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Over the last decades several efforts have been carried out to 
determine the mechanisms of salt homeostasis in plants and, 
more recently, to identify genes implicated in salt tolerance, with 
some plants being successfully genetically engineered to improve 
resistance to salt. It is well established that the efficient exclusion 
of Na+ excess from the cytoplasm and vacuolar Na+ accumulation 
are the most important steps towards the maintenance of ion 
homeostasis inside the cell. Therefore, the vacuole of plant cells 
plays a pivotal role in the storage of salt. After the identification of 
the vacuolar Na+/H+ antiporter Nhx1 in Saccharomyces cerevisiae, 
the first plant Na+/H+ antiporter, AtNHX1, was isolated from 
Arabidopsis and its overexpression resulted in plants exhibiting 
increased salt tolerance. Also, the identification of the plasma 
membrane Na+/H+ exchanger SOS1 and how it is regulated by a 
protein kinase SOS2 and a calcium binding protein SOS3 were 
great achievements in the understanding of plant salt resistance. 
Both tonoplast and plasma membrane antiporters exclude Na+ 
from the cytosol driven by the proton-motive force generated by 
the plasma membrane H+-ATPase and by the vacuolar membrane 
H+-ATPase and H+-pyrophosphatase and it has been shown that 
the activity of these proteins responds to salinity. In this review 
we focus on the transcriptional and post-transcriptional regula-
tion by salt of tonoplast proton pumps and Na+/H+ exchangers 
and on the signalling pathways involved in salt sensing.

Introduction

Approximately 20% of the world’s cultivated land and nearly 
half of irrigated land are affected by salinity, which has become 
a serious threat to agricultural production limiting plant growth 
and productivity worldwide.1,2 Excessive salinity imposes two 
stress factors on plants: an osmotic component that results from 
the reduced water availability caused by an increase in osmotic 

pressure in the soil, and an ionic stress resulting from a solute 
imbalance, causing changes in the K+/Na+ ratio and increasing the 
concentration of Na+ and Cl- in the cytosol.3 Sodium toxicity is 
caused mainly by the similarity of the Na+ and K+ ions to plant 
transporters and enzymes. Plant cells typically maintain a high K+/
Na+ ratio in their cytosol with relatively high K+, in the order of 
100–200 mM, and low Na+, of about 1–10 mM.4

Several efforts have been undertaken to enhance the salt 
tolerance of economically important plants by traditional plant 
breeding as well as by biotechnological approaches.5,6 Traditional 
breeding programs trying to improve abiotic stress tolerance have 
had some success, but are limited by the multigenic nature of 
the trait. Arabidopsis also proved to be extremely important for 
assessing functions for individual stress-associated genes due to the 
availability of knock-out mutants and its amenability for genetic 
manipulation.7 The in vitro culture approach has been proved 
effective in the selection of salt-tolerant cell lines and subsequent 
regeneration of whole plants with improved salt tolerance, such as 
alfalfa,8 rice9,10 and potato.11

Osmolytes like proline, glycine-betaine, trehalose and sugar 
alcohols such as mannitol and sorbitol that are abundantly 
produced and accumulated in salt treated cells represent a critical 
component of salt-stress responses. These compounds are expected 
to work through lowering the osmotic potential of cells or by 
protecting various cellular structures and proteins during stress.2 
The addition of NaCl to suspension cultured cells of Olea euro-
paea enhanced the capacity of the polyol:H+ symport system and 
the amount of OeMaT1 (Olea europaea mannitol transporter 1) 
transcripts, whereas it strongly repressed mannitol dehydroge-
nase activity providing intracellular accumulation of mannitol.12 
Therefore, the improvement of salt tolerance in plants could 
be achieved by the increased production of osmolytes or stress 
proteins that protect or reduce damage caused by salt stress.13 
Thus, when Nicotiana tabacum, Populus tomentosa and other 
plants were genetically engineered to synthesize mannitol through 
introduction of an Escherichia coli mannitol-1-phosphate dehy-
drogenase (mtlD), which catalyzes the biosynthesis of mannitol 
from fructose, it resulted in more salt-tolerant plants.14,15 Also, 
in Arabidopsis, mtlD gene transfer and expression enhanced seed 
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germination under salinity conditions.16 Moreover, a relationship 
between antioxidant defence system and salt tolerance was demon-
strated in cotton and sunflower calli lines grown under NaCl.17,18 
Gueta-Dahan and co-workers have also reported that salt tolerance 
acquisition in a citrus cell line was related with improved resistance 
to oxidative stress.19 Concordantly, the exogenous application of 
mannitol was shown to protect wheat plants from the harmful 
effects of salt-induced oxidative stress by enhancing the activity of 
antioxidant enzymes.20

The ability to compartmentalise salt into the vacuoles is an 
important step towards the maintenance of ion homeostasis inside 
the cell. The first plant tonoplast Na+/H+ antiporter, AtNHX1, 
was isolated from Arabidopsis21,22 and several studies have shown 
that the exposure to salt upregulates Na+/H+ antiport activity, 
suggesting a role of the exchanger in salt tolerance. The activity 
of this secondary transport system is driven by the proton-motive 
force generated by the vacuolar membrane H+-ATPase and 
H+-pyrophosphatase23 that also respond to salt levels through 
transcriptional and post-transcriptional regulation mechanisms. 
The direct stimulation of the vacuolar Na+/H+ antiport system 
may be coordinated with the increased activity of the vacuolar H+ 
pumps, which provide the driving force for the operation of the 
cation exchanger. Thus, the overexpression of H+-pyrophosphatase 
Avp1 was reported to confer salt tolerance on transgenic plants.24 
In the present paper, the role of the tonoplast Na+/H+ exchanger 
and proton pumps V-H+-ATPase and pyrophosphatase on plant 
response to high salinity are dissected in relation with their regula-
tion by Na+ and signalling pathways involved on salt sensing.

Two Proton Pumps Energize the Vacuolar Membrane

The vacuoles of plant cells are widely diverse in form, size, 
content, functional dynamics and play central roles in plant 
growth, development and stress responses.25,26 They have recog-
nized functions in protein turnover, pH and ion homeostasis, 
turgor pressure maintenance, sequestration of toxic compounds 
and pigmentation. The central vacuole, which can occupy more 
than 80% of the total plant cell volume, is separated from the 
surrounding cytosol by the tonoplast membrane that controls the 
passage of inorganic and organic solutes to and from the cytoplasm 
through a wide range of pumps, carriers, ion channels and recep-
tors,27,28 but these proteins are generally less well known than the 
corresponding plasma membrane proteins. Proteomic methodolo-
gies can provide important insights into the potential functions of 
these proteins.23,29

The electrogenic H+ pumps V-H+-ATPase and V-H+-PPase are 
major components of the vacuolar membrane of plant cells.23,26 
With the noticeable exception of lemon, where H+-PPase can be 
ruled out as the primary proton pump,30 all plant species from 
which vacuolar membranes were studied exhibit V-H+-PPase 
activity in addition to V-H+-ATPase activity. The V-H+-ATPase is 
universally present in the membranes of different internal acidic 
organelles in eukaryotic cells and has an intricate structure: a 
peripheral V1 sector which contains three copies of the A- and 
B-subunits, responsible for the catalytic activity, and the subunits 
C-H which form a central stalk linking the V1 to the hydro-

phobic membrane-embedded Vo sector. The Vo sector contains the 
a-subunit and six copies of the c-subunit, which forms a proton-
conducting channel. As in their F-type homologues, where ATP is 
regenerated by induced conformational changes due to a rotatory 
mechanism, parts of the V-H+-ATPases have been shown to rotate 
when ATP is supplied, suggesting a very similar enzymatic mecha-
nism for both proton pumps.26 In contrast to the V-H+-ATPase, 
the V-H+-PPase consists of a single polypeptide and exists as a 
dimmer of subunits of 71–80 kDa. It is distributed among most 
land plants, but only some algae, protozoa, bacteria and archaebac-
teria, and uses PPi as its energy source.31

In several plant models the V-H+-PPase seems to be able to 
generate and maintain across the vacuolar membrane a higher 
pH gradient than the V-H+-ATPase, at PPi concentrations in the 
micromolar range.32-35 Generally, V-H+-PPase activity is high in 
young tissues, whereas V-H+-ATPase activity is relatively constant 
during growth and maturation.26 In pear fruit the ratio of V-H+-
PPase activity to V-H+-ATPase activity indicated that V-H+-PPase 
is a major H+-pump of the vacuolar membranes of young fruit 
and that the contribution of V-H+-ATPase increases with fruit 
development, finally, V-H+-ATPase becomes the major H+-pump 
during the later stages of fruit development.32 In growing tissues 
and exponentially growing cultured cells, a large amount of PPi 
is produced as a by-product of several metabolic processes, such 
as DNA and RNA synthesis, sucrose and cellulose synthesis and 
more PPi is available to be used as a source of energy for active 
transport of protons into the vacuoles.26 Other studies have shown 
that activity of the vacuolar V-H+-PPase may allow the plant cell 
to conserve the free energy of PPi in a transmembrane pH gradient 
driving the synthesis of ATP.36

Regulation of V-H+-PPase and V-H+-ATPase Activity by 
Salt

The regulation of both V-H+-ATPase and V-H+-PPase activity 
by salt is well reported in the literature; however to date, no clear 
correlative pattern has been found for activation or deactivation 
of both proton pumps in response to salinity. Evidence for a 
decreased activity of V-H+-PPase with exposure to NaCl has been 
described several times,37-42 but it has been shown that the activity 
of V-H+-PPase increases in several plants grown within saline envi-
ronments.35,43-46 In salt adapted cell line of Solanum tuberosum, 
the activity of V-H+-PPase increased about threefold over cells 
cultivated in the absence of salt.35 In the halophyte Suaeda salsa 
only in the case of 0.1 M NaCl treatment was V-H+-PPase mark-
edly increased over the entire duration of the experiment, all other 
treatments only led to a small transient increase of V-H+-PPase 
activity or to a decrease of activity compared to controls; thus, 
under salt stress and osmotic stress conditions in S. salsa, V-H+-
PPase activity seems to be less important physiologically than 
V-H+-ATPase activity.47 As discussed by these authors, NaCl 
responses of the V-H+-PPase depend on plant species and type of 
treatment and cannot be generalized.

In same plants a clear correlation between the activity of 
V-H+-PPase and protein amount has been detected, suggesting 
that increased or decreased protein levels may be at least partly 
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seedlings subjected to NaCl treatment when western blot analysis 
of A- and B-subunits of V-H+-ATPase revealed that the protein 
content of the two subunits increased in parallel with the increase 
of proton transport and hydrolytic activities.41 Also, in plants of 
M. crystallinum L. two subunits of the V-H+-ATPase with Mr of 
about 27 and 31 kDa showed particularly high intensities only 
in the CAM state, induced by salt treatment or aging, when the 
total ATP hydrolytic activity of the tonoplast ATPase was higher. 
Therefore, the increase in ATPase activity was accompanied by 
de-novo synthesis of tonoplast proteins.38 In S. salsa the upregula-
tion of V-H+-ATPase activity is not obtained by structural changes 
of the enzyme, but also by an increase in protein amount.47

Other studies have shown that in some plants salt-mediated 
increase of the V-H+-ATPase activity is not mediated by the 
increase in protein expression, as in the halophytes M. crystal-
linum54 and S. bigelovii.46,52 In tobacco,50 the relative H+ transport 
capacity per unit of 69 kilodalton subunit of the tonoplast ATPase 
of vesicles isolated from NaCl adapted cells was fourfold greater 
than that observed for vesicles from unadapted cells. Such correla-
tion between enzyme activity and protein content was also found 
for the tonoplast V-H+-ATPase in potato cell lines when western 
blotting analysis revealed that the relative amount of A subunit of 
the V-H+-ATPase remained constant in NaCl-tolerant calli despite 
the observed increase in both hydrolytic and H+-pumping activity 
in the salt-tolerant cell line.35 Therefore, since the amount of the 
subunit A is likely to represent the protein level of V-H+-ATPase, 
and post-translational modifications such as phosphorylation/
dephosphorylation, the assembly of other subunits or the action 
of regulatory proteins might be involved. Phosphorylation and 
dephosphorylation of proteins is a common example of a post-
translational modification that has the potential to alter protein 
activity.57 It was shown that V-H+-ATPases are potential targets of 
WNK kinases and their associated signaling pathways.58 Recently, 
the Ser/Thr kinase SOS2 (see below) was implicated in the regula-
tion of V-H+-ATPase activity in Arabidopsis, coordinating changes 
in ion transport during salt stress.59 Proteolysis has also been show 
to regulate V-H+-ATPase. In wheat the proteolysis of subunit A of 
V-H+-ATPase was related to the observed decreased activity of the 
proton pump in response to salt stress.40

The ability to respond to salinity stress with changes in the gene 
expression of the vacuolar ATPase might be a prerequisite and a 
characteristic of salt tolerance in plants.60,61 It has been shown that 
the transcript levels of some subunits are upregulated in response 
to salt stress. In fully expanded leaves of M. crystallinum, 8 h after 
salt treatment, there was an increase in the transcript levels of 
subunit c mRNA but not of subunit A or B,62 which correlates 
well with the observed increase in activity of the V-H+-ATPase in 
vesicles from leaf mesophyll tissue from plants treated with salt,51 
whereas in roots and young leaves, mRNA levels for all the three 
subunits increased about 2-fold compared to control plants. The 
expression of vacuolar H+-ATPase genes does not always involve a 
fixed stoichiometry of mRNAs for the different subunits and the 
mRNA level for subunit c is particularly sensitive to developmental 
and environmental changes.62 Also, the emerging knowledge on 
subunit isogenes in some species including Arabidopsis illustrates 
another level of complexity, the regulation of isogene expression 
and function of subunit isoforms.61

responsible for the stimulation and repression of V-H+-PPase 
activity, respectively. This is the case of S. tuberosum where immu-
noblot analysis showed that increased amounts of V-H+-PPase 
protein are present in the tonoplast of NaCl-tolerant calli. A control 
step enhancing transcription or protein translation rates and/or 
diminishing the turnover of the protein is most likely involved in 
the S. tuberosum cells in response to salt.35 Similarly, an increased 
accumulation of the 68 kDa V-H+-PPase catalytic subunit in vacu-
olar membrane vesicles isolated from Salicornia bigelovii grown in 
200 mM NaCl was observed.46 In tonoplast vesicles from wheat 
(Triticum aestivum) roots exposed to severe NaCI stress (200 
mmol/L) for 3 days the strong reduction in V-H+-PPase substrate 
hydrolysis activity correlated with lower amounts of V-H+-PPase 
protein.40 However, the decreased proton transport and hydrolytic 
activities of V-H+-PPase in 3-day-old seedlings of Vigna unguicu-
lata treated with 100 mmol/L NaCl did not show any correlation 
with V-H+-PPase protein levels, suggesting that regulation of 
the activity was due to a partial enzyme inactivation.41 There is 
evidence that transcripts encoding V-H+-PPase are regulated by salt 
stress in maize and bean plants.48 The physiological significance 
and the regulation of the gene expression of V-H+-PPase has been 
reviewed by Maeshima.31

Although in some plants a reduced activity of V-H+-PPase 
has been observed in response to salt, it is well documented that 
increased salt accumulation in the vacuole is likely the result, at 
least in part, of more driving force for Na+/H+ exchange provided 
by and V-H+-PPase or V-H+-ATPase activity, or both. Thus, the 
overexpression of the vacuolar H+-PPase AVP1 in Arabidopsis 
thaliana resulted in plants exhibiting a higher salt tolerance, which 
was probably a consequence of an increased proton gradient across 
the tonoplast.24

A general sodium-induced increase in V-H+-ATPase activity in 
plant response to salt has been reported.35,37,38,41,42,44,45,47,49-56 In 
contrast, the activity of V-H+-ATPase in Daucus carrota was unaf-
fected by salt treatment43 and was even repressed in wheat roots 
under severe NaCl stress.40

In the halophyte S. salsa, the main strategy of salt-tolerance seems 
to be an upregulation of V-H+-ATPase.47 The hydrolytic and H+ 
pumping activity of the V-H+-ATPase in tonoplast vesicles derived 
from leaves increased two-fold in salt-treated leaves (200 mM 
NaCl) compared with the control leaves.56 In Mesembryanthemum 
crystallinum, where the tonoplast ATPase seems to be the main 
enzyme responsible for the energization of malate accumulation 
in Crassulacean acid metabolism (CAM),38 both V-H+-ATPase 
H+-transport and ATP hydrolytic activity were twofold higher in 
vesicles isolated from leaves of plants treated with 200 mM NaCl 
when compared with the activity measured in control plants.51 In 
Populus euphratica, studies showed that cell suspensions respond 
to salt stress by increasing both the V-H+-ATPase hydrolytic42,55 
and H+ pumping activities.55 V-H+-ATPase H+-pumping was also 
stimulated in NaCl-adapted cells of tobacco,50 in salt-stressed roots 
of barley,49 mung bean37 and sunflower,45 in cowpea seedlings 
subjected to NaCl,41 as well as in S. tuberosum calli adapted to 150 
mM NaCl.35

Several reports have shown that the activity of V-H+-ATPase 
varies in parallel with protein amount. This is the case of cowpea 
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in suspension-cultured cells subjected to 200 mM NaCl, a higher 
amount of Cl- was found in the vacuole than in the cytoplasm 
and cell wall.92 This may be due to an adaptation of salt-tolerant 
plants to NaCl stress, where a greater permeability of the tonoplast 
vesicles to Cl- can allow it to accumulate in the vacuole down its 
electrical gradient, dissipating an inside-positive membrane poten-
tial and thus stimulating the formation of a higher ΔpH through 
V-H+-ATPase and V-H+-PPase activity,93 which can be used in 
sodium (and other cations) detoxification and in an increase in 
osmotic pressure by means of the accumulation of sodium in the 
vacuole.22 Thus, it appears that this transporter protein could be 
the physiological counterpart to NHX for the accumulation of Cl-. 
As discussed by Martinoia and co-workers,26 it is not still clear if it 
works as a channel, as suggested by Nakamura and co-workers,90 
or as a Cl-/H+ antiporter.

Contrary to the notion that multiple traits introduced by 
breeding into crop plants are needed to obtain salt-tolerant plants, 
the overexpression of the vacuolar Na+/H+ antiport has shown 
to improve salinity tolerance in several plants. The first evidence 
showed that the overexpression of AtNHX1 in Arabidopsis plants 
promoted sustained growth and development in soil watered with 
up to 200 mM NaCl,21 although recent evidences report that 
transgenic Arabidopsis do not show a significantly improved salt 
tolerance above that of control plants.94 In addition, transgenic 
tomato plants overexpressing AtNHX1 were able to grow, flower 
and produce fruit in the presence of 200 mM NaCl, and sodium 
accumulated in leaves but not in the fruit.95 Also, transgenic B. 
napus plants overexpressing the same gene from Arabidopsis, were 
able to grow, flower and produce seeds in the presence of 200 mM 
NaCl,96 and transgenic tobacco plants overexpressing GhNHX1 
from cotton exhibited higher salt tolerance than the wild-type 
plants.77 The overexpression of the Na+/H+ antiporter gene clone 
from OsNHX1, improved the salt tolerance of transgenic rice cells 
and plants.73

The role of tonoplast Na+/H+ antiporter in plant salt tolerance 
has been reinforced by several evidences showing that exposure to salt 
promotes the increase of Na+/H+ antiport activity35,42,46,51,53,97,98 
(Fig. 3). Some reports show upregulation of NHX genes,22,56,72-

77,79,80,99 increased protein abundance56,74-76 or regulation at 
protein activity level.46,100 Garbarino and co-workers97,100 have 
shown that the inducible Na+/H+ antiporter activity observed in 
tonoplast from barley roots grown in the presence of NaCl was due 
to activation of an existing protein rather than to de novo protein 
synthesis, since the rapid induction was observed in the presence 
of inhibitors of protein synthesis. As shown below, there can be 
coordination of activity between the exchangers on the tonoplast 
and plasma membranes101 and the C-terminus of AtNHX1, which 
may face the vacuolar lumen,84 may have a key role in the regula-
tion of the protein activity by binding calmodulin.102 Moreover, 
in A. gmelini,74 B. vulgaris,75 B. napus76 and S. salsa,56 upregula-
tion of the tonoplast Na+/H+ antiport activity is due to increase of 
both transcription and translation. A crosstalk between osmotic 
stress and vacuole accumulation of Na+ has been demonstrated in 
Arabidopsis where osmotic stress activates the synthesis of abscisic 
acid (ABA), which upregulates the transcription of AtNHX1.99 

Moreover, other factors may account for the regulation of 
tonoplast transport proteins, such as changes in lipid-protein 
interactions, since alterations in membrane lipid composition 
and structure have been associated with salt stress,63,64 and 
ATPase activity could be regulated by changes in the membrane 
lipids.65,66

Regulation of Na+/H+ Antiport Activity by Salt

Vacuolar Na+/H+ antiporters have been investigated as the key 
to salt tolerance in plants.3 The antiporter mediates transport of 
Na+ into the vacuole. In 1985, Blumwald and Poole demonstrated 
the activity of the antiporter in tonoplast vesicles from red beet 
storage tissue67 and in 1991, Barkla and Blumwald identified a 
170-kDa protein associated with the vacuolar Na+/H+ antiport 
of Beta vulgaris.68 In yeast, the Na+/H+ antiporter Nhx1, which 
contributes to cellular Na+ homeostasis, was identified by Nass 
and co-worker.69 The exchanger was localized to the late endo-
some/prevacuolar compartment and it was proposed that it may 
be involved in Na+ transport, water movement and vesicle volume 
regulation,70 as well as in osmotolerance following sudden expo-
sure to hyperosmotic media.71 The first plant Na+/H+ antiporter, 
AtNHX1, was isolated from Arabidopsis by functional genetic 
complementation of a yeast mutant defective for endosomal Na+/
H+ activity,21,22 and its overexpression suppressed some of the salt-
sensitive phenotypes of the nhx1 yeast strain.22 Since then, several 
Na+/H+ antiporter genes have been characterized in plants such as 
rice,72,73 Atriplex gmelini,74 B. vulgaris,75 Brassica napus,76 cotton,77 
wheat78-80 and grapevine.81 Six AtNHX isoforms were found in 
Arabidopsis, and for five of them Na+/H+ transport activity has 
been demonstrated82,83 (Fig. 1). AtNHX1 and AtNHX2 are the 
most highly expressed members of this family, and corresponding 
transcripts are widely distributed, while AtNHX3 and AtNHX4 
transcripts are almost exclusively present in flowers and roots. 
Yamaguchi and co-workers reported that AtNHX1 comprises nine 
transmembrane domains, with the hydrophilic C-terminal domain 
facing the vacuolar lumen and the N terminus facing the cytosol. 
Three hydrophobic regions do not appear to span the tonoplast 
membrane, yet appear to be membrane associated.84 However, 
Sato and Sakaguchi85 place the C-terminal domain in the cyto-
plasm and confirm a structural analogy between AtNHX1 and 
the human NHE1, with both antiporters having 12 transmem-
brane domains and AtNHX1 lacking a N-terminal signal peptide 
(Fig. 2). These results agree well with the structure proposed for 
VvNHX1.86

Chloride channels have already been identified and cloned in 
plants87,88 and, in yeasts, mutants lacking the gene GEF1 encoding 
a chloride channel are more susceptible to cation toxicity.89 More 
recently two tonoplast Cl- transporter genes from rice, OsClC1 and 
OsClC2, were identified and functionally characterized in yeast.90 
The level of expression of OsClC1, but not of OsClC2, was increased 
by treatment with NaCl. In P. euphratica, an enhanced ability of 
the V-H+-PPase to create a H+ gradient in the presence of Cl- was 
demonstrated.42 In fact, results by Chen and co-workers showed 
that in salt stressed P. euphratica, young root cortical cells accumu-
lated Cl- in the vacuoles when compared with control plants,91 and 
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Figure 2. Topological model of the Arabidopsis Na+/H+ 
exchanger AtNHX1, showing 12 transmembrane domains, 
and with a hydrophobic, luminal N-terminal and a hydro-
philic, cytosolic C-terminal. The model was constructed and 
adapted according to the work of Sato and co-workers.85 
The darker transmembrane domains represent the predicted 
active site.84

Figure 1. Phylogenetic tree of Na+/H+ antiporters. Sequence analysis was performed online using Mobyle (http://mobyle.pasteur.fr/). A multiple 
sequence alignment of several antiporter protein sequences was generated using ClustalW and the neighbour-joining method was used to calculate 
evolutionary distances. The unrooted phylogenetic tree was constructed using the FigTree software package (FigTree 1.2.2, http://tree.bio.ed.ac.
uk/software/figtree/). Antiporter sequences from the following species were used in the construction of the tree: Atriplex dimorphostegia (AdNHX1, 
AY211397), Atriplex gmelini (AgNHX1, AB038492), Arabidopsis thaliana (AtNHX1, NM_122597; AtNHX2, NM_111375; AtNHX3, NM_124929; 
AtNHX4, NM_111512; AtNHX5, NM_104315; AtNHX6, NM_106609), Brassica napus (BnNHX1, AY189676), Chenopodium glaucum (CgNHX1, 
AY371319), Citrus reticulata (CrNHX1, AY607026), Gossypium hirsutum (GhNHX1,AF515632), Glycine max (GmNHX1, AY972078), Hordeum 
vulgare (HvNHX1, AB089197), Kalidium foliatum (KfNHX1, AY825250), Limonium gmelinii (LgNHX1, EU780457), Mesembryanthemum crystal-
linum (McNHX1, AM746985; McNHX2, AM748092), Medicago sativa (MsNHX1, AY456096), Oryza sativa (OsNHX1, AB021878), Populus 
euphratica (PeNHX2, EU382999), Petunia hybrida (PhNHX1, AB051817), Plantago maritima (PmNHX1, EU233808), Populus tomentosa (PtNHX1, 
AY660749), Rosa hybrida (RhNHX1, AB199912), Salicornia brachiata (SbNHX1, EU448383), Salicornia europaea (SeNHX1, AY131235), Suaeda 
japonica (SjNHX1, AB198178), Solanum lycopersicum (SlNHX1, AJ306630; SlNHX2, AJ306631), Suaeda salsa (SsNHX1, AY261806), Tetragonia 
tetragonioides (TtNHX1, AF527625), Thellungiella halophila (ThNHX1, FJ713100), Triticum aestivum (TaNHX1, AY461512), Vitis vinifera (VvNHX1, 
AY634283), Zea mays (ZmNHX1, NM_001111751). The shaded area represents halophytic species.
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by any of the many Na+-sensitive enzymes in the cytoplasm.107 In 
spite of the molecular identity of Na+ sensor(s) remaining elusive, 
the plasma-membrane Na+/H+ antiporter SOS1 (SALT OVERLY 
SENSITIVE1) is a possible candidate.108 The SOSl gene encodes a 

Overall, higher-than-normal levels of NHX tran-
scripts, protein and vacuolar Na+/H+ antiport 
activity, have been reported in several plants in 
response to salt supporting the key role of Na+/
H+ exchanger in plant salinity tolerance.

Na+ Sensing

To survive and develop normally, plants must 
constantly perceive changes in their environment 
and respond properly through a variety of molec-
ular mechanisms. One of the most important 
abiotic stresses for crop productivity concerns 
plant dehydration. Plants suffer from dehydra-
tion under high salinity and drought, as well as 
low-temperature conditions, all of which cause 
hyperosmotic stress characterized by a decreased 
turgor pressure and water loss. Dehydration 
triggers the biosynthesis of the abscisic acid 
(ABA) hormone and it has been known for a 
long time that a significant set of genes, induced 
by drought, salt and cold stresses, are also acti-
vated by ABA.103 The mechanisms involved in 
the sensing of osmotic and salt stress in plants 
remain poorly understood, and the majority of 
the available information comes from studies in 
microorganisms. In yeast, hyperosmotic stress is 
sensed by two types of osmosensors, SLN1 and 
SHO1, which feed finally into HOG (high-osmo-
larity glycerol) MAPK pathway.7 In Arabidopsis, 
the SLN1 homologue ATHKl functions as an 
osmosensor and transmits the stress signal to a 
downstream MAPK cascade. The introduction 
of the ATHK1 cDNA into the yeast double 
mutant, which lacks SLN1, suppressed lethality 
in high-salinity media and activated the high 
osmolarity glycerol response 1 (HOG1) mitogen-
activated protein kinase (MAPK).104 Also, the 
activity of the plant histidine kinase cytokinin 
response 1 (Cre1) is regulated by changes in 
turgor pressure, in a manner identical to that 
of Sln1, being a probable candidate for sensing 
osmotic stress in plants.105 The gene NtC7 from 
tobacco codes for a receptor-like protein func-
tioning in osmotic adjustment whose membrane 
location was confirmed in onion epidermis cells 
transiently expressing an NtC7-green fluorescent 
protein fusion protein. Its transcripts were found 
to accumulate rapidly and transiently within 1 
h upon treatments with not only wounding but 
also salt and osmotic stresses.106

The knowledge on how Na+ is sensed is still 
very limited in most cellular systems. Theoretically, Na+ can be 
sensed either before or after entering the cell, or both (Fig. 4). 
Extracellular Na+ may be sensed by a membrane receptor, whereas 
intracellular Na+ may be sensed either by membrane proteins or 

Figure 3. Dissipation of a PPi-dependent H+ gradient upon addition of 200 mM and 400 
mM NaCl (final concentrations) to tonoplast vesicles isolated from P. euphratica suspension-
cultured cells grown in the absence of salt (A) and in the presence of 150 mM NaCl (B). 
Inserts: Confocal imaging of Na+ accumulation in P. euphratica suspension cells stained with 
Sodium Green (Adapted from Silva et al.42 with kind permission from Springer).

Figure 4. Signalling pathways responsible for sodium extrusion in Arabidopsis under salt 
stress. Excess Na+ and high osmolarity are separately perceived by yet unidentified sensors 
at the plasma membrane level, which then induce an increase in cytosolic Ca2+ concentra-
tion. This increase is then sensed by SOS3 which activates SOS2. The activated SOS3-SOS2 
protein complex phosphorylates SOS1, the plasma membrane Na+/H+ antiporter, resulting 
in the efflux of Na+ ions.107 SOS2 has also been shown to regulate NHX1 antiport activ-
ity101 and V-H+-ATPase activity59 in a SOS3-independent manner, possibly by SOS3-like 
Ca2+-binding proteins (SCaBP) that target it to the tonoplast. Salt stress can also induce the 
accumulation of ABA, which, by means of ABI1 and ABI2, can negatively regulate SOS2 or 
SOS1 and NHX1.115
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Conclusion

Planet Earth is a highly saline environment, with a salt content 
of about 30 g of sodium chloride per liter of water.5 Furthermore, 
around 20% of all irrigated land is adversely affected by salinity,116 
and thus the comprehension of plant defense mechanisms against 
salt stress has important implications in plant productivity. Many 
scientific advances have been achieved in understanding physi-
ological, biochemical and molecular aspects of salt stress resistance, 
like the identification of key genes such as those encoding the 
plasma membrane SOS1 and the vacuolar NHX1 antiporters, 
and the recent progresses in the elucidation of the SOS signal-
ling pathway.117 Some of this knowledge has led to the successful 
improvement of plant salt tolerance through manipulation of one 
of those genes alone, such as the overexpression of OsNHX1 in 
rice73 and AtNHX1 in tomato,95 in spite of salt stress resistance 
being considered a multigenic trait. As stated by Flowers,5 “trans-
genic technology will undoubtedly continue to aid the search for 
the cellular mechanisms that underlie tolerance, but the complexity 
of the trait is likely to mean that the road to engineering such toler-
ance into sensitive species will be long” and “experience suggests 
authors should avoid hyperbole in their titles and summaries, 
as this does little service to the long-term aim of improving the 
salt tolerance of crops in the field.” This is a fascinating area of 
research that is still wide open. The elucidation of signalling path-
ways responsible for responses to salt, drought and other abiotic 
stresses, and the cross-talk between these different pathways could 
allow the treatment of plants with exogenous compounds—such as 
mannitol20 and other osmoprotectants and antioxidants—without 
recurring to genetic manipulation, avoiding the introduction in 
Nature of genetic engineered plants.
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