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Abstract
Background: Tumor development in the human colon is commonly accompanied by epigenetic
changes, such as DNA methylation and chromatin modifications. These alterations result in
significant, inheritable changes in gene expression that contribute to the selection of tumor cells
with enhanced survival potential.

Results: A recent high-throughput gene expression analysis conducted by our group identified
numerous genes whose transcription was markedly diminished in colorectal tumors. One of these,
the protein-tyrosine phosphatase receptor type R (PTPRR) gene, was dramatically downregulated from
the earliest stages of cellular transformation. Here, we show that levels of both major PTPRR
transcript variants are markedly decreased (compared with normal mucosal levels) in precancerous
and cancerous colorectal tumors, as well in colorectal cancer cell lines. The expression of the
PTPRR-1 isoform was inactivated in colorectal cancer cells as a result of de novo CpG island
methylation and enrichment of transcription-repressive histone-tail marks, mainly H3K27me3. De
novo methylation of the PTPRR-1 transcription start site was demonstrated in 29/36 (80%)
colorectal adenomas, 42/44 (95%) colorectal adenocarcinomas, and 8/8 (100%) liver metastases
associated with the latter tumors.

Conclusions: Epigenetic downregulation of PTPRR seems to be an early alteration in colorectal
cell transformation, which is maintained during the clonal selection associated with tumor
progression. It may represent a preliminary step in the constitutive activation of the RAS/RAF/
MAPK/ERK signalling, an effect that will later be consolidated by mutations in genes encoding key
components of this pathway.
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Background
Epigenetic changes, such as aberrant DNA methylation
and chromatin modifications, commonly accompany
human tumor development (reviewed in [1,2]). They can
have a dramatic impact on gene expression in tumor cells,
and many contribute to the selection of cells with
enhanced proliferation and survival potential. Indeed, as
an evolutionary process, tumorigenesis derives enormous
benefits from the plasticity implicit in epigenetic changes
[3]. The large bowel is an excellent setting for the study of
neoplastic progression, since colorectal lesions represent-
ing different stages of transformation can be collected and
analyzed with relative ease. A recent high-throughput
gene expression analysis conducted by our group identi-
fied numerous genes whose transcription is markedly
diminished in precancerous and cancerous lesions of the
gut [4], and many of these changes are likely to be the
result of epigenetic alterations.

Several genes identified in our study were dramatically
downregulated from the very earliest stages of cellular
transformation. One of these was PTPRR, which encodes
the classical transmembrane protein-tyrosine phos-
phatase (PTP) known as PTP, receptor type, R [5]. Revers-
ible tyrosine-specific phosphorylation of cellular proteins
is a key signalling mechanism used to evoke essential cell
decisions such as proliferation and differentiation [6], and
its proper regulation depends on the balanced activities of
PTPs and protein tyrosine kinases (PTKs). Perturbed PTK
signaling caused by mutations, amplifications, or chro-
mosomal rearrangements results in deregulated kinase
activity and malignant transformation [7]. Because they
counteract PTK activity, PTPs were expected to have
tumor-suppressive properties [8,9], and this view has
been strengthened by data showing that members of the
PTP superfamily are epigenetically silenced in several
types of cancer [10-13]. Inactivating mutations of other
PTPs have also been detected in several malignant tumors,
particularly those of the colorectum [14]. On the other
hand, certain PTPs have been shown to function as posi-
tive regulators of growth-stimulating signalling activated
by cell-surface receptors, and gain-of-function mutations
in the genes that encode these proteins have oncogenic
effects [15].

In this study, we show that epigenetic silencing of the
PTPRR gene is an early event in colorectal tumorigenesis.
However, in addition to being detected in the vast major-
ity of the precancerous lesions we examined, it was also
present in almost all of the more advanced colorectal
tumors, suggesting that downregulated PTPRR expression
is also associated with clonal expansion. PTPRR silencing
may thus represent a novel mechanism by which neoplas-
tic colorectal cells evade tumor suppression.

Results
In our recent analysis of the transcriptomes of 32 colorec-
tal adenomas [4], PTPRR emerged as one of the most
markedly downregulated genes in these precancerous tis-
sues. The same study also revealed dramatically reduced
PTPRR transcript levels in 25 colorectal cancers and 18
colorectal cancer cell lines (Figure 1A), suggesting that
PTPRR downregulation is an early but persistent altera-
tion in colorectal carcinogenesis. In that study, we used
the Affymetrix U133 Plus 2.0 array platform, which con-
tains hybridization probes complementary to the 3' end
of cDNAs. Consequently, it was impossible to discrimi-
nate between gene isoforms with differences limited to
the 5' end, such as those described for PTPRR [16] (Figure
1B).

In the present study, we used real-time quantitative RT-
PCR with specific primers to assess the levels of PTPRR
transcript variants 1 and 2 (PTPRR-1 and PTPRR-2) in
snap-frozen samples of colorectal tumors (precancerous
and cancerous) and in colorectal cancer cell lines. As
shown in Figures 1C and 1D, the expression of both iso-
forms was markedly decreased (compared with normal
mucosa controls) in all 3 settings. (Table S1, Additional
file 1 shows details for each sample.) Studies of their
expression in other human normal tissues (Figure S1,
Additional file 2) were consistent with previous reports
[16]: The highest levels of the PTPRR-1 transcript were
found in the brain, but the mucosae of the small intestine
and colon were second and third on the list. As for PTPRR-
2, the highest expression was found in the colon and then
in the brain. In many of the other tissues examined,
PTPRR expression was very low or absent, so its gene
product seems to play fairly specific roles in the brain and
lower gastrointestinal tract.

Our next goal was to determine whether the PTPRR down-
regulation we had observed was caused by epigenetic gene
silencing. Colorectal cancer cell lines that do not express
PTPRR were treated with the following agents - alone and
in combination: 1) 3-deazaneplanocin A (DZNep), an S-
adenosylhomocysteine hydrolase inhibitor that has been
shown to selectively inhibit the trimethylation of lysine
27 on histone H3 (H3K27me3) and to reactivate silenced
genes in cancer cells [17]; 2) the DNA methyltransferase
inhibitor, 5-aza-2' deoxycytidine (5-AzaC); and 3) the his-
tone deacetylase inhibitor, trichostatin A (TSA) (Figure 1E
and 1F). While none of the treatments restored the expres-
sion of PTPRR-2 (data not shown), PTPRR-1 was re-
expressed after combined treatment with 5-AzaC + TSA.
Milder activation was achieved with DZNep + TSA. These
data strongly suggest that PTPRR isoform 1 expression is
being switched off in colorectal cancer cells as a result of
de novo CpG methylation and other epigenetic mecha-
nisms.
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Expression of PTPRR mRNA in normal colorectal mucosa, polypoid precancerous colorectal lesions, colorectal cancers, and colorectal cancer cell linesFigure 1
Expression of PTPRR mRNA in normal colorectal mucosa, polypoid precancerous colorectal lesions, colorectal 
cancers, and colorectal cancer cell lines. (A): mRNA levels based on normalized raw signal values (y-axis) were detected 
with the Affymetrix U133 Plus 2.0 arrays in the tissue sample series reported in Sabates-Bellver et al., 2007. (B): The two main 
isoforms of PTPRR are shown aligned from 5' to 3'. Introns have been reduced to minimal lengths, whereas exon sizes are pro-
portional to their actual lengths. Horizontal bars represent the portions of cDNA that were amplified by qRT-PCR to discrim-
inate between the two isoforms (see Methods). (C) and (D): PTPRR-1 and PTPRR-2 expression was investigated with real time 
qRT-PCR in a subset of the samples collected for the present study (see Methods). Fold changes were calculated as reported in 
Methods: For polypoid lesions and colorectal cancers, reference expression was the mean observed in the corresponding nor-
mal mucosa samples (indicated as 1); for cell lines, the reference consisted in the mean observed for 9 samples of normal 
mucosa from 9 patients with adenomas (indicated as 1). The differences between normal mucosa and the other groups of sam-
ples were highly significant in panels A, C, and D (all p values < 0.0001; bars: mean SE). (E) and (F): Two colorectal cancer cell 
lines (HCT116 and HT29) that do not express PTPRR-1 were used for the experiments shown in these panels. Re-activation of 
PTPRR-1 expression was investigated in cells treated with agents that act, through different mechanisms, on DNA and chroma-
tin (see Methods). 5-Aza-dC, 5-Aza-2'-deoxycytidine; TSA, Trichostatin A; DZNep, 3-Deazaneplanocin A. Results are 
expressed relative to reference expression (mean observed in 9 different samples of normal mucosa, indicated as 1).
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We then used the EMBOSS CpGPlot program http://
www.ebi.ac.uk/emboss/cpgplot/ to identify CpG islands
in the genomic DNA regions around the transcription
start sites (from -10 kb to +0.5 kb) of the two isoforms.
Results were negative for the PTPRR-2 start site, but that of
PTPRR-1 was surrounded by a 228-bp CpG island (Figure
2A). Combined bisulfite restriction analysis (COBRA) was
used to explore the methylation status of this genomic
area in the 16 colorectal cancer cell lines listed in Supple-
mentary Table 1 and in the glioblastoma cell lines SK-N-
SH, SK-N-AS, and LAN1, all 3 of which express the PTPRR-
1 transcript (data not shown). As expected, the CpG island
showed no sign of methylation in any of the glioblastoma
lines, but it was partially methylated in Lovo cells and
extensively methylated in the other 15 colorectal cancer
cell lines (Figure 2B and Supplementary Table 1). The spe-
cificity of these results was confirmed by sequencing of
subcloned PCR products of bisulfite-converted DNA from
HCT116, Lovo, and SK-N-SH cells (Figure 2B). COBRA
also revealed aberrant methylation in this CpG island in
the vast majority of precancerous and cancerous tissues
we tested and in all 8 liver metastases from colorectal can-
cers (Table 1 and Figure 2C). For 21 of the lesions
included in this analysis (5 adenomas --3 nonpolypoid, 2
polypoid-- and 16 cancers), corresponding samples of
normal mucosa were also available for methylation anal-
ysis. None of these samples met our pre-established defi-
nition of significant methylation (i.e., involvement of ≥
5% of alleles -- see Materials and Methods), but 11 pre-
sented very low-level methylation suggestive of a possible
field defect.

The fact that PTPRR-1 expression was reactivated in color-
ectal cancer cell lines by treatment with 5-AzaC + TSA or
DZNep + TSA strongly suggested that the tumor-associ-
ated silencing of this transcript might be due not only to
CpG island hypermethylation but also to histone code
changes. Therefore, we used chromatin immunoprecipita-
tion to investigate chromatin marks in the region around
the PTPRR-1 transcription start site (-28 to +156 bp) in
SK-N-SH glioblastoma cells, which are known to express
PTPRR-1 transcript and protein, and Colo205 colorectal

cancer cells, which express neither (Figure 3A). Compared
with SK-N-SH cells, the Colo205 line presented enrich-
ment of the transcription-repressive histone-tail marks
H3K9me3 and H3K27me3 and depletion of the active
mark H3K9ac (Figure 3B). This histone code profile in
Colo205 cells was almost identical to that of the KCNA1
gene, a well-known target of the transcription-repressing
polycomb-group proteins in colorectal carcinogenesis
[18]. Our findings thus suggest that the de novo methyla-
tion of the PTPRR-1 we document here may also be poly-
comb-mediated.

Discussion
The results presented above demonstrate for the first time
that human colorectal cell transformation is associated
with silencing of both of the principal transcript variants
of the PTPRR gene. More specifically, precancerous
tumors and cancers of the colorectum are characterized by
marked underexpression of PTPRR-1 and PTPRR-2 (also
known as PTPPBSα and PTPPBSγ) [16,19]. Although the
2 isoforms are concomitantly downregulated in most
tumors, the mechanisms underlying these effects appear
to be different.

Silencing of PTPRR-1 was associated with de novo methyl-
ation of a CpG island encompassing its transcription start
site. None of the normal colorectal tissues we examined
displayed significant methylation at this site, but it was
very common in adenomatous polyps (80%) and adeno-
carcinomas (95%), and also in liver metastases associated
with the latter tumors (100%). This epigenetic phenome-
non thus appears to be an early alteration in the transfor-
mation process that is maintained during the clonal
selection associated with tumor progression.

The fact that it was also associated with H3K27 trimethyl-
ation was of particular interest. This transcription-repres-
sive chromatin modification is catalyzed by EZH2, a
component of the polycomb repressive complex 2 [20],
and it plays key roles in developmental processes such as
X chromosome inactivation [21], imprinting [22], and
stem cell maintenance [23]. More recent research has

Table 1: Methylation in the CpG island encompassing the PTPRR isoform 1 start site in colorectal tumors.

Tumor type1 No. Methylated (%)2 Unmethylated (%)

Premalignant lesions
Polypoid 28 23 (82) 5 (18)
Nonpolypoid 18 15 (83) 3 (17)

Primary adenocarcinomas 44 42 (95) 2 (5)
Liver metastases3 8 8 (100) 0 (0)

1 The normal mucosa counterpart was also analyzed for 21 samples (see Results)
2 Positivity threshold: ≥ 5% alleles (see Methods)
3 Associated with 8 of the 44 primary cancers listed above
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Methylation analysis of PTPRR-1Figure 2
Methylation analysis of PTPRR-1. (A): Schematic depiction of the PTPRR-1 CpG island encompassing the transcription start 
site (black arrow). CpG dinucleotides are represented as short vertical lines. Regions explored with combined bisulfite restric-
tion analysis (COBRA) and with bisulfite genomic sequencing (BGS) on DNA extracted from fresh or formalin-fixed, paraffin-
embedded (FFPE) samples are also shown. (B) and (C): Examples of COBRA analysis and BGS in cell lines (B) and clinical sam-
ples (C). COBRA: Arrows indicate BstUI-digested DNA fragments representing methylated alleles; slower-migrating fragments 
correspond to undigested, unmethylated DNA. BGS: Each row shows the methylation status of a cloned target sequence, with 
circles representing unmethylated (open) and methylated (filled) CpG dinucleotides.
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Western blotting and chromatin immunoprecipitation (ChIP) studiesFigure 3
Western blotting and chromatin immunoprecipitation (ChIP) studies. (A): PTPRR-1 protein expression in total cell 
extracts from the cell lines used for ChIP studies (Colo205 and SK-N-SH) are shown. Proteins were separated on a 10% poly-
acrylamide gel. Reactivation of PTPRR protein expression was also investigated in Colo205 cells after treatment with 5-Aza-2'-
deoxycytidine (5-Aza-dC) or 3-Deazaneplanocin A (DZNep) plus Trichostatin A (TSA). Extracts of 293T cells transiently 
transfected with PTPRR-1 cDNA were used as positive controls. PTPRR expression was also documented in assays of protein 
extracts from epithelial cells of normal colonic crypts, as expected. (The slightly higher molecular weight might be due to a 
post-translational modification occurring in vivo in this tissue.) MSH6 antibodies were used as proliferation-rate controls: In 
cells treated with drugs, the expression of the DNA mismatch repair protein MSH6 was decreased --- as expected --- due to 
reduced cell viability. (B): Immunoprecipitated DNA was quantified by real-time PCR. Enrichment was calculated as percentage 
of input DNA control (details in Methods). Upper 3 panels: Chromatin prepared from Colo205 cells was immunoprecipitated 
with antibodies against H3K9ac (acetylated-histone H3Lys9, white bars), H3K27me3 (trimethyl-histone H3Lys27, light gray 
bars), and H3K9me3 (trimethyl-histone H3Lys9, dark gray bars). The specifity of immunoprecipitations was verified by the 
selective enrichment, in the PCR amplifications, of the actively transcribed RPL30 gene (H3K9ac antibody), the polycomb target 
KCNA1 promoter (H3K27me3 antibody), and the heterochromatic Sat 2 locus (H3K9me3 antibody). Lower panel: PTPRR-1 
promoter histone code differences between the colorectal cancer cell line Colo205 and the neuroblastoma cell line SK-N-SH. 
(PTPRR-1 transcript and PTPRR-1 protein expression profiles for the 2 lines are shown in Figures 2B and 3A, respectively.)
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shown, however, that polycomb-regulated genes are also
frequent targets for de novo CpG-island methylation in
cancer cells [24], a process triggered by the cancer-cell-spe-
cific recruitment of DNA methyltransferases by the poly-
comb repressive complex 2 itself [25]. These findings
strongly suggest that the epigenetic silencing of PTPRR-1 is
polycomb-mediated, and this hypothesis is strengthened
by the fact that the expression of this isoform in colorectal
cancer cell lines was reactivated by the histone methyla-
tion inhibitor DZNep, although the effect was seen only
when this agent was combined with the histone deacety-
lase inhibitor TSA. DZNep alone is sufficient to reactivate
the transcription of polycomb-repressed genes without
methylated CpG islands [17,26], but the presence of CpG
methylation leads to the addition of a second transcrip-
tion-repressing histone mark, H3 deacetylation, through a
process that involves selective binding of methyl-CpG-
binding proteins [27,28]. For this reason, elimination of
the epigenetic block affecting PTPRR-1 also required the
action of TSA.

As for PTPRR-2, the mechanism underlying its silencing is
still obscure. Although its tumor-related downregulation
is almost always associated with that of PTPRR-1 (Supple-
mentary Table 1), its transcription start site is located
more than 150 kb downstream from that of the latter iso-
form, and its 5' flanking region --- unlike that of PTPRR-1
--- is CpG-poor. Consequently, the fact that PTPRR-2 was
not re-expressed in the colorectal cancer cell lines treated
with 5-AzaC + TSA was not surprising. However, treat-
ment with DZNep + TSA also failed to reactivate the
expression of this isoform, which tends to exclude the
involvement of polycomb proteins in the silencing of
PTPRR-2 expression in colorectal tumors.

The PTPRR-1 protein is a receptor-type protein tyrosine
phosphatase, whereas PTPRR-2 is a shorter isoform found
in the cytosol [16,19]. However, both contain a kinase-
interaction motif (KIM) and a protein tyrosine phos-
phatase (PTP) domain [29]. The roles of the 2 PTPRR iso-
forms in humans are still unclear, but the functions of
their homologs in mice and rats have been investigated
more extensively. In vitro studies have shown that the
KIMs of these proteins interact with various MAP kinases,
including several extracellular regulated kinases (ERKs).
PTPRR-mediated dephosphorylation of ERKs 1, 2, and 5
prevents their translocation to the nucleus [30-33]. The
roles of these kinases as physiologically relevant PTPRR
substrateshave also emerged from in vivo studies, which
revealed significantly increased levels of phosphorylated
ERK1/2 in the brains of Ptprr-knock-out mice [34]. Signal-
ling through the ERK1/2 pathway is known to contribute
to the survival of colorectal tumor cells (reviewed in [35]),
and PTPRR is expressed in the normal colorectal epithe-
lium [16] and Figures 1 and 3]. Therefore, although the

Ptprr-/- animals cited above did not display any evident
predisposition toward tumor development (34), a differ-
ent picture might emerge in a setting of multiple gene
changes. It would be interesting, in fact, to see how Ptprr
deficiency affects the onset and/or progression of intesti-
nal tumors in ApcMin/+ or KRASV12G/Apc+/1638N mice, which
are used to study the role of concomitant gene alterations
in colorectal tumorigenesis [36-38].

Our assessment of PTPRR expression levels in different
human tissues (Supplementary Figure 1) reveals preferen-
tial expression in the brain and lower gastrointestinal
tract, so its downregulation might reasonably be expected
to lead to the development of disease in these tissues. The
Ptprr-/- deficient mice mentioned above [34] were viable
and fertile, but displayed notable defects in fine motor
coordination and balance skills. Future studies should
also examine possible links between loss or reduced
expression of PTPRR in the nervous system and neurolog-
ical and psychiatric disorders.

Further investigation is also needed to determine the func-
tional relevance of the PTPRR downregulation we docu-
mented in colorectal tumors, but one interesting
possibility is that this change represents a mechanism for
early establishment in colon tumor cells of "epigenetic
sensitization" to the activation of oncogenic signalling
(reviewed in [39,40]), in this case, through the RAS/RAF/
MAPK/ERK pathway. This phenomenon has been pro-
posed for genes with gatekeeper functions, which are
silenced during early stages of the neoplastic process. A
classic example is the early epigenetic loss of secreted friz-
zled-related proteins (SFRP), which compete with
secreted Wnt proteins for binding to their receptor Friz-
zled. The constitutive Wnt signalling unleashed by this
epigenetic event [41] is believed to precede genetic altera-
tions, i.e., mutations, in key components of the pathway,
such as the APC gene, whose inactivation is traditionally
considered the trigger of colorectal tumor progression.
Aberrant signalling through the Wnt pathway is largely
responsible for expansion of stem-cell and progenitor-cell
populations normally confined to the lower portions of
intestinal crypts. The importance of the epigenetic contri-
bution to Wnt pathway activation is difficult to determine
with precision, but the possibility has been raised that it is
essential for promoting tumor development or progres-
sion [39].

Epigenetic silencing of PTPRR might play a similar role in
aberrant activation of the RAS/RAF/MAPK/ERK pathway.
Like canonical Wnt signaling [42], MAPK activity has been
shown to be restricted to the nuclei of proliferative, undif-
ferentiated cells in the lower portion of normal intestinal
crypts [43]. Constitutive RAS/RAF/MAPK/ERK pathway
activity has been demonstrated in numerous primary
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human tumors of the colon, kidney, and lungs [44]. It is
generally associated with gain-of-function mutations in
the KRAS or BRAF gene [45,46], which are frequent in
colorectal transformation [47]. Epigenetic downregula-
tion of PTPRR might represent a very early step toward
complete activation of the RAS/RAF/MAPK/ERK signal-
ling, an effect that will later be consolidated by the addi-
tion of activating mutations in genes encoding key factors
in this pathway.

Conclusions
Our analysis of a large series of human tumors and cell
lines indicates that epigenetic downregulation of PTPRR
occurs early in colorectal cell transformation and is main-
tained during the clonal selection associated with tumor
progression. Better understanding of the functional effects
of PTPRR loss could shed light on important aspects of the
mechanisms underlying colorectal tumor cell survival, in
particular on the dynamics of constitutive activation of
the RAS/RAF/MAPK/ERK signaling. The high frequency of
PTPRR promoter hypermethylation in precancerous
colorectal lesions could also have important implications
for current efforts to develop stool- or serum-based DNA
assays for early noninvasive detection of colorectal neo-
plasia.

Materials and methods
Cell lines and tissue samples
Colorectal cancer (Vaco481, Colo205, SW48, LS174T,
SW620, HT29, Caco2, Colo741, HCT116, LS411, Lovo,
SW480, SW837, GP5D, CX1, and CO115) and neuroblas-
toma (SK-N-SH, SK-N-AS, LAN1) cell lines were obtained
from the Zurich Cancer Network's Cell Line Repository.
Cells from this repository have undergone only a few pas-
sages since purchase (from the American Tissue Culture
Collection, Teddington, UK), and are certified to be free
from mycoplasma infection.

Fresh-frozen or formalin-fixed, paraffin-embedded neo-
plastic tissues (polypoid [n = 28] and nonpolypoid [n =
18] colorectal adenomas, advanced colorectal cancers [n =
44], and liver metastases related to 8 of the 44 cancers)
were collected at the Triemli Hospital in Zurich, Switzer-
land and the Poliambulanza Hospital in Brescia, Italy
with institutional review board approval. Twenty-one of
the neoplastic tissue samples (3 polypoid adenomas, 2
nonpolypoid adenomas, 16 cancers) were accompanied
by samples of normal mucosa from the same colon seg-
ment (≥ 10 cm from the lesion). The analysis of PTPRR
transcript variant expression (Figure 1C and 1D) also
included 6 other polyp-normal mucosa sets reported in
our previous study (1). Genomic DNA was extracted with
the QIAamp DNA Mini Kit (Qiagen, Basel, Switzerland).
Total RNA was extracted from homogenized frozen tissue
samples and cell lines with the RNeasy Mini kit (Qiagen).

Drug treatment of cell lines
HCT116, HT29, and Colo205 cells were treated the day
after seeding. For DNA demethylation, cells were grown
for 72 hours in medium containing 5 μM 5-Aza-dC
(Sigma, Buchs SG, Switzerland) (renewed every 24 hrs).
In some experiments, these cells were then transferred to
medium containing TSA (final concentration 300 nM)
(Sigma) for an additional 16 hours' growth. To inhibit
histone methylation, the same 3 cell lines were treated for
48 h with 5 μM of the S-adenosylhomocysteine hydrolase
inhibitor 3-deazaneplanocin A (DZNep, provided by the
National Cancer Institute, USA). Some DZNep-treated
cells were then transferred to medium containing 200 nM
of TSA for an additional 24 hours' growth.

Real-Time Quantitative Reverse-Transcription 
Polymerase Chain Reaction (qRT-PCR)
First-strand cDNA synthesis was performed with the Tran-
scriptor First Strand cDNA Synthesis kit (Roche, Basel,
Switzerland) according to the manufacturer's instructions.
Expression of PTPRR (GeneBank, GeneID:5801) isoforms
and of the reference housekeeping gene porphobilinogen
deaminase (PBGD, GeneBank, GeneID: 3145) was meas-
ured with the Roche LightCycler 480 Real-Time PCR Sys-
tem and a LightCycler 480 SYBR Green I Master kit. In
accordance with the Pfaffl method [48], relative PTPRR
isoform expression in 2 different tissue samples (e.g., a
colorectal cancer versus corresponding normal mucosa)
was based on the mean crossing-point (Cp) deviation
between the 2 samples normalized to the mean Cp devia-
tion for the reference gene, after efficiency correction of
the PCR reactions. All primer sequences and PCR condi-
tions are reported in Table S2, Additional file 3.

Bisulfite conversion, combined bisulfite restriction analysis 
(COBRA), and bisulfite sequencing
Sodium bisulfite conversion of genomic DNA was per-
formed as previously described [49]. COBRA was used to
determine the methylation status of the CpG island
encompassing the PTPRR-1 start site in bisulfite-modified
DNA. Amplifications were carried out with FastStart Taq
DNA Polymerase (Roche). The amplified products were
digested with the BstUI restriction enzyme (New England
Biolabs, Beverly, MA, USA) and subjected to 2% agarose
gel electrophoresis and ethidium bromide staining. The
methylation level (%) was calculated by dividing the sum
of the densities of the shifted bands by the sum of the den-
sities of all bands in each lane and multiplying the quo-
tient by 100. Both sums were computed automatically by
the ImageQuant software (Molecular Dynamics, GE
Healthcare, Piscataway, NJ, USA). Samples with methyla-
tion levels < 5% were defined as methylation-negative.

For sequencing of bisulfite-converted DNA, PCR products
were digested with EcoRI and BamHI (New England
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Biolabs) and subcloned into the pGEM-7Zf(+) Vector
(Promega, Madison, WI, USA). Individual clones were
then sequenced with the PRISM dye terminator cycle
sequencing method (Applied Biosystems, Rotkreuz, Swit-
zerland).

Chromatin immunoprecipitation (ChIP) assays
Experiments were performed with the ChIP-IT kit from
Active Motif (Carlsbad, CA, USA) according to manufac-
turer's instructions. Colo205 and SK-N-SH cells were
cross-linked with 0.8% formaldehyde at room tempera-
ture for 6 min, and glycine (0.125 M) was added to stop
the reaction. Isolated nuclei were then subjected to 10
cycles (30 s on/30 s off) of sonication at 200 W with a
Bioruptor sonicator (Diagenode, Liege, Belgium). Ten
percent of the sonicated chromatin was reserved for use as
an input DNA control. Sodium butyrate (Sigma) was
added to cell-lysis and chromatin-shearing buffers (final
concentration, 5 mM) to prevent endogenous histone
deacetylase activity during the procedure. DNA-protein
complexes were immunoprecipitated with antibodies
against trimethyl-histone H3(Lys9) (ab8898, 1:100 dilu-
tion), acetylated-histone H3(Lys9) (ab4441, 1:100 dilu-
tion) - both from Abcam (Cambridge, UK), or trimethyl-
histone H3(Lys27) (antibody 39535, 1:100 dilution;
Active Motif).

The amount of immunoprecipitated target was measured
with real-time PCR (Roche LightCycler 480 Real-Time
PCR System and Qiagen's QuantiTect SYBR Green kit) and
expressed as a fraction of input DNA (arbitrary value,
100). Table S2, Additional file 2 lists the primer sequences
for amplicons located in the RPL30 gene, in the KCNA1
gene promoter, in the Sat 2 locus, and in the 5' region
flanking the transcription start site of the PTPRR-1.

Western blotting
RIPA buffer (25 mM Tris-HCl pH 7.6; 150 mM NaCl; 1%
NP-40; 1% sodium deoxycholate; 0.1% SDS, 1× Roche
COMPLETE mini protease inhibitor, and 1 mM PMSF)
was used to extract total protein from SK-N-SH and
Colo205 cells (treated or untreated), 293T cells, and 293T
cells transiently transfected with with pcDNA3 vector car-
rying full-length PTPRR-1 cDNA. A previously described
protocol [50] was used to obtain a total protein extract
from epithelial crypt cells isolated from a specimen of
normal colon immediately after surgical excision for
diverticulitis. Western blotting was performed as previ-
ously described [51] using primary monoclonal antibod-
ies directed against PTPRR (B01P, 1:1000 dilution,
Abnova, Taipei City, Taiwan;) or MSH6 (G70220, 1:2000
dilution, BD Transduction Laboratories, San Jose, CA,
USA). Abnova B01P was the only commercially available
anti-PTPRR antibody that performed well in our Western

blotting assays, but none of these products performed sat-
isfactorily when we attempted to stain tissue samples
(data not shown).

Abbreviations
(PTPRR): protein tyrosine phosphatase receptor type R;
(5-AzaC): 5-aza-2' deoxycytidine; (TSA): trichostatin A;
(DZNep): 3-deazaneplanocin A; (COBRA): combined
bisulfite restriction analysis; (BGS): bisulfite genomic
sequencing; (qRT-PCR): real-time quantitative reverse-
transcription polymerase chain reaction; (ChIP): chroma-
tin immunoprecipitation.

Competing interests
The authors declare that they have no competing interests.

Authors' contributions
MM prepared the manuscript and performed methylation
and chromatin studies; EC was responsible for the extrac-
tion of nucleic acids; JS-B performed the microarray anal-
yses; VVI carried out the studies on cell lines, including
protein extraction; PW analyzed and histologically classi-
fied tumor samples; FB performed the endoscopies; VIM
and JJ designed important experiments during the study
and contributed to the writing of the manuscript; GM con-
ceived the project and prepared the manuscript. All
authors have read and approved the final manuscript.

Additional material

Additional file 1
Supplementary Table 1. Expression of PTPRR transcript variants 1 and 
2 in colorectal tumors and colorectal cancer cell lines as measured with 
real time quantitative RT-PCR. The expression of both isoforms in 9 poly-
poid adenomas, 11 colorectal cancers, and 16 colon cancer cell lines is 
shown.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1476-
4598-8-124-S1.PDF]

Additional file 2
Supplementary Figure 1. Expression of the two PTPRR transcript vari-
ants in a series of normal human tissues. The expression of the two PTPRR 
isoforms in different normal human tissues as measured with real time 
quantitative RT-PCR is shown.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1476-
4598-8-124-S2.PDF]

Additional file 3
Supplementary Table 2. Primer sequences and PCR conditions used in 
this study. All primer sequences and PCR conditions used for quantitative 
RT-PCR, methylation analysis, and ChIP are reported.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1476-
4598-8-124-S3.PDF]
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