beyond 
EDS1 and NDR1, the list of positive SA regulators is rapidly 
growing; for instance, ACD6, AGD2-like DEFENSE RESPONSE 
PROTEIN 1 (ALD1), EDS5/SID1, AVRPPHB SUSCEPTIBLE 
3 (PBS3)/HOPW1-1-INTERACTING 3 (WIN3), and the 
MODIFIER OF SNC1 (MOS) proteins are also required for SA 
accumulation.38-48 The existence of so many SA regulators poses 
some interesting questions. For instance, are there additional SA 
regulators that physically interact with EDS1? Do other SA regula-
tors exist in protein complexes that do not involve EDS1? Do any 
of the other SA regulators function together in the same pathway? 
And how many different pathways regulate SA accumulation?

To address some of these questions, microarray analysis has 
been used to explore the hierarchical relationship of SA regula-
tors. The fact that eds1 and pad4 mutants share a similar global 
gene expression pattern corroborates the idea that these regulators 
act in the same branch of SA-mediated defense.49 In addition, a 
mini-microarray that contains 337 defense genes50 was used to 
analyze expression profiles of several SA mutants, and the results 
placed the corresponding proteins in the following pathway, 
ordered upstream to downstream: EDS1/PAD4, NDR1, PBS3, 

NONEXPRESSOR of PR GENES 1 (NPR1; an ankyrin-repeat 
protein that transduces SA signaling, as described below), and 
EDS5/SID2.51 Note that the biosynthetic protein SID2 lies 
downstream of the other regulators, emphasizing the inter-con-
nectedness of the SA pathway sub-circuits. It is worth mentioning 
that, due to the small array size, the above ordered pathway should 
be further tested with alternative methods, such as traditional 
epitasis analysis. However, a potential problem with such an 
approach is that knockouts of individual SA positive regulators 
already exhibit an eds phenotype, and it can be difficult to detect 
an additive eds phenotype with pathogen infection when two or 
more mutants are combined in a plant. Therefore, more sensitive 
assays should be developed to assess the functional relationship 
between SA positive regulators.

In addition to affecting SA accumulation and disease resis-
tance, mutations in many negative SA regulators are often 
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Figure 1. A model for SA-mediated defense networks. The networks are 
grouped into three intricately interconnected sectors, SA biosynthesis, SA 
accumulation and SA signaling. For SA biosynthesis, SID2 contributes to 
the majority of SA production while SID2-independent pathway(s) plays 
a minor role, as denoted by the thickness of the arrows. For SA accumu-
lation, there are multiple independent regulatory pathways. PAD4 and 
SAG101 physically interact with EDS1, likely acting downstream of EDS1 
in two separate pathways. NDR1 is known to act independently of EDS1, 
likewise, ALD1 and PAD4 function in different pathways. Expression of 
many SA regulators in this group is inducible with SA treatment, sugges-
tion that these regulators and SA form signal amplification loops. For SA 
signaling, there are both NPR1-dependent and -independent pathways. 
The NPR1 node includes NIMIN proteins and transcriptions factors, such 
as TGAs and WRKYs. Components in the NPR1 node can both positively 
and negatively regulate plant defense. Question mark indicates that the 
functional relationship of a SA regulator with other regulators is unclear. 
Dotted arrow indicates the possibility that components regulating SA 
accumulation may directly or indirectly affect the biosynthetic pathways. 
Note not all SA regulators are shown because of space limitation. LMM 
genes are not included because it is unclear if they play a direct role in 
regulating SA-mediated defense.
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to inducers activating SA signaling.58-61 Conversely, overexpres-
sion of Arabidopsis NPR1 or its homologues from tomato, wheat 
and apple confers broad resistance against diverse bacterial and 
fungal pathogens.62-65 SA-dependent, NPR1-independent path-
ways also exist, one of which is mediated by the transcription factor 
AtWhirly1.66 In addition, genetic analyses of the LMMs have also 
revealed the existence of additional NPR1-independent pathways, 
though the molecular identities of the corresponding players are 
largely unknown.56,57,67-71

NPR1 responds to SA-induced redox changes by undergoing 
a protein conformation change, which subsequently regulates its 
cytoplasm-nucleus translocation and activity in gene expression 
control.72,73 Protein-protein interaction assays revealed that NPR1 
interacts with seven out of the ten members of the TGA transcrip-
tion factor family, in addition to three structurally related NIMIN 
proteins.74-78 In addition, global gene expression profiling analysis 
showed that members of the WRKY transcription factor family act 
downstream of NPR1.79 While most NPR1 interactors or down-
stream components play a positive role in regulating plant defense, 
negative regulators, such as TGA2, NIMIN1 and WRKY58, are 
also involved in relaying NPR1-mediated signaling79-82 (Fig. 1). 
This complexity is consistent with the multiple roles of NPR1 
reported previously, which suggest it not only positively regulates 
SA signal transduction, but also regulates SA accumulation in both 
negative and positive ways.25 Different NPR1 functions are prob-
ably dependent on input signals from pathogens and plant genetic 
background, allowing plants the flexibility to integrate intrinsic 
factors with extrinsic ones in fine-tuning disease resistance.

SA-Mediated Defense Networks are Interconnected

Although it is convenient to think of SA-mediated defense 
networks in terms of three separate sub-circuits (biosynthesis, 
accumulation and signaling), emerging evidence indicates that 
these sub-circuits are intricately interconnected. While multiple 
genes regulate SA accumulation, expression of some of these 
genes, ACD6, ALD1, PAD4, EDS1, EDS5 and PBS3/WIN3, are 
inducible by SA, suggesting a mechanism of signal amplification 
involving both upstream and downstream components in the SA 
pathway.29,35,43-47 Consistent with this idea, microarray analysis 
by Wang et al.51 placed NPR1 both downstream and upstream of 
several SA regulators. In addition, there also appears to be a nega-
tive feedback loop involving NPR1 and SA that keeps the signaling 
networks in check (Fig. 1). Although the precise molecular func-
tions of many SA regulators are still mysterious, it is conceivable 
that the non-enzyme SA regulators could directly affect the 
activities of SA biosynthetic enzymes; alternatively, their effects 
might be indirect, via the control of precursor availability for SA 
biosynthesis, or SA stability, sequestration, transport or conjuga-
tion. In addition, SA signal transducers might affect expression of 
both enzyme and non-enzyme SA regulators, besides other defense 
genes. It should be interesting to tease out which SA regulators act 
in a SID2- or NPR1-dependent manner, and which ones act in a 
SID2- or NPR1-independent manner. Further investigation of the 
SA networks should also reveal additional positive and negative 
feedback loops, some possibly interlocked with one another, in 
regulating plant defense.

associated with developmental defects, such as cell death and/
or dwarfism. Plants that carry such mutations are called lesion 
mimic mutants (LMMs).52,53 To gain insights into the func-
tion of the corresponding genes, the LMMs are often crossed 
to mutants defective in genes that positively regulate SA, ET 
or JA signaling. Analysis of these double or triple mutants 
indicates that SA plays an important role in regulating pheno-
types conferred by many LMMs. In addition, such genetic 
analyses have also revealed interesting interactions between 
SA regulators. In some cases, multiple positive SA regulators 
differentially affect phenotypes caused by a particular LMM. 
For instance, mutations in EDS1 or PAD4, but not NDR1, 
completely suppress cell death and disease resistance conferred 
by lsd1,54 supporting the idea that EDS1 and PAD4 operate in 
a different pathway from NDR1.30 In other cases, a certain posi-
tive SA regulator is differentially required for different LMMs. 
For instance, the eds1 mutant completely suppresses cell death 
and disease resistance phenotypes conferred by edr1 and lsd1 
but only partially affect vad1 phenotypes,54-56 suggesting that 
VAD1 function differently from EDR1 and LSD1. Although 
an understanding of the precise functions of the LMM genes 
remains elusive, many studies clearly indicate that LMMs can 
be utilized to genetically dissect the interactions among defense 
genes.

Indeed, one of the most closely scrutinized LMMs, acd6-1, 
has proven to be an excellent tool for this sort of genetic analysis. 
Although wild type ACD6 acts as a positive SA regulator, a 
gain-of-function mutation renders acd6-1 with hallmarks of 
the LMMs.43,57 Intriguingly, the extreme dwarfism of acd6-1 is 
inversely correlated with SA-mediated defense.25 Therefore, the 
size of acd6-1 can be used in genetic analyses as a convenient 
phenotypic readout to assess the functional relationships among 
SA regulators. For instance, Song et al. reported that in the acd6-1 
background, two positive SA regulators, ALD1 and PAD4, when 
mutated, additively affected size and defense, suggesting that these 
regulators act in separate pathways to affect SA-mediated defense44 
(Fig. 1). In addition, the triple mutant acd6-1eds1-2pad4-1 
shares similar morphology with the two parental double mutants 
(Salimian and Lu, unpublished data), yet again reinforcing the 
idea that EDS1 and PAD4 act in the same pathway. However, one 
must use caution interpreting the analysis of acd6-1 triple mutants. 
At least one of the two mutants introduced into the acd6-1 back-
ground should be null, since otherwise an observed additive effect 
could result from quantitative difference in the mutant alleles, 
rather than the actions of two genes from different pathways. 
Such caveats notwithstanding, acd6-1 is a powerful tool that 
should enable systematic dissection of the genetic complexity of 
SA-mediated defense networks. This analysis can also be extended 
to study the crosstalk between SA and other defense signaling 
pathways.

NPR1-Dependent and NPR1-Independent Pathways 
Transduce SA Signaling

NPR1 represents a key node in SA signal transduction (Fig. 1). 
npr1 mutants are compromised in disease resistance and insensitive 
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Conclusions

The framework by which we understand SA-mediated defense 
networks has become increasingly more complex with the ever-
expanding discovery of additional SA pathway components, 
not to mention interactions among these components. This 
complexity is augmented by the fact that SA also cross-talks 
with multiple other defense signals. The complexity of defense 
networks reveals the capacity of plants to integrate genetic infor-
mation and development with environmental factors into a tight 
control of energetically costly defense responses. Studies involving 
combinatorial approaches, including molecular biology, genetics, 
biochemistry and global gene expression profiling, will continue to 
shed light on multifaceted defense signaling networks and provide 
new perspectives that will aid the combat against pathogens and 
improve disease resistance traits in crops.
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