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Abstract
Background—Maternal obesity represents a risk factor for pregnancy-related complications.
Glucocorticoids are known to promote obesity in adults.

Methods—We evaluated maternal and fetal metabolic changes during and after three weekly
courses of betamethasone (BM) administered to pregnant baboons (Papio spp.) at doses equivalent
to those given to pregnant women.

Results—BM administration during the second half of pregnancy increased maternal weight, but
neither maternal food intake nor fetal weight, as assessed at the end of gestation. BM increased
maternal serum glucose concentration, IGF-I:IGFBP-3 ratio, and serum leptin during treatment
(normalized by 17, 35, and 45 days post-treatment respectively for each parameter). Maternal and
fetal serum leptin concentrations did not differ between groups at the end of gestation.

Correspondence and reprint requests: Natalia E. Schlabritz-Loutsevitch, M.D., Ph.D., University of Texas Health Science Center at San
Antonio, 7703 Floyd Curl Dr., San Antonio TX 78245-0549 USA, Telephone: 210-258-95055; Fax: 210-670-3323.

NIH Public Access
Author Manuscript
Reprod Sci. Author manuscript; available in PMC 2010 March 1.

Published in final edited form as:
Reprod Sci. 2009 March ; 16(3): 308–319. doi:10.1177/1933719108325755.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Conclusion—Prolonged maternal hyperleptinemia caused by BM administration in the second half
of gestation did not change fetal metabolic parameters measured and placental leptin distribution at
the end of gestation.

Keywords
glucocorticoid; insulin-like growth factor; IGF binding protein; leptin; baboon; pregnancy

Introduction
Leptin, insulin-like growth factors (IGF-I and IGF-II), and glucocorticoids are important
regulators of appetite, metabolism, growth, development, and energy balance in humans.1,2
Several rodent and human studies confirm that IGFs and leptin act as important placental and
fetal growth factors.3-5 Glucocorticoids exert essential actions on critical metabolic processes
and elevated circulating glucorticoid levels due to stress, pathological conditions, or exogenous
administration alter homeostasis and induce obesity, hypertension, and diabetes.6

Each year, 7-10% of pregnant women living in Europe and North America receive synthetic
glucocorticoids to promote lung maturation if the fetus is at risk of pre-term delivery.7
Widespread maternal and fetal metabolic responses to antenatal corticosteroid therapy have
been described,8,9 but the mechanisms underlying these effects remain unclear. Information
on the effect of administration of clinically relevant doses of glucocorticoids to women during
pregnancy on leptin and the IGF axis is limited.10,11 Human studies on the effects of
glucocorticoids administered during pregnancy have focused on fetal cord blood leptin levels,
which are increased in premature babies whose mothers receive glucocorticoids.11

Glucocorticoid regulation of maternal and fetal hormonal parameters and metabolism is well
described in ruminants and rodents.12,13 In the rat, for example, dexamethasone administration
causes both maternal and fetal hyperleptinemia.14 However, since placental function and
structure in ruminants and rodents differ significantly from humans, especially with respect to
leptin and IGF metabolism,15-17 studies of leptin and IGF physiology in a non-human primate
model of pregnancy are needed.

We evaluated the effect of maternal glucocorticoid (betamethasone) administration during the
second half of gestation on maternal and fetal metabolic status, as evaluated by maternal weight
gain and appetite, fetal and placental weight, maternal and fetal biochemistry (glucose,
cholesterol), and endocrinology (circulating IGF-I and -II, IGFBP-3, GH, leptin) during
(maternal) and after (fetal and maternal) treatment of the mother. We based our betamethasone
administration on National Institute of Child Health and Human Development
recommendations for prevention of neonatal complications associated with prematurity,8,18
the timing of treatment corresponds to human second trimester pregnancy at 24, 26 and 27
weeks of gestation.

Given the observed in vitro and in vivo effects of glucocorticoids on leptin and IGF physiology
in humans, rats, and ruminants, we hypothesized that exposure to glucocorticoids at doses
equivalent to those administrated clinically to pregnant women would increase maternal and
fetal serum levels of leptin and IGFs during treatment in this important experimental model.

Material and Methods
Experimental animals

Pregnant baboons (Papio cynocephalus, n = 31) 10-15 years of age from the colony maintained
at the Southwest National Primate Research Center (SNPRC), Southwest Foundation for
Biomedical Research (SFBR, San Antonio, TX, USA) were studied. Baboons were housed in
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outdoor metal and concrete gang cages, each containing 10-16 females and 1 breeding male.
Animals were fed Purina Monkey Diet 5038 (Purina, St. Louis, MO) and water ad libitum. All
animal procedures were performed in accordance with accepted standards of humane animal
care, approved by the SFBR Institutional Animal Care and Use Committee (IACUC), and
conducted in AAALAC, Inc. approved facilities. Animals were observed three times per week
for evaluation of perineal skin swelling. Gestational age was calculated, using estimated day
of conception (the time of last maximal perineal skin swelling minus 2 days).

Study design and maternal blood sampling
Normal baboon gestation lasts 180 days. At 90 days of gestation (dG) (0.5 gestation, 0.5 G),
pregnant baboons maintained in group caging were weighed, underwent a detailed ultrasound
examination, and placed in individual indoor cages. Baboons were observed twice each day,
and their health status was continuously monitored and recorded. All animals received 25
standard biscuits twice daily. The number of biscuits eaten by each individual was recorded at
the end of the day. Baboons were randomized to receive saline (control group, control; n = 14)
or betamethasone phosphate (Celestan Solubile, Essex Pharma, Munich, Germany) (BM,
betamethasone group; n = 17) in doses of 175 μg·kg-1·day-1 – a weight-adjusted dose equivalent
to 12 mg administered to a 70 kg woman. Treatments were administered intramuscularly once
daily at 0800 hours at 111, 112, 118, 119, 125, and 126 dG (equivalent of 24, 26 and 27 weeks
of human pregnancy). Femoral vein blood samples were obtained from non-pregnant and
pregnant baboons, following tranquilization with ketamine hydrochloride (Ketaset, Fort
Dodge, IA), 10 mg/kg administered intramuscularly. Fasting blood samples were drawn from
the femoral vein under sterile conditions directly into a 4-mL Vacutainer tube without additives
(Becton Dickinson, Franklin Lakes, NJ, USA). Serum samples and animal weights were
obtained at 0800 hours the day after completing each course of betamethasone or saline
injections (on 113, 120, and 127 dG) and at 144 ± 2 (mean ± range), 162 ± 2 (mean ± range)
and 175 ± 5 dG (mean ± range). The final sample was taken at the time of cesarean section.

Cesarean section, fetal blood sampling, fetal and maternal morphometry
Pregnant baboons were weighed 30 minutes before Cesarean section. Cesarean sections were
performed at 174.3 ± 0.62 dG (mean ± SE) in control animals and at 174.1 ± 0.67 dG in BM-
treated baboons.

All baboons were given ketamine (10 mg/kg intramuscularly) as described above and
ampicillin (0.25 mg/kg) was administered as an intravenous infusion (lactated Ringer's
solution, 250 mL/procedure). After intubation, isoflurane (2%, 2 L/min) was used to maintain
a surgical plane of anesthesia throughout surgery and fetal blood sampling. Umbilical vein
blood sampling was performed without exteriorizing the fetus from the uterine cavity. While
still under anesthesia, the fetus was delivered and euthanized by an intracardiac injection of
7.8 mg pentobarbital sodium (Euthasol; Delmarva Laboratories, Inc. Midlothian, VA, USA).
The placenta was removed from the uterus and immediately submitted, together with fetus, for
complete pathologic evaluation and sampling. The uterus and abdominal wall were closed in
layers.19

Post-operative analgesia was provided with buprenorphine hydrochloride, 0.015
mg·kg-1·day-1 for 3 post-operative days (IM, twice daily), (Buprenex Injectable, Reckitt
Benckiser Health Care Ltd., Hull, UK). Ampicillin (25 mg/kg IM, twice daily) was
administered for 7 days. Post-surgical management has been previously described in detail.19

Two of 14 control baboons and three of 17 BM-treated baboons delivered spontaneously 2 to
24 hours before scheduled cesarean section. One spontaneously delivered fetus from the BM-
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treated group was stillborn due to trauma during delivery. Maternal and fetal data from this
pair were not included in the data analysis.

Glucose and cholesterol
Glucose and cholesterol were measured in fasting serum using a Beckman Synchron CX5CE
(Beckman Coulter, Inc., Fullerton, CA).20

Leptin measurement in serum, amniotic fluid, and umbilical cord blood
Leptin radioimmunoassay (LINCO Research, Inc., St. Charles, MO) was performed according
to the manufacturer's instructions. The intra-assay coefficient of variation (CV) was 3.0% at a
leptin concentration of 4.9 ng/mL.

IGF-II measurement in serum, amniotic fluid, and umbilical cord blood
Total IGF-II concentrations in fetal and maternal serum, and amniotic fluid in samples taken
at cesarean section were quantified by enzyme-linked immunosorbent assay (Diagnostic
Systems Laboratories, Inc, Webster, TX, USA). Samples were measured in duplicate. Intra-
assay CV was 7%, with an inter-assay CV of 8% at IGF-II concentration of 300 ng/mL.

IGF-I, IGFBP-3, growth hormone (GH), and cortisol measurements
IGF-I, IGFBP-3, GH, and cortisol were measured using an Immulite 1000 analyzer using test
kits from Diagnostic Products Corporation (Los Angeles, CA). Pooled maternal serum was
first tested to validate the performance of this system for baboon samples. Assay precision was
determined by testing the pooled samples using five replicates in each of two assays. These
assays were repeated at two dilutions to assess linearity of the results. All test samples were
run at dilutions estimated to achieve values in the middle of the assay's calibration range. Intra-/
inter-assay CV for cortisol, GH, IGF-I, and IGFBP-3 were 5.6/8.4, 3.4/7.0, 2.9/5.9, and 2.4/3.5,
respectively. The correlation coefficients (r values) for dilutions for cortisol, GH, IGF-I, and
IGFBP-3 were 0.90, 0.98, 0.98, and 0.93, respectively, for recovery with known standards.

Immunohistochemistry for leptin and long isoform of leptin receptor (Ob-R)
Tissues were immersion-fixed for 24 h in 4% buffered paraformaldehyde, embedded in
paraffin, sectioned at 5 μm, deparaffinized in xylene, rehydrated in descending grades of
alcohol (100%, 95%, 70%, and 50%) to water, immersed in citrate buffer (0.01 M citrate buffer,
pH 6.0) and heated to boiling for 15 min. After cooling for 15 min, the sections were rinsed in
potassium phosphate-buffered saline (KPBS containing 0.04 M K2HPO4, 0.01 M KH2PO4,
0.154 M NaCl, pH 7.4; 7 rinses, 6 min each), washed for 10 min in a solution of 1.5% H2O2/
methanol, and then washed for 5 min in KPBS. Sections were placed in diluted (10%) normal
serum for 20 min, then covered overnight at 4°C with primary antibody to leptin or to Ob-R
at final dilutions of 1:50 for both antibodies (cat no. SC-842 and SC-1832, Santa Cruz
Biotechnology, Inc., Santa Cruz, CA). After overnight incubation, sections were rinsed in
KPBS and incubated for 1 h at 22°C with secondary antibody (1/1000 dilution): biotinylated
anti-rabbit IgG for leptin and anti-goat IgG for leptin receptor, then rinsed 40 min in KPBS,
incubated in A(avidin)B(biotin) 1:333 for 1 h at 25°C, then rinsed 15 min in KPBS and 15 min
in 0.175 M sodium acetate, incubated in nickel sulfate diaminobenzidine, and rinsed in sodium
acetate and KPBS for 30 min. Sections were then handled as described by the manufacturer.
Serial dehydration in 50%, 70%, 95%, and 100% ethanol was followed by Histoclear (3 times,
2 to 5 min each). Sections were then mounted in Histomount (National Diagnostics, Atlanta,
GA, USA). Image analyses were performed as previously described.21
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Statistical analysis
Variables with skewed distributions (leptin and IGF-II) were normalized using a natural
logarithm transformation. For subjects with missing data, but without systematic differences
on the fully observed variables, these data was assumed to be completely random. The missing
values were estimated using the information of repeated measures; total number of points
missing for leptin was four. For those cases with complete data, a linear regression for the value
was performed based on all other repeated measurements. Using the estimated equation, we
calculated the predicted data (between one and four data points for each set of repeated
measurements).22

Comparison of treatment effect between groups used a generalized linear model for repeated
measurements (GLMR), considering the weight and basal conditions as covariates.23 We
applied Friedman analysis to calculate changes in the variables over time, including the initial
measurement without any adjustment. Figures show the P value for each basal analysis. Results
from group comparisons and Friedman analysis are listed in the text or legends. Data are
presented throughout as mean ± SE (with control values first, followed by betamethasone when
comparisons are made), except as noted.

Results
Maternal weight and food consumption before, during, and after betamethasone treatment

Maternal energy intake during the whole observation period did not differ between groups
(49.9 ± 1.04 vs. 50.5 ± 0.96 kcal·kg-1·day-1; Fig. 1A). During gestation, energy intake increased
by 15.8% in the BM-treated group (46.0 ± 3.6 kcal·kg-1·day-1 at 0.5 G vs. 53.29 ± 1.6
kcal·kg-1·day-1 at 0.95 G), while in the control group this increase was 2.5% (48.7 ± 1.7
kcal·kg-1·day-1 at 0.5 G vs. 49.9 ± 1.7 kcal·kg-1·day-1 at 0.95 G). This difference (15.8% vs.
2.5%) was not significant. The weight of the BM-treated mothers was higher at the end of
gestation (0.95 G) compared to mid-gestation (0.5 G) (15 ± 0.2 kg vs. 14.3 ± 0.4 kg; P = 0.005).
The weight of the control animals did not increase (14.8 ± 0.4 kg vs. 14.6 ± 0.3 kg, respectively)
(Fig. 1B). At term, the difference between the groups approached significance (P < 0.08).

Fetal and placental morphometry at time of cesarean section
Placental weight (control 191.4 ± 8.8 g vs. BM-treated 188.6 ± 8.3 g) and fetal weight (control
860.0 ±34.8 g vs. BM-treated 839.5 ± 30.7 g) at 0.95 G were similar between groups; maternal
weight correlated positively with fetal weight at cesarean section in the BM-treated group (r
= 0.47, P = 0.001), but not in the control group.

Maternal and fetal glucose and cholesterol during and after treatment
Maternal blood glucose concentration was higher in the BM-treated group than in the control
group following each treatment (Fig. 2A). This difference disappeared 17 days after completion
of treatment. During treatment, maternal serum cholesterol level rose 14.2% higher in the BM-
treated group than the control group (P < 0.08). At the end of the study, cholesterol
concentrations were similar in the two groups. Cholesterol levels rose at the end of pregnancy
compared to the second trimester in a similar manner in both control and BM-treated groups;
for combined control and BM-treated groups, maternal serum cholesterol was 52.7 ± 1.9 mg/
dL at 0.6 G vs. 66.8 ± 2.6 mg/dl at 0.95 G (P < 0.001 vs. baseline; Fig. 2B). At 0.95 G, glucose
and cholesterol levels in umbilical venous blood of fetuses from the control mothers did not
differ from the BM-treated mothers (38.1 ± 4.0 vs. 31.9 ± 5.3 mg/dL for glucose; and 58.1 ±
3.6 vs. 61.7 ± 3.7 mg/dL for cholesterol, respectively).
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Circulating leptin profiles
Maternal leptin concentration did not differ prior to pregnancy in females who entered the
control and BM- treated groups (4.6 ± 3.2 ng/mL and 4.9 ± 4.1 ng/mL, respectively). Maternal
leptin level was higher in the BM-treated group 35 days after treatment than control (74.9 ± 5
ng/mL vs. 58.7 ± 4 ng/mL respectively; P < 0.05). Leptin levels rose in control and BM-treated
mothers during gestation and was higher at the end of gestation compared to 0.6 G (P < 0.05),
but did not differ between groups (Fig. 3). The control group displayed a higher slope of leptin
concentration rise compared with the BM group. The simple regression analysis between 0.9
and 0.95G showed a leptin increase of 1.6 ng·mL-1·day-1 for the control group (P < 0.003)
vs. 0.36 ng·mL-1·day-1 for the BM group (P = 0.05), these slopes were different between the
two groups (P < 0.002). Maternal leptin concentration at the end of gestation (0.95 G) tended
to correlate positively with maternal weight in both groups (r = 0.38, P < 0.07). Fetal umbilical
venous leptin concentration was similar in both groups: 1.6 ± 0.4 ng/mL in the control (n = 12)
and 1.6 ± 1.0 ng/mL (n = 10) in the BM-treated group. Fetal leptin concentration correlated
positively with maternal leptin in BM-treated group (r = 0.69, P < 0.02) but not in the control
group. Maternal:fetal serum leptin ratio did not differ between BM-treated and control groups
at term (53.3 ± 4.3 vs. 66.7 ± 4, P = 0.13). At 0.95 G, maternal GH levels correlated positively
with maternal leptin levels in the control group (r=0.78, P < 0.02), but not in the BM-treated
group.

Placental histology
The distribution of immunoreactivity of leptin receptor long isoform (cytotrophoblast shell in
the basal plate and in the syncytiotrophoblast of stem villi) and leptin (syncytiotrophoblast and
cytotrophoblast of peripheral villi) in the placenta was the same in BM-treated and control
placentas (Fig. 4).

Maternal and fetal IGF-II levels during and after betamethasone treatment
Total IGF-II (free and bound to IGFBPs) in maternal serum was unchanged by betamethasone
treatment (Fig. 5). Maternal IGF-II level was lower at 0.95 G compared to 0.6 G in both controls
and BM-treated groups (P < 0.05). At 0.95 G, fetal total IGF-II level was 2044 ± 1498 ng/mL
vs. 659 ± 50 ng/mL in plasma and 860 ± 62 ng/mL vs. 1136 ± 218 ng/mL in amniotic fluid
from control and BM-treated groups, respectively. These values did not differ. There were no
significant correlations among total IGF-II concentrations in fetal and maternal circulations,
amniotic fluid, fetal weight, or placental weights in either group.

IGF-I, IGFBP-3, GH, and cortisol measurements in maternal serum during and after treatment
and in fetal serum at 0.95 G

Maternal serum total IGF-I concentrations did not differ between control and BM-treated
groups (356 ± 91 ng/mL vs. 493 ± 83 ng/mL, as means for the whole period of treatment, P <
0.3). Maternal total IGF-I decreased during gestation from 489 ± 147 ng/mL at 0.6 G to 218 ±
42 ng/mL at 0.95 G in control and 858 ± 135 ng/mL to 152 ± 38 ng/mL over the same period
in the BM-treated group (P < 0.05) (Fig. 6A). This decrease was more pronounced in the BM-
treated group than the control group: 82% vs. 55% (P < 0.03). During treatment at 0.6 G and
0.7 G, the IGF-I:IGFBP-3 ratio was significantly higher in the BM-treated than in the control
group: 16.21 ± 2.3 vs. 6.57 ± 2.53 at 0.6G (P < 0.05) and 16.21 ± 2.3 vs. 6.57 ± 2.53 at 0.7 G
(P < 0.05) (Fig. 6B). Circulating maternal GH levels were unchanged by BM treatment (Fig.
6C). During gestation, serum GH level rose by 53% in the control group and by 271% in the
BM-treated group (P < 0.04 for both groups vs. baseline).
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Discussion
Effect of betamethasone treatment on maternal and fetal morphometry

Since Cushing's classic clinical description of elevated glucocorticoid secretion over 100 years
ago, glucocorticoids have been known to promote obesity and redistribute body fat in adults.
24 In agreement with clinical data, we observed that maternal weight increased following
betamethasone treatment in pregnant baboons in the absence of increased food consumption,
which may indicate changes in metabolic rate during betamethasone administration in
pregnancy. Absence of increased food consumption during glucocorticoid treatment has also
been observed in pregnant rats.25 A similar phenomenon of presence of weight gain with rising
total leptin level was described in humans with glucocorticoid excess—who gain weight and
have good appetite26 despite rising total leptin levels.27 Glucocorticoids affect energy
storage28 via decreased thermogenesis,29 increased lipogenesis (with increased insulin levels)
30,31 and altered central neural regulation of energy homeostasis.32

Betamethasone did not change fetal weight at term in this study. The published results on the
effect of multiple courses of prenatal glucocorticoids on fetal growth in different species have
been inconclusive. Some studies have demonstrated that glucocorticoids inhibit fetal growth
when administered during later stages of gestation in sheep, rats, nonhuman primates, and
humans33 while, similar to our observations, other studies report no adverse effects of antenatal
glucocorticoid on fetal weight in human pregnancy.34 Our findings agree with several human
reports showing that prenatal glucocorticoids do not lower birth weight.35-37 Discrepancies
between studies in both humans and non-human primates (regarding fetal weight changes after
glucocorticoid administration) may reflect usage of dexamethasone, and not betamethasone.
Additionally, the trajectory of fetal development differs among primates and non-primate
species.38 We have discussed the influence of betamethasone treatment on placental structure
in different animal models and humans in a recent publication.39 Our experimental design,
which utilized bethamethasone, closely resembles the clinical situation, where bethamethasone
has been recommended over dexamethasone administration.18.

Effect of betamethasone treatment on maternal and fetal glucose levels
Glucocorticoids cause a transient increase in hepatic glucose release in adults and a transient
surge in fetal insulin synthesis in human pregnancy.40 Similarly, we observed an initial rise in
maternal glucose concentration during treatment. However, circulating glucose levels in
mother and fetus were similar in the control and betamethasone groups after completion of the
treatment course and at the end of gestation.

Effect of betamethasone treatment on maternal and fetal leptin concentrations
In our present study, maternal leptin concentration increased at 0.95 G compared to 0.6 G in
both control and betamethasone groups. This observation supports other recent reports that
leptin concentration increases in the maternal circulation as gestation advances in baboons,41

Japanese monkeys,42 humans,43 rodents,14 and sheep.44

Glucocorticoids stimulate leptin gene expression in sheep fetal perirenal adipose tissue45 and
leptin release in human subjects.46 We observed maternal leptin concentrations in the BM-
treated group to be significantly higher than in the control group, even 35 days after completing
the treatment course. This long-term effect is surprising because bethamethasone is cleared
from the maternal circulation by 7 days after injection.47 In non-pregnant humans and sheep
treated with cortisol or dexamethasone, the rise in plasma leptin was short-lived (3-4 days)46,
48 and the maternal endocrine system appeared to recover rapidly, with cortisol levels returning
to normal within 1 to 2 days after treatment.49 The differences between reported short-term
effects of betamethasone treatment on leptin serum concentration in the non-pregnant state and
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the long-term effects observed in the present study are likely due to specific, pregnancy-
associated mechanisms involving leptin secretion and utilization in pregnancy (e.g., the gene
promoters regulating leptin synthesis differ between placental and adipose tissues27,50).
Glucocorticoids induce a state of “leptin resistant” obesity.51 When administered in pregnancy
glucocorticoids are acting in a milieu that is already leptin resistant, which is not so in the
normal non-pregnant state.52 Recently published human data36 support our observation of a
prolonged effect of betamethasone administration on maternal leptin concentration. Marinoni
et al.37 found that leptin levels were elevated at least 7 days after completing two treatment
courses. One could speculate—since leptin directly stimulates Kiss-1 peptide,53 a potent
vasoconstrictor54—that prolonged exposure to higher leptin levels may induce maladaptation
to pregnancy-related cardiovascular changes, especially during the second half of gestation.
Of interest, pre-eclampsia and maternal obesity are other two conditions associated with
hyperleptinemia55.

The control group displayed a higher slope of leptin concentration rise compared with BM-
treated group. The reason for these different slopes could be related to delivery. C. sections
were performed around the time of delivery in the baboon (175 ± 11 dG). Maternal leptin
concentration at the end of the study did not differ between two groups. A potential explanation
may be that there is a maximal pre-delivery leptin concentration peak56, much of which has
been already driven by exogenous glucocorticoids and the controls catch up to this level

The correlation between maternal leptin and GH concentrations contradicts experimental data
published for GH deficiency in human adults,57 but agrees with experimental data from
rats58 and peripubertal children.59 The observed differences may relate to altered leptin
receptor sensitivity during pregnancy and the placental contribution to leptin metabolism.

Effect of betamethasone treatment on maternal and fetal IGF concentrations
Observations of glucocorticoid action on the circulating IGF axis vary. Glucocorticoid
administration has been reported to reduce IGF-I release from bone60 or to have no effect.61

Glucocorticoids suppress IGF-I production during pregnancy in rats.62 In fetal sheep, cortisol
suppresses IGF-II mRNA abundance in liver, skeletal muscle, and adrenal tissues, and exerts
tissue-specific effects on IGF-I gene expression in placenta.63 Of interest, the recent studies
have reported that fetal exposure to a maternal hyper-glucocorticoid environment disturbs
glucose metabolism and the IGF axis in later life, demonstrating persistent effect of the
glucocorticoid exposure. 64, 65 The mechanism of these changes remains to be elucidated.

Because the serum of pregnant baboons lacks the IGFBP protease activity detected in human
pregnancy serum,66 it is unlikely that the increase in circulating IGF levels results from
increased IGFBP protease activity in our study. Maternal IGF-II concentration at 0.95 G was
lower than at the middle of gestation in our study. These data agree with observations from
others, who found that plasma IGF-II levels decrease close to term.46

Conclusion
We described here for the first time the protracted effect of maternal betamethasone treatment
on both IGF-I:IGFBP-3 ratio and leptin in the maternal circulation, with a more prolonged
elevation of leptin, than of IGF-I, levels. The observed differences in IGF and leptin responses
might be due to different mechanisms by which glucocorticoids influence the production of
these major hormones. Our data show that the prolonged elevation of leptin level after
betamethasone treatment is not associated with changes in IGF, glucose, cholesterol, or GH
status. The clinical observations of Marinoni et al. 37 reinforce the direct application of our
own findings to human pregnancy. The baboon is a promising model to study key questions
related to the metabolic changes associated with prenatal glucocorticoid exposure. The
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molecular mechanisms and full consequences of the protracted leptin rise following
betamethasone administration to the mother remain to be elucidated.
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Fig. 1.
Maternal energy intake (A) and weight (B). Data are presented for the control group (○, n =
14) and betamethasone-treated group (●, n = 16) (mean ± SE) during and after treatment. The
Friedman coefficient for the betamethasone group was P < 0.0005 and for control P < 0.054.

Schlabritz-Loutsevitch et al. Page 13

Reprod Sci. Author manuscript; available in PMC 2010 March 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 2.
Maternal glucose (A) and cholesterol (B) concentrations. Data are presented for the control
group (○, n = 14) and betamethasone-treated group (●, n = 16) (mean ± SE) during and after
administration. NP: non-pregnant animals. Friedman coefficient for both groups, P < 0.0001.
For treatment differences, P < 0.38 after adjustment by weight from 0.5 G to 0.95 G.
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Fig. 3.
Maternal serum leptin concentration. Data are presented for the control group (○; n = 8) and
the betamethasone group (●; n = 10) at 13, 127, 162, and 175 days of gestation (mean ± SE).
NP: non-pregnant animals.
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Fig. 4.
Representative microphotograph of the distribution of immunoreactivity of long isoform of
leptin receptor: cytotrophoblast shell in the basal plate and in the syncytiotrophoblast of stem
villi (A) and leptin: syncytiotrophoblast and cytotrophoblast of peripheral villi in the placenta
(B). Magnification 40×.
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Fig. 5.
Maternal serum total IGF-II levels during baboon pregnancy in control (○, n = 7) and
betamethasone-treated (●, n = 7) groups (mean ± SE). Maternal IGF-II level was lower at the
end of third trimester (175 days of gestation) compared to second trimester (113 days of
gestation) (*P < 0.05) in both groups.

Schlabritz-Loutsevitch et al. Page 17

Reprod Sci. Author manuscript; available in PMC 2010 March 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 6.
Maternal serum total IGF-I level (A), IGF-I:IGFBP-3 ratio (B), cortisol level (C), and growth
hormone (GH) level (D). Data are presented for the control group (○, n = 5) and the
betamethasone group (●, n = 6) at 113, 127, 162, and 175 days of gestation (dG) (mean ± SE).
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