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ABSTRACT How colloidal particles interact with each
other is one of the key issues that determines our ability to
interpret experimental results for phase transitions in colloi-
dal dispersions and our ability to apply colloid science to
various industrial processes. The long-accepted theories for
answering this question have been challenged by results from
recent experiments. Herein we show from Monte-Carlo sim-
ulations that there is a short-range attractive force between
identical macroions in electrolyte solutions containing diva-
lent counterions. Complementing some recent and related
results by others, we present strong evidence of attraction
between a pair of spherical macroions in the presence of added
salt ions for the conditions where the interacting macroion
pair is not affected by any other macroions that may be in the
solution. This attractive force follows from the internal-energy
contribution of counterion mediation. Contrary to conven-
tional expectations, for charged macroions in an electrolyte
solution, the entropic force is repulsive at most solution
conditions because of localization of small ions in the vicinity
of macroions. Both Derjaguin–Landau–Verwey–Overbeek the-
ory and Sogami–Ise theory fail to describe the attractive
interactions found in our simulations; the former predicts
only repulsive interaction and the latter predicts a long-range
attraction that is too weak and occurs at macroion separations
that are too large. Our simulations provide fundamental
‘‘data’’ toward an improved theory for the potential of mean
force as required for optimum design of new materials in-
cluding those containing nanoparticles.

The potential of mean force between colloidal particles in
electrolyte solutions plays a central role in describing the phase
behavior and the kinetics of agglomeration in colloidal dis-
persions (1, 2). It is of fundamental importance for under-
standing the properties of inorganic materials (e.g., ceramics
composed of nanoparticles), foods such as milk, and solutions
of biomacromolecules including globular proteins (3–5). After
decades of theoretical and experimental efforts, some aspects
of colloidal interactions remain puzzling, in particular the issue
of attractive electrostatic forces between like-charged colloidal
particles in an electrolyte solution. Experimental evidence for
such attraction has been indirect and largely complicated by
boundary or polydispersity effects (6–8). Classical theories are
not satisfactory because they are based on the mean-field
approximation that neglects the effects of excluded volume
and Coulombic correlations among small ions. Depending on
simplifying assumptions, these theories have led to qualita-
tively different results. For example, theories based on the
Derjaguin–Landau–Verwey–Overbeek (DLVO) approxima-
tion describe the electrostatic interaction between macroions
of the same charge as screened repulsion (9–10, 12, 13), and
others, represented by Sogami–Ise (SI) theory, predict a

universal long-range attractive interaction (11, 14). Likewise,
the possibility of an electrostatic attraction is envisaged in
various integral-equation theories based on the Ornstein–
Zernike equation (15–18). With a notable exception of the
inhomogeneous hypernetted chain theory for the planar ge-
ometry (19), however, the results from integral-equation the-
ories are not conclusive because they become less accurate
when the colloidal suspension has a high chargeysize asym-
metry (20, 21).

Simulations for attractions between like-charged plates or
cylinders have been reported (22–27) but, to our best
knowledge, simulations for interactions between two iso-
lated spherical macroions in electrolyte solutions, as re-
ported herein, are new. The geometric shape may have a
major effect on interaction between like-charged colloids;
e.g., although the interaction between two like-charged
plates is always more repulsive as the sizes of small ions
separating them increase, that conclusion is not necessarily
correct for interaction between two spherical colloids be-
cause of size-exclusion effects. On the other hand, at finite
macroion concentrations, the pair correlation function of
like-charged macroions may show attractions (28–30). How-
ever, this attraction is partly due to correlation among many
macroions, and that is very different from the pair interac-
tion between two isolated macroions in a salt solution. In
addition, when standard methods are used, the average
hard-sphere force between isolated macroions is much
harder to calculate than that for two walls. Only very recently
(after our work was completed), we noticed that Allahyarov
et al. (31) reported attractive interactions between two
isolated like-charged macroions. But they investigated inter-
actions between macroions surrounded only by their coun-
terions, and they did not consider conditions where attractive
forces occur in aqueous colloids. Our calculation techniques
are different from those used by Allahyarov et al. (31).
Further, we direct attention at interaction between macro-
ions in the presence of co-ions as well as counterions in an
aqueous medium.

Simulation Method. Our Monte-Carlo simulations were
carried out by using the NVT ensemble (constant number of
particles, volume and temperature) in the framework of Mc-
Millan–Mayer theory, i.e., the solvent is represented by a
continuous dielectric medium. We use a cubic simulation box
containing two identical macroions fixed at various separations
and simple ions of symmetric or asymmetric electrolytes. Only
hard-sphere repulsion and Coulombic interactions were con-
sidered; the total energy is calculated by using the Ewald-sum
method (32). Because the cubic-box length (100 Å) is much
larger than the Debye screening length ('5 Å), macroions
from different simulation boxes are assumed to be uncorre-
lated.
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The force between macroions includes two contributions:
the electrostatic interaction, and the hard-sphere or collision
term.† The electrostatic force can be calculated directly;
however, because the hard-sphere interaction is discontinuous,
direct sampling of average force is not straightforward. Con-
sidering the derivative of the configurational integral with
respect to macroion separation, the average hard-sphere force
^Fhs(r12)& can be related to the average number of collisions,
^Nc&, due to a small macroion displacement Dr12:

^Fhs~r12!& 5 lim
Dr1230

kTFS ^Nc&

uDr12uD
Dr12,0

2 S ^Nc&

Dr12
D

Dr12.0
G , [1]

where r12 denotes separation between two macroions 1 and 2;
k is Boltzmann’s constant, and T is the absolute temperature.
The two terms on the right side of Eq. 1 correspond to two
opposite directions of displacements. By using trial displace-
ments, Dr12, about two orders of magnitude smaller than the
macroion size, Eq. 1 provides good statistics for sampling
interionic forces. We obtained excellent agreement with
known results for ordinary electrolytes. Very long runs, typi-
cally of the order of 100 millions configurations for each
macroion separation, were required to obtain good statistical
accuracy (within 2–3%). This requirement follows from the
fact that we sample the force between a single pair of macro-
ions, unlike the procedure used in previous simulations for
systems with many macroions (28, 29).

At 25°C, we investigated interactions between identical
negatively charged macroions (the diameter of macroions sM
5 20 Å and the charge zM 5 220) in 1:1, 1:2, 2:1, and 2:2
electrolyte solutions at various small-ion concentrations (the
diameters of all small ions are 4 Å). We find that negatively
charged macroions attract each other in the presence of
divalent counterions (i.e., in 2:1 and 2:2 electrolytes). Fig. 1
shows the collision and electrostatic contributions and the
total force between macroions in a 2:2 electrolyte solution.

Similar results apply to a solution of negatively charged
macroions with a 2:1 electrolyte, indicating only a small effect
of the valence of the co-ion. The collision force is purely
repulsive even when the two macroions are in contact. The
electrostatic force is also repulsive at small macroion separa-
tions but it declines quickly as the separation increases and
passes through a negative minimum at about 1.2 macroion
diameters, corresponding to a separation sufficient to accom-
modate a monolayer of counterions. The strength of the
electrostatic force becomes insignificant at about 1.5 macroion
diameters. When the counterions are monovalent (i.e., in 1:1
and 1:2-electrolyte solutions), the total force and its hard-
sphere and electrostatic contributions are everywhere repul-
sive and approach zero at separations beyond about twice the
Debye-screening length.

DISCUSSION

The potential of mean force between macroions is obtained by
integrating the force as a function of separation (33). Fig. 2
shows the potential of mean force between the two macroions
in 1:1 and 2:2 electrolyte solutions. For comparison, we include
predictions of DLVO and SI theories. In DLVO theory, based
on a linearized Poisson–Boltzmann equation, the electrostatic
interaction between two macroions in an electrolyte solution
is given by (9, 10)

WDLVO~r!
kT

5
zM

2 lB

r
exp[2k~r 2 sM!]

~1 1 ksMy2!2 , [2]

†In systems containing many macroions, the potential of mean force
between macroions is easily calculated from the pair distribution
function. With only two macroions, however, this approach becomes
inefficient. A direct sampling of macroion–macroion force is, there-
fore, carried out herein.

FIG. 1. Average force (F) between identical macroions in a 2:2
electrolyte solution. The charge number and diameter of macroions
are 220 and 20 Å, respectively. Counterions and co-ions have the same
size, 4 Å. The electrolyte concentration is 0.125 M. r12 denotes
center-to-center separation between macroions, sM is macroion di-
ameter, and lB is the Bjerrum length. Lines are to guide the eye.

FIG. 2. Comparison between analytic theories and Monte-Carlo
simulations for the dimensionless potential of mean force between
macroions W(r)ykT. (A) In 1:1 electrolyte solution. The diameter of
small ions is 4 Å and the electrolyte concentration is 0.5 M. (B) In 2:2
electrolyte solution with the same ionic strength and small-ion diam-
eter. The charge number and diameter of macroions are 220 and 20
Å, respectively.
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where zM and sM are charge number and diameter of the

macroions, respectively. lB 5
e2

4p«0«kT
is the Bjerrum length,

where e is the electron charge, «0 is the free space permitivity,
and « is the dielectric constant. Namely, lB is the separation of
two unit charges where the electrostatic energy equals the
thermal energy kT. k is the Debye-screening parameter de-
pending on small-ion concentrations ri and valence zi

k2 5 4plBO
i

ri zi
2. [3]

The summation in Eq. 3 includes counterions of the macroions
and all added small ions of electrolyte. The Debye-screening
length is k21.

SI theory is also based on a linearized Poisson–Boltzmann
equation. However, because it uses Gibbs energy (instead of
Helmholtz energy) for interaction between two macroions, it
includes an additional (attractive) term due to the volume
change of the system associated with the various distances
between the macroions. The SI potential for interaction be-
tween two identical macroions in an electrolyte solution is
given by ref. 11.

WSI~r!
kT

5 zM
2 lBF sinh~ka!

ka G 2F1 1 ka coth~ka!

r
2

k

2Gexp(2kr),

[4]

where a 5 sMy2. Eq. 4 predicts a universal attractive inter-
action at large macroion separations. Contrary to our Monte-
Carlo simulation results, neither DLVO nor SI theory distin-
guishes between divalent and monovalent electrolytes at iden-
tical ionic strength because the only parameter depending on
small ions is the Debye-screening parameter k.

Fig. 2a shows that DLVO theory agrees approximately with
simulation results for the potential of mean force between
macroions in a 1:1 electrolyte solution except at small sepa-
rations. We find that DLVO theory also provides a good
approximation for negatively charged macroions in a 1:2
electrolyte solution that contains only monovalent counteri-
ons. This good agreement is partly due to cancellation of errors
in DLVO theory that ignores two opposing effects: finite ion
size and correlated fluctuations in ion distributions. Our
results also show that SI theory significantly underestimates

repulsive interaction between macroions over all distances in
both 1:1 and 1:2 electrolyte solutions. A weak long-range
attraction predicted by SI theory is inconsistent with our
results for monovalent electrolyte solutions.

Fig. 2b shows the potential of mean force between macro-
ions in a 2:2 electrolyte solution where the ionic strength is the
same as that of the 1:1 electrolyte solution. Both DLVO and
SI theories fail to reproduce the attractive well observed at
intermediate macroion separations. Although SI theory pre-
dicts an attractive interaction between macroions of like
charge, this predicted attractive potential is nearly one order
of magnitude weaker and appears at much larger separations.

We find that the attractive interaction between like-charged
macroions is caused by preferable internal energy (in the
primitive model) at small macroion separations. Fig. 3 shows
DE(r) in 1:1 and 2:2 electrolyte solutions. In this example,
DE(r) 5 E(r) 2 E(`) is defined as the total internal energy of
the system when the two macroions are separated by distance
r relative to that of the system when the macroions are

FIG. 3. Total dimensionless internal energy, DE(r)ykT as a function
of the macroion separation in 1:1 and 2:2 electrolyte solutions at the
same ionic strength (0.5 M). All small ions have the same diameter (4
Å). The charge number and diameter of macroions are 220 and 20 Å,
respectively. Lines are to guide the eye.

FIG. 4. Distribution of divalent cations around two isolated neg-
atively charged macroions (a) and around two neutral hard spheres
that have the same size as that of the macroions (b). In this example,
the charge number of macroions is 220 and the anions are monova-
lent. The diameters of the small ions and the macroions are 4 Å and
20 Å, respectively. The electrolyte concentration is 0.125 M. g(r) stands
for the distribution function of cations in the vicinity of two macroions
(or neutral hard spheres). The x–y plane contains the symmetry axis.
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infinitely apart. Fig. 3 indicates that even for macroions in the
monovalent electrolyte, DE(r) has a pronounced minimum
located at about 1.2 macroion diameters. This distance corre-
sponds to the separation where only a single counterion can be
simultaneously in contact with both macroions. The total
energy at very small separations is higher than that at large
separations because the screening counterions are squeezed
out from the intervening region between the macroions. The
internal-energy profile in the divalent electrolyte solution is
notably different from that in the monovalent electrolyte
solution. The energy minimum is much deeper and occurs at
a slightly smaller distance than that in the monovalent elec-
trolyte solution. Unlike in the 1:1 electrolyte solution, the
contact energy of the two macroions is significantly lower than
that when they are far apart. Our simulations show that
divalent counterions persist in the proximity of the macroions
despite the restrictions imposed by the excluded-volume effect.

From the potential of mean force (Fig. 2) and from the total
energy (Fig. 3), we find that the entropic force between
macroions is entirely repulsive. It has been known for many
years that in a solution of big and small spheres, there exists an
entropically driven attraction between big particles (34) [a
recent overview is given by Kestenbaum (35)]. However, this
result for hard uncharged spheres is not applicable to a solution
of macroions and electrolyte. The difference in behavior of
uncharged and charged hard spheres becomes apparent when
we compare the distribution of small particles in a system
containing neutral macroparticles with a system containing
macroions. Fig. 4 a and b shows, respectively, three-
dimensional distributions of divalent counterions when the
macroions are close to each other and when the macroions are
replaced by two neutral hard spheres of the same size. The two
peaks of counterion distribution make the overall pressure in
the region between macroions higher than that outside, leading
to a repulsive interaction. On the other hand, even though
small ions distribute almost evenly around large neutral hard
spheres, the absence of small ions between large neutral
spheres when they are close to each other causes a net
attractive force. The entropy loss due to the accumulation of
small ions is much smaller in divalent counterion solutions
than that in monovalent counterion solutions because to
neutralize the charges of macroions, the number of divalent
counterions is only one half of that needed with monovalent
counterions. As a result, the entropic repulsive force is much
weaker in divalent counterion solutions. Therefore, an attrac-
tive potential of mean force occurs in solutions containing
divalent counterions but not in solutions containing monova-
lent counterions.

The interaction between macroions in electrolyte solutions
is due to complicated many-body effects. Our simulation
results demonstrate that any theory using only the Debye-
screening parameter is insufficient to describe colloidal inter-
actions. To describe the attraction force successfully, we need
to consider correlations among ion density fluctuations and
finite size effects of small ions. The double-layer interaction
between two parallel charged walls has been successfully
described by an anisotropic hypernetted-chain equation (19,
36) and by a nonlocal density functional theory (25). Varia-
tions of these theories appear promising for deriving a suc-
cessful theory for interactions in colloidal dispersions as
required for optimum design of new materials including those
containing nanoparticles.

We are grateful to the supercomputing centers: National Partner-
ship for Advanced Computational Infrastructure (NPACI) at San
Diego and National Energy Research Scientific Computing Center
(NERSC) at Lawrence Berkeley National Laboratory (LBNL) for
generous allocations of computing time. This work was supported by
the Director, Office of Energy Research, Office of Basic Sciences,
Chemical Sciences Division of the U.S. Department of Energy.

1. Murray, G. A. & Grier, D. (1995) Am. Sci. 83, 238–245.
2. Poon, W., Pusey, P. & Lekkerkerker, H. (1996) Physics World,

April, pp. 27–32.
3. Asherie, N., Lomakin, A. & Benedek, G. (1996) Phys. Rev. Lett.

77, 4832–4835.
4. Everett, D. H. (1988) Basic Principles of Colloidal Science (Royal

Society of Chemistry, London).
5. Siegel, R. W. (1996) Sci. Am., December, pp. 74–79 .
6. Ise, N. (1996) Phys. Chem. Chem. Phys. 100, 841–848.
7. Kepler, G. M. & Fraden, S. A. (1994) Phys. Rev. Lett. 73, 356–358.
8. Larsen, A. E. & Grier, D. G. (1997) Nature (London) 385,

230–233.
9. Derjaguin, B. V. & Landau, L. (1941) Acta Physicochim. (USSR)

14, 633–662.
10. Verwey, E. J. & Overbeek, J. Th. G. (1948) Theory of the Stability

of Lyophobic Colloids (Elsevier, Amsterdam).
11. Sogami, I. & Ise, N. (1984) J. Chem. Phys. 81, 6320–60332.
12. Overbeek, J. T. G. (1987) J. Chem. Phys. 87, 4406–4408.
13. van Roij, R. & Hansen, J. P. (1997) Phys. Rev. Lett. 79, 3082–3085.
14. Smalley, M. V. (1996) in Ordering and Phase Transition in Charged

Colloids, eds. Arora, A. K. & Tata, B. V. R. (VCH, New York),
Chapter 12, pp. 315–337.

15. Patey, G. N. (1996) Phys. Chem. Chem. Phys. 100, 885–888.
16. Chu, X. L. & Wasan, D. T. (1996) J. Colloid Interface Sci. 184,

268–278.
17. Belloni, L., Spalla, O. (1996) Phys. Chem. Chem. Phys. 100,

905–908.
18. Rescic, J., Vlachy, V. & Haymet, A. D. J. (1990) J. Am. Chem.

Soc. 112, 3398–3401.
19. Kjellander, R., Marcelja, S. (1984) Chem. Phys. Lett. 112, 49–53.
20. Belloni, L. (1985) Chem. Phys. 99, 43–54.
21. Bratko, D., Friedman, H. L. & Zhong, E. C. (1986) J. Chem. Phys.

85, 377–384.
22. Guldbrand, L., Jonsson, B., Wennerstrom, H. & Linse, P. (1984)

J. Chem. Phys. 80, 2221–2228.
23. Bratko, D., Jonsson, B. & Wennerstrom, H. (1986) Chem. Phys.

Lett. 128, 449–454.
24. Valleau, J. P., Ivkov, R. & Torrie, G. M. (1991) J. Chem. Phys.

95(1), 520–532.
25. Tang, Z., Scriven, L. E. & Davis, H. T. (1982) J. Chem. Phys. 97,

9258–9266.
26. Gronbech-Jensen, N., Mashl, R. J., Bruinsma, R. F., Gelbart,

W. M. (1997) Phys. Rev. Lett. 78, 2477–2480.
27. Ha, B. Y. & Liu, A. J. (1997) Phys. Rev. Lett. 79, 1289–1292.
28. Hribar, B., Vlachy, V. (1997) J. Phys. Chem. B 101, 3457–3459.
29. Lobaskin, V. & Linse, P. (1998) J. Chem. Phys. 109, 3530–3541.
30. Gronbech-Jensen, N., Beardmore, K. M. & Pincus, P. (1998)

Physica A, in press.
31. Allahyarov, E., D’Amico, I. & Owen, H. L. (1998) Phys. Rev. Lett.

81, 1334–1337.
32. Frenkel, D. & Smit, B. (1996) Understanding Molecular Simula-

tion (Academic, New York).
33. Bader, J. S. & Chandler, D. (1992) J. Chem. Phys. 96, 6423–6427.
34. Henderson, D. (1988) J. Colloid Interface Sci. 121, 486–490.
35. Kestenbaum, D. (1998) Science 279, 1849.
36. Jönsson, B., Åkesson, T. & Woodward, C. E. (1996) in Ordering

and Phase Transition in Charged Colloids, eds. Arora, A. K. &
Tata, B. V. R. (VCH, New York), Chapter 11, pp. 295–313.

15172 Chemistry: Wu et al. Proc. Natl. Acad. Sci. USA 95 (1998)


