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Genome-wide association studies (GWAS) have rapidly become

a standard method for disease gene discovery. A substantial

number of recent GWAS indicate that for most disorders, only

a few common variants are implicated and the associated SNPs

explain only a small fraction of the genetic risk. This review is

written from the viewpoint that findings from the GWAS provide

preliminary genetic information that is available for additional

analysis by statistical procedures that accumulate evidence, and

that these secondary analyses are very likely to provide valuable

information that will help prioritize the strongest constellations

of results. We review and discuss three analytic methods to

combine preliminary GWAS statistics to identify genes, alleles,

and pathways for deeper investigations. Meta-analysis seeks to

pool information from multiple GWAS to increase the chances

of finding true positives among the false positives and provides a

way to combine associations across GWAS, even when the original

data are unavailable. Testing for epistasis within a single GWAS

study can identify the stronger results that are revealed when

genes interact. Pathway analysis of GWAS results is used to prior-

itize genes and pathways within a biological context. Following a

GWAS, association results can be assigned to pathways and tested

in aggregate with computational tools and pathway databases.

Reviews of published methods with recommendations for their

application are provided within the framework for each approach.

Introduction

Genome-wide association studies (GWAS) have rapidly

become a standard method for disease gene discovery.

When they were first conceived, it was thought that

GWAS would provide an effective and unbiased approach

to revealing the risk alleles for genetically complex non-

Mendelian disorders. The premise of the GWAS design is

that extensive common variation in the human genome,

as exhibited by SNPs with frequencies greater than 1%, is

responsible for the risk of most genetically complex disor-

ders. A controversy ensued as to whether much of this risk

could be explained by the older and more common gene

variants that GWAS were designed to detect or whether

much of the risk was likely to be caused by multiple rare

variants with frequencies less than 1%. That is, because

success in GWAS is contingent upon being able to statisti-

cally detect the association of an SNP that is in linkage

disequilibrium with a predisposing gene variant, that

variant would have to be at a sufficient frequency in order

to detect it. It was expected that testing the genome with

dense SNPs that capture the linkage disequilibrium in

case and control samples would produce results that
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explain much of the risk for each disorder if the ‘‘common

disease, common gene’’ hypothesis were the rule. Thus, in

addition to their focus on revealing the biological contri-

butions to complex traits and disorders, the results of

GWAS also provide substantive information regarding

the extent of the contributions made by common variants

to complex traits and disorders.

GWAS require three essential elements: (1) sufficiently

large study samples from populations that effectively

provide genetic information regarding the research ques-

tion, (2) polymorphic alleles that can be inexpensively

and efficiently genotyped and cover the whole genome

adequately, and (3) analytic methods that are statistically

powerful and can be employed to identify the genetic asso-

ciations in an unbiased fashion. Each of these three

elements was developed for GWAS in just a few years,

and we briefly summarize some of the specific accomplish-

ments. Regarding the first element, a substantial number

of large study samples were formed through productive

collaborations. In many cases, the resulting sample sizes

provide sufficient statistical power to identify relatively

small associations of common variants. The GWAS show

that for discrete phenotypes, most of the detectable odds

ratios are between 1.1 and 1.3.1 Thus, most of the signifi-

cantly associated SNPs are in linkage disequilibrium with

predisposing variants that increase the carriers’ disease

risks by between 10% and 30% over the risk in noncarriers.

It is likely that there are many more common variants that

have not been detected by GWAS because they raise the

risk by smaller values, perhaps as low as 1%. However,

these undetected associations might be important, because

they may be effective in elucidating the biologic basis of

the disorders and suggesting treatments. Regarding the

second element, substantial numbers of SNPs throughout

the genome were identified by the HapMap Project and

placed in easily accessible databases. Product development

by technology companies used these SNPs and produced

accessible tools for high-throughput genotyping. These

tools have evolved to provide more dense coverage of the

genome at increasingly affordable costs. Third, and

perhaps most important in the context of this review,

a substantial number of analytic challenges have been

successfully addressed. The most critical may be the thorny

problem of coordination of SNP genotypes among study

samples. This problem occurred with the recognition
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that large samples were needed and that the individual

study samples that contributed to them were genotyped

on different and rapidly evolving microarray platforms.

Although this was problematic, investigators also viewed

it as a potential strength, because it provided the opportu-

nity to increase the number of SNPs tested for association

through imputation. Imputation is the use of additional

information to predict missing values in a sample. The

problem sparked intensive research efforts and the crea-

tion of appropriate software that exploited linkage dis-

equilibrium among SNPs and accurately imputed large

numbers of ‘‘missing’’ genotypes.2–4

Initially, it was anticipated that GWAS would reveal

a substantial number of statistically significant associa-

tions for each disorder, requiring their prioritization for

follow-up studies. Saccone and colleagues provide an

extensive list of criteria to consider5 and a method to apply

them. A genomic information network generates a score

representing the accumulation of evidence supporting

the biological relevance of each associated SNP. The inverse

of the overall score is used to weight the SNPs’ overall asso-

ciation p value. The score includes factors such as (1) occur-

ring in a gene that is part of an implicated pathway, (2)

playing a known functional role, (3) support from compar-

ative genomics, and (4) linkage information. Feasibility is

shown by applying the approach to identify genes for

nicotine dependence.

The substantial number of recent published GWAS indi-

cate that for most disorders, only a few common variants

are implicated and the associated SNPs explain only a small

fraction of the genetic risk,1 even if they are considered in

aggregate. The small estimated effect sizes have been disap-

pointing to some, and many current investigations are

now focused on pursuing sequencing studies to identify

the contributions of rare variants to the same disorders.

Rare variants, those that appear in less than 1% of the pop-

ulation, may even be private mutations that only appear in

a few individuals or families. Mutations with these low

frequencies have been seen in many Mendelian disorders.

For example, cystic fibrosis (CF [MIM 219700]), which

occurs with an incidence of 1/3000 in individuals of Euro-

pean descent, has had at least 1500 variants, most of which

are autosomal recessive and fully penetrant.

Large-scale sequencing, which was once prohibitively

expensive, is more financially feasible today and is likely

to become a common option in the future. It will provide

additional information regarding the genetic etiology of

complex disorders and will perhaps blur the boundary

between investigations of common and rare variants. The

rare variants, which will only be seen in a small fraction

of those who are affected, are expected to raise the risk in

carriers at a substantially higher rate than common vari-

ants, although this expectation remains to be investigated.

Sequencing studies in complex disorders will also be con-

ducted with the caveat that rare causal variants may be

even more difficult to identify and interpret. If such vari-

ants are not found in coding regions with the possibility
The
of disrupting protein production, they may remain unse-

quenced, or their importance may go overlooked. As

with common variants in GWAS, rare-variant analyses

will present a large number of statistical challenges that

are likely to lead to the development of interesting and

useful methods that reveal important results.

Recently, one review and three commentaries describing

and evaluating the success of GWAS were published in

a single issue of the New England Journal of Medicine.1,6–8

Although focused primarily on whether GWAS met their

expectations, these salient publications each provide

some support for the position that GWAS are only the first

step in the gene identification process. More specifically,

the informative review by Hardy and Singleton defines

and explains many of the important GWAS concepts.8 It

also concludes that if the genetics of complex diseases is

comparable to a jigsaw puzzle, we have put the edges

and corners in place and now have a framework to pur-

sue the genetic etiology of complex disorders. Kraft

and Hunter6 advocate meta-analysis, the first approach

reviewed herein, to provide more stable risk estimates

that can be translated into clinical information. In his

commentary, David Goldstein1 explains his significant

concerns about the lack of detection of variants with suffi-

cient effect sizes to explain the estimated heritabilities and

relative risks of complex disorders. Although he advocates

the detection and analysis of rare variants, he also indicates

that these differences may be explained by large interac-

tion effects, thus providing support for applying the

second method we review. In his commentary, Joel Hirsch-

horn7 responds to the small effect sizes of many of the

nearly 250 associated variants that have been detected by

pointing out that we are making progress in detecting

the true targets of these analyses, the biologic pathways,

thus advocating the third approach that we review.

One can view the findings from GWAS as providing

preliminary genetic information available for additional

analysis by statistical procedures that accumulate evi-

dence. These secondary analyses are very likely to provide

valuable information that will help us prioritize the stron-

gest constellations of results. Here we review and discuss

some of the analytic methods that are currently being

applied to combine preliminary GWAS association statis-

tics to identify genes, alleles, and pathways for deeper

investigations. We anticipate that some of these methods

designed to aggregate GWAS results will also be adapted

to identify the contributions of rare variants to complex

disorders.

Thus, one can view single-SNP GWAS analyses as

a preliminary step in the gene identification process, where

methods that help prioritize the more important results

should be applied, and this review is written with that

focus. Here we review and discuss three current methodol-

ogies that combine results to reveal larger effects in order to

prioritize them for future studies. The first, meta-analysis,

seeks to pool information from multiple GWAS to increase

the chances of finding true positives among the false
American Journal of Human Genetics 86, 6–22, January 8, 2010 7



positives. It provides a way to combine associations across

GWAS, even when the original data are unavailable. We

also discuss a related approach, Bayesian hierarchical

modeling, which allows the incorporation of other results

through a prior function.

The second approach searches for epistasis within a

single GWAS study in order to identify stronger results

that are revealed when genes interact. We discuss the

nature and parameterization of interaction models, and,

because it is impractical to consider all possible pairwise

interactions, we consider only those that include at least

one significant result. Current approaches of model selec-

tion by lasso penalized ordinary linear regression and

logistic regression are explained in greater detail.

The third approach prioritizes alleles and genes by using

information from known pathways. Complex disorders

may result from the accumulation of the effects of genetic

variants within pathways. The pathway model is similar

to one that is polygenic; however, the genes and their

variants are drawn from only a few specific pathways.

Following a GWAS, association results can be assigned to

pathways with the appropriate computational tools and

pathway databases. Those who are developing statistical

methods to implicate pathways face many challenges,

because this is the least developed approach. For all three

methods, we enumerate guidelines that should be followed

when they are applied to GWAS data. Directions for future

research are also discussed.

Conducting Meta-Analyses to Prioritize Associations

Motivation

A frequent means of prioritizing GWAS results is to com-

bine studies via a meta-analysis. Meta-analysis is a well-

established and validated statistical approach for com-

bining evidence across any number of independent

studies, each of which is designed to examine the same

research hypothesis.9–12 Rather than use the original data

from these studies, which can be computationally cumber-

some and logistically difficult, meta-analysis combines

their results. This approach has been advocated for genetic

analysis as a method of increasing power,13–16 and it has

been used extensively in reporting the findings of GWAS.11

In June 2009, a search of PubMed with the criteria ‘‘meta-

analysis AND genome-wide association study’’ revealed

113 articles. Meta-analyses have been used for many years

in statistics, and it is impossible to cover all of the concepts

in this review. Readers desiring more extensive coverage

are urged to consult two excellent and comprehensive

review articles addressing meta-analyses in GWAS.15,17

Factors to Consider

In the context of GWAS, meta-analyses combine compa-

rable test statistics across independent studies of the

same phenotype, weighting them by the confidence in

the study-specific results. The definition of ‘‘comparable’’

is not straightforward and usually requires judgment and

a justification by the investigators. Some criteria that
8 The American Journal of Human Genetics 86, 6–22, January 8, 2010
should be considered before studies are combined are the

ascertainment of the sample, the definition and measure-

ment of the trait or disorder under analysis, and the statis-

tics that summarize the association result. Ideally, the

GWAS used in the meta-analyses were all conducted with

the same ascertainment criteria on comparable popula-

tions and following the same study design, so that there

is exchangeability between the individuals used in the

studies.16 Of course, in practice, this degree of homoge-

neity is not always possible, but it can be approached by

using careful study design and cooperation between

groups at the early stages of the studies.18

Comparability may be difficult to achieve when con-

ducting a cumulative meta-analysis that combines the

results of a new study with existing studies, because the

details of the prior studies may not be available. To test

for possible differences among the studies, researchers

check for evidence of heterogeneity.16,19 Two of the most

popular tests are I2 and Cochran’s Q.20 Ethnic stratification

within and between studies is a source of heterogeneity

that can lead to falsely impressive p values. Genomic infla-

tion factors can be used to correct the excess of false posi-

tives as well as to test for heterogeneity.15,18 There is a trade-

off, on one hand, between the power and knowledge to be

gained from the large sample size and, on the other hand,

the dilution of the effects and the difficulties in interpreta-

tion that arise when combining studies that actually

examine different research hypotheses. The research

hypothesis of a meta-analysis is in some sense an intersec-

tion of the research hypotheses of the individual studies.

When there is too much heterogeneity, the associations

can also be obscured. Heterogeneity tests can provide

some insight17; however, it is difficult to know how strict

one should be in requiring homogeneity among the

studies. We recommend following the guidelines of Zintza-

ras and Lau,21 who advocate using cumulative and recur-

sive cumulative meta-analysis as well as careful examina-

tion of potential biases that could be the cause of the

heterogeneity.

Inclusion of a study based on a heterogeneity analysis is

not simply a statistical decision, because those SNPs that

show association may not provide the complete picture.

We consider three examples of meta-analyses requiring

decisions regarding the tradeoff between power and infor-

mation. The first meta-analysis combines studies con-

ducted in two diverse populations. The SNPs that are asso-

ciated in both samples are prioritized over SNPs that are

associated in only one of the samples. Meta-analysis of

studies from the same population would lead to a larger

list of associations, although fewer of them will apply to

other populations. In a similar way, researchers have

combined studies of different but related diseases as

a way to increase power and find common susceptibility

genes that provide insights to all of these disorders.22–25

Although this is a sensible approach, care must be taken

to avoid overinterpreting the results of such a heteroge-

neous analysis, particularly negative results. Effect sizes



for the SNP may differ and, in the extreme, may lead to

protection in one disease and susceptibility in another.

The second meta-analysis combines the results of an

analysis that includes covariates with the results of one

that does not include those covariates. The prioritized

SNPs would most likely be those SNPs whose associations

are largely independent of the covariates. Without recogni-

tion of this factor, information is incomplete, and valuable

associations may be lost. As a third example, consider

a meta-analysis combining studies that analyze a contin-

uous trait with studies that analyze the top quartile of

these trait values as cases and the bottom quartile as

controls. The prioritized SNPs will be those that show

a clear distinction between low and high trait values.

Thus, researchers need to consider the differences in ascer-

tainment or other aspects of the study designs that neces-

sitated treating the phenotype differently in the two

studies when interpreting their results.

Applications

Although many GWAS have used meta-analysis primarily

as a means of increasing power26 to achieve significance

that exceeds a study-wide threshold,17 the results can

also be used to prioritize SNPs or genes for subsequent

studies.27–32 In a cumulative meta-analysis, a new assess-

ment is made each time a study is conducted, which is

readily adapted to multiple GWAS of the same phenotype.

Cumulative meta-analysis is a form of Bayesian analysis

where early studies play the role of the prior probability

distribution12,33 and the new studies contribute to the

posterior probability. By combining the results of multiple

studies, power is increased and the number of false posi-

tives caused by statistical fluctuation is reduced over those

for a single sample. The expectation is that the true posi-

tive associations will rise to the top of the list.

As discussed previously, to obtain accurate meta-analysis

results, the studies must ask the same research question and

use similarly ascertained participants. The most common

research question for GWAS is whether the alleles at a

particular marker are associated with the disease status or

trait variability. Asking the same research question in each

study might appear to restrict the meta-analysis to the

intersection of SNPs genotyped in all of the studies.

However, imputed SNP results can be used provided that

similar procedures are applied in the imputation, the refer-

ence populations remain the same, and the researchers

carefully check for the effects of imputation error.15 In addi-

tion, there are explicit approaches to incorporate the uncer-

tainty due to SNP imputation into the meta-analysis.15,29

The results used in meta-analyses can be test statistics or

effect sizes. If test statistics are used, a variety of ways to

combine the results have been proposed. Traditional

approaches include Fisher’s method of combining p

values,34 and some researchers have used this method or

a weighted version in GWAS.35,36 These p value approaches

have disadvantages, most notably in that they cannot

provide an overall estimate of the effect size.17 GWAS
The
researchers have also converted the individual test statis-

tics into z scores31,32,36,37 and used odds ratios when the

phenotype is dichotomous38 and regression coefficients

when the phenotype is continuous.31,32,39

Weighting can provide more power and reduce the

effects of heterogeneity.40 Meta-analyses apply the prin-

ciple that, all else being equal, studies with large sample

sizes inspire more confidence than studies with smaller

sample sizes.41 This is often reflected by using functions

of the study sample sizes or the inverse of the variances

of the estimates as weights.15 Inverse variance weights

can be estimated under a fixed-effects model or under

a random-effects model.10,12 In general, fixed-effects

models assume that all genetic variation between studies

is due to random error, whereas random-effects models

also allow variation due to real population differences

such as ethnic ancestry, study design, or phenotypic differ-

ences.42 Random-effects models handle the possibility of

heterogeneity among studies better. The range of weights

tends to be less extreme than the range seen in fixed-effects

models. In general, a random-effects approach results in

more accurate estimates that generalize beyond the meta-

analysis samples. However, the standard errors will be

larger, reflecting an increase in uncertainty and making

the procedure more conservative. Importantly, Ioannidis

et al.42 point out that fixed-effects models lead to overcon-

fidence in results when there is heterogeneity between the

GWAS. This overconfidence could lead to false positives.

The fixed-effects approach has been used most often in

GWAS meta-analysis,29–31,38,39 possibly because (1) there

are readily available tests of heterogeneity to detect this

potential problem,20 (2) accurate population estimates are

not critical when the goal is to prioritize loci for follow-

up, and (3) software for running the fixed-effects approach

for GWAS meta-analysis is readily available (see for example

METAL, a meta-analysis tool for GWAS). However, random-

effects approaches have also been used43 and should

increase in popularity as more GWAS data become available

across a wide spectrum of populations, phenotypes, and

study designs andheterogeneity becomesmore of a concern.

For a more thorough discussion of weighting options as well

as other nuances of GWAS meta-analysis, we again direct the

reader to the review by Zeggini and Ioannidis.17

SNP prioritization after a meta-analysis has taken several

forms. Some investigators base their decision regarding the

SNPs most worthy of further study solely on the meta-

analysis p values,31,44 whereas others use predetermined

decision rules to allow other prior evidence as well as the

meta-analysis results to contribute to decisions.36,37 One

interesting application of this approach is to use the asso-

ciation results from one disease to identify candidate loci

for a second disease that cosegregates with the first. For

example, Fisher and colleagues45 use the GWAS results

for Crohn’s disease (IBD1 [MIM 266600]) to uncover candi-

date loci from ulcerative colitis (IBD [MIM 266600]), and

Smyth and colleagues46 use GWAS analysis of type 1 dia-

betes (IDDM [MIM 222100]) as candidate loci for celiac
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disease (CD [MIM 212730]) and vice versa. Although this

approach is attractive, particularly in limiting the number

of tests performed, it can be hard to know how to weight

the evidence supporting cosegregating disease partners.

Bayesian approaches provide an objective way to use this

extraneous information.

Bayesian Hierarchical Models

Although the majority of meta-analyses are frequentist in

their focus, Bayesian meta-analyses also have a well-estab-

lished history.41 Because Bayesian approaches hold much

promise for GWAS and because they are not as well known

as their frequentist analogs, we describe them here in more

detail. Whittaker and colleagues47,48 developed GWAS

meta-analysis approaches that use hierarchical Bayesian

models. These models are hierarchical because they assume

prior distributions on the parameters. These priors in turn

depend on hyperparameters drawn from some distribu-

tion. By incorporating HapMap linkage disequilibrium data

as prior information, Whittaker’s models allow for multi-

marker effects to be inferred even if these results were

not part of the available data from the individual studies.

Thus, they allow SNP prioritization by borrowing strength

across neighboring SNPs. Because this method selects the

most highly associated set of SNPs in a region, it is highly

computational and poorly adapted to genome scans.

Bayesian hierarchical models can be used to generalize

meta-analysis so that researchers can incorporate evidence

from a wide variety of sources to create informative priors

for the current study.49,50 This evidence can include prior

linkage or association results, SNP functionality, sequence

conservation in multiple species, biological plausibility, or

in fact anything upon which the user is willing to place

a prior distribution. Both Lewinger and colleagues49 and

Chen and Witte50 take a hierarchical approach and model

the data or summary statistics of the data with parameters

whose distributions are functions of additional hyperpara-

meters. These distributions of hyperparameters depend on

the locations and function of pertinent SNPs. The appeal

of this approach over more computationally simple

weighting schemes is that the relative importance of the

additional data is not fixed a priori but is instead deter-

mined as part of the model.

The goal is to determine the posterior probability of asso-

ciation for each SNP and then use these posterior probabil-

ities to prioritize the SNPs for additional study. In a fully

Bayesian approach, this probability is calculated by inte-

grating the joint probability over all possible values of

the hyperparameters. In GWAS with so many hypotheses

to test, this approach is computationally prohibitive.

Therefore, both Chen and Witte50 and Lewinger and col-

leagues49 rely on empirical Bayes approaches, where the

most probable values of the hyperparameters are calcu-

lated from the marginal likelihood of GWAS data and cova-

riates. The probability of association is then calculated

conditional on these values for the hyperparameters as

well as the observed data.
10 The American Journal of Human Genetics 86, 6–22, January 8, 201
Although the hierarchical Bayesian approach is quite

appealing and Witte provides R code on his website, we

could not find any published reports of GWAS using this

approach. This omission is possibly because of its compu-

tational complexity relative to meta-analysis or because it

is still difficult to decide which auxiliary covariates to use

and what values to use for the priors. There is no consensus

about what information should be used to create the prior

support or what the appropriate forms for the prior distri-

butions are. Both Lewinger et al.49 and Chen and Witte50

use gene conservation across species as well as the SNP’s

function as priors, but they define the priors in different

ways. In addition, Lewinger et al.49 include expression

results but do not include prior linkage or association

results, whereas Chen and Witte50 use association and

linkage results but not expression results.

Modeling Epistasis to Prioritize Associations

Motivation

SNPs that combine to make larger genetic effects can statis-

tically reflect an epistatic interaction, where the alleles of

one gene influence the effects of alleles of another on a trait

value or risk of disease. These interactions are by definition

nonlinear and thus can dramatically increase the trait or

risk. Epistatic interactions that have been identified in

humans include the interactions between the RET proto-

oncogene (RET [MIM 164761]) and endothelin receptor

type B (EDNRB [MIM 131244]) genes in Hirschsprung

disease51 (HSCR1 [MIM 142623]), the taste receptor genes

taste receptor type 2 member 16 (TAS2R16 [MIM 604867])

and taste receptor type 2 member 38 (TAS2R38 [MIM

60775]) in nicotine dependence52 (MIM 188890), the

interleukin 4 receptor (IL4 [MIM 147780]) variants and

interleukin 13 (IL13 [MIM 147683]) promoter variants

in asthma53 (MIM 600807), and the alpha- and beta-

adrenergic receptors (ADRA2A [MIM 104210] and ADRB2

[MIM 109690]) in congestive heart failure54 (MIM 212112).

Finding an interaction between SNPs increases their

priority for further study.

Despite an acceptance of the importance of epistatic

interactions, they have been difficult to detect. Most

computers can easily handle the marginal analysis of

hundreds of thousands of SNP predictors, but the assess-

ment of all pairwise or higher-order interactions requires

much greater computational resources and novel statistical

approaches that are less computationally intensive. For

example, likelihood ratio tests for interactions require

repeated maximum likelihood estimation, whereas score

tests are much less computationally intensive. However,

score tests do not provide estimates of effect sizes. In the

context of GWAS studies, interaction effects without prior

hypotheses of the important alleles are far more difficult to

detect than main effects. That is, if association studies are

underpowered relative to main effects, they have almost

no chance of picking up interaction effects when all possi-

bilities are explored. Even current studies with ten of

thousands of participants have trouble detecting and
0



confirming interactions when large numbers of SNPs are

typed. The combinatorial explosion of possible interac-

tions creates enormous difficulties in estimation, multiple

testing, and overfitting. In GWAS, even for main effects,

the number of predictors far exceeds the number of obser-

vations. Exhaustive examination of all pairwise interac-

tions is possible, but for multiway interactions the task is

totally impractical. We recommend making a compromise

by conducting less computationally intensive score tests

on all predictors and reserving more intensive likelihood

ratio testing and parameter estimation for those predictors

with the most significant score statistics.

Before moving on to discuss specific methods to detect

epistasis, we consider how to prioritize the results of

a GWAS that includes testing for interactions. Although

it is not required that an SNP be involved in interactions

to make it worthy of continued study, evidence of one or

more interactions provides additional support. We advo-

cate prioritizing SNPs that are most associated with a trait

regardless of whether that association takes the form of

a main effect or an interaction.

Statistical Methods

Interaction modeling has a long history in statistics, and it

is impossible to do justice to the topic in this review.

Readers wanting more extensive coverage are urged to

consult two excellent comprehensive review articles.55,56

Here we stress some recent advances in data mining that

can be used to prioritize GWAS results. In dichotomous

traits, logistic regression has been used to conduct associa-

tion tests for GWAS; alternative tests of equality of propor-

tions or Fisher’s exact test lack the flexibility to handle

multiple predictors. For continuous traits, linear regression

has been used for GWAS. A major strength of regression is

that it easily provides an opportunity to include interac-

tions. Among the other advantages of regression analyses

are (1) explicit parametric models; (2) stable algorithms

for parameter estimation; (3) availability of likelihood

ratio and F tests for both main effects and interaction

effects; (4) easy incorporation of covariates such as age,

sex, and ethnic origin; and (5) wide availability of reliable

and well-documented software. Most of the disadvantages

relate to the scale of current data sets and the excess of

predictors over observations. Among the disadvantages

are (1) failure of normality assumptions for quantitative

traits, (2) breakdown of large sample approximations

behind p values, (3) failure of search algorithms in under-

determined problems, (4) proneness to overfitting, (5)

failure to deliver spare solutions, and (6) the hierarchical

nature of the model selection requiring detection of

main effects before detecting interaction. Before explain-

ing how some of these defects can be addressed, it is useful

to briefly summarize some of the alternative methods to

detect epistasis.

The burgeoning field of data mining57 offers many

avenues to understanding interactions. Certainly, logistic

regression and discriminant analysis are closely allied. In
The
principle, any method of discriminant analysis can serve

to separate cases from controls. Discriminant analysis

methods such as CART (classification and regression trees)

and random forests are obviously relevant to interaction

modeling.58 Other, more tailored contenders include the

multifactor dimensionality reduction method,59–61 the

combinatorial partitioning method,62 and the restricted

partition method.63 Although these tools are helpful in

exploratory data analysis and excel in discriminating cases

from controls, they suffer from several limitations. For

example, purely combinatorial methods do not yield effect

sizes or p values and are incapable of handling covariates.

Depending on the algorithm employed, they can easily be

overwhelmed by large numbers of predictors and the

demands of cross-validation and permutation testing. In

response to these criticisms, some methods are being rede-

signed. For instance, Lou and colleagues52 have revised the

multifactor dimensionality reduction method64 to allow

for covariate adjustment, analysis of both continuous

and binary traits, and pedigree data. Their new formula-

tion owes an intellectual debt to the FBAT (family-based

association test) method.65,66 Other innovations include

introduction of entropy and conditional entropy mea-

sures of interaction67,68; exploitation of proximity mea-

sures between individuals69–71; and application of neural

networks,72 genetic programming,73 logic regression,74

pattern mining,64,75 and Bayesian partitioning76.

The need for objective evaluation of this bewildering

array of methods is obvious. Cordell55 stresses the impor-

tance of computational speed in handling massive SNP

data sets. As a practical matter, statistical methods and

software are inextricably intertwined. On the basis of

computational speed, and presumably of ease of use,

Cordell prefers the programs PLINK,77 Random Jungle,78

and BEAM,76 implementing standard regression, random

forests, and Bayesian partitioning, respectively. Musani

and colleagues56 are less specific in their recommendations

and suggest that a combination of methods may serve

consumers best. In our own research, we primarily use

PLINK77 for classical regression and Mendel79 for lasso

penalized regression.80–82 PLINK is user friendly, with

built-in data management and quality-control routines.

Mendel has fewer diagnostics but excels in model selection

when the number of SNPs far exceeds the number of indi-

viduals.

Before describing improvements to traditional para-

metric models, let us briefly mention some study design

issues. In case-only designs, one looks for nonindepen-

dence of marker genotypes. Among the possible tests for

departures from independence, it is worth singling out

chi-square tests, entropy, and max Z scores. These tests

have considerable power, but one should keep in mind

their limitations. Because they do not permit covariates,

they are susceptible to population stratification and

linkage disequilibrium. The underlying contingency tables

may be sparse, so permutation evaluation of p values is

a good idea. Unfortunately, permutation testing comes at
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a price of much heavier computation. At the other

extreme, pedigree data also entail real challenges. Unless

driven entirely by linkage disequilibrium, linkage analysis

requires pedigrees.

Ascertainment may be a problem, appropriate test statis-

tics are not always obvious, and combinatorial or linear

algebra barriers rapidly mount. For these and other

reasons, most geneticists are reluctant to abandon random

sample or case-control study designs.

Nature and Parameterization of Epistatic Models

For the sake of this discussion, we define epistasis explicitly

as deviation from linearity under a general linear model,

that is mi¼ dþ b1xiþ b2yi versus mi¼ dþ b1xiþ b2yiþ gxiyi,

where i denotes individual, xi and yi are two predictors, b1

and b2 are their main effect sizes, d is the intercept, and g is

the effect size for the interaction. In ordinary linear regres-

sion, trait variation is fully specified by a common variance

s2 and a mean mi specific to each person i. The residuals,

the deviations from the expected trait values, are assumed

to be normally distributed. In logistic regression, the vari-

ance parameter s2 disappears, and the quantity mi is used

to estimate the odds

Pðzi ¼ 1 j giÞ
Pðzi ¼ 0 j giÞ

¼ emi :

Suppose individual i has genotype gi and trait value zi. In

the absence of nongenetic predictors, the most general

model for a single SNP involves setting

mi ¼ 1fgi¼1=1ga1 þ 1fgi¼1=2ga2 þ 1fgi¼2=2ga3:

Here, 1C equals 1 when the condition C is true and

0 otherwise. The three parameters a1, a2, and a3 are

reduced to two in the additive model as a result of the

constraint a2 ¼ 1
2ða1 þ a3Þ. For initial screening, the addi-

tive model is adequate for two reasons. First, nature does

act linearly in many cases. Second, if the minor allele fre-

quency is low, then there will be little data to estimate

the effect of the rare homozygote. Another reason for

preferring the additive model is that the resulting test

requires only one degree of freedom, rather than the two

degrees of freedom required for the test under the general

model. Thus, we recommend using the additive model

for initial GWAS screening.

Epistatic modeling brings in a second SNP and more

parameters. Suppose person i has genotype gi at the first

SNP and hi at the second SNP. In the full epistatic model

given by Cordell,55

mi ¼ 1fgi¼1=1,hi¼1=1gg1 þ 1fgi¼1=1,hi¼1=2gg2 þ 1fgi¼1=1,hi¼2=2gg3

þ1fgi¼1=2,hi¼1=1gg4 þ 1fgi¼1=2,hi¼1=2gg5 þ 1fgi¼1=2,hi¼2=2gg6

þ1fgi¼2=2,hi¼1=1gg7 þ 1fgi¼2=2,hi¼1=2gg8 þ 1fgi¼2=2,hi¼2=2gg9:

This should be contrasted to the additive model, where

the effects of the two loci are independent of one another:

mi ¼ 1fgi¼1=1ga1 þ 1fgi¼1=2ga2 þ 1fgi¼2=2ga3

þ1fhi¼1=1gb1 þ 1fhi¼1=2gb2:
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Interaction can be tested by an F test or a likelihood ratio

test. In the additive model, the term 1fhi¼2=2gb3 is not

omitted by accident. It is redundant because in its pres-

ence, mi is invariant under the substitution of aj þ c for aj

and of bk � c for bk for any constant c.

With this degree of generality, testing for interactions

results in a four-degrees-of-freedom test. To increase power,

it is desirable to avoid the complexity of the full model.55 If

there is evidence for dominant or recessive effects, restric-

tions can be placed on the parameters that will reduce the

degrees of freedom. In the absence of this information,

assuming that the allelic effects are additive provides

a reasonable compromise between genetic truth and parsi-

mony. In that case, the interaction model with has five

parameters and the additive model has four, for a single-

degree-of-freedom test. Let xi equal �1, 0, or 1 according

as gi equals 1/1, 1/2, or 2/2. Similarly, let yi equal �1, 0,

or 1 according as hi equals 1/1, 1/2, or 2/2. In the simplified

interaction model, mi ¼ g1 þ xig2 þ yig3 þ xiyig4. Here,

interaction is tested by deciding whether g4 ¼ 0. In prac-

tice, one should standardize the predictor values yi to

have mean 0 and variance 1.

In her recent review, Cordell55 discusses tests of associa-

tion allowing for interactions. In the context of the gener-

alized linear model, assuming the allelic effects are addi-

tive, association of first SNP allowing for interaction with

second SNP is tested by deciding whether g3 ¼ g4 ¼ 0.

These tests will be less powerful than a single-locus test

of association when there are no interactions, but they

can be more powerful when there are interactions.3

In principle, there is nothing to prevent these models from

being implementedonpedigree dataas mean effects ina vari-

ance component model. In variance component models,

computation time scales as the cube of the number of people

within a pedigree, so screening vast number of interactions

with large pedigrees would be unrealistic. Instead, we recom-

mend testing for interactions with pedigree data in an

attempt to replicate interactions detected as part of

a GWAS. A beneficial side effect would be simultaneous

adjustment forthepolygenicbackground.Whenusingavari-

ance component model, a binary trait, such as disease affec-

tion status, can be treated as a quantitative trait that takes on

only two values, zero and one. To our knowledge, no one has

programmed this measured genotype model82 with interac-

tions, but it is clearly feasible in existing software.79,83

Prioritizing SNPs for Interaction Testing

The sheer number of interaction models is one of the

most vexing problems plaguing GWAS. With n predictors,

there are

�
n
k

�
znk=k! k-way interactions. For n¼ 106 SNPs,

this translates into nearly 5 3 1011 possible pairwise inter-

actions. Whether testing this many potential interactions

is feasible depends on computing resources. Ma and

colleagues84 calculate that it would take 5 years to conduct

this many t tests where they use linear regression to esti-

mate the parameter values and their standard errors on
0



their single-processor machine with 2000 individuals.

Parallel computing reduces this time considerably,3,84 but

analyzing 5 3 1011 interactions with data from thousands

of individuals takes weeks or months to complete.55 As

a separate issue, the problem of false positives versus power

due to multiple testing is even more of a concern than it is

for testing GWAS main effects.

Three strategies have been suggested to reduce the

number of pairwise interactions considered. First, one

can identify the top m marginal predictors and look at

interactions only among them. For m ¼ 100, this involves

a manageable

�
100

2

�
¼ 4950 models. The second strategy

is to consider all predictors paired with the top m predic-

tors. There are now

�
m
2

�
þmðn�mÞznm total models.

For our example, nm ¼ 108, which is a considerable

increase over the number with the first strategy. The third

strategy targets specific SNP pairs. These may be identified

through protein-protein interactions, regulation by a com-

mon transcription factor, or participation in a common

biochemical pathway.85–87 The net cast can be wide or

narrow. This approach overlaps with the approach of using

molecular pathways to prioritize GWAS results that is

discussed in the next section.

All three strategies involve a tradeoff between mini-

mizing computation and multiple comparisons and maxi-

mizing power. Researchers can try all three strategies, but

they should be honest about how finely they sift the data

and adjust their criteria for choosing SNPs for follow-up.

Strategy three may ultimately be the one of choice, but

as discussed in the next section, currently it runs the risk

of missing many important connections. The knowledge

of networks stored in current databases is not up to the

task. The more agnostic strategies one and two are perhaps

safer if one is willing to pay the price of more multiple

comparisons. In our own program Mendel,79,80 the user

can specify any of the three strategies.

Detecting Epistasis with Penalized Regression

A variety of alternative methods to classic regression have

been proposed for detecting interactions. Cordell55

provides a comprehensive review of Bayesian model selec-

tion approaches, penalized regression, and data-mining

methods, including tree classification. Rather than repeat

her comments, we focus specifically on one approach,

lasso penalized regression,80,81,88,89 that is particularly well

suited to GWAS interaction detection when the number of

SNPs vastly exceeds the number of subjects.

We begin by pointing out the difference between select-

ing interactions and formal testing of interactions. As

a matter of principle, geneticists do not accept a single

study as definitive, and all important findings are subject

to replication. This attitude, whether justified or not in

a preliminary study, places the emphasis on finding the

most important SNPs for further study rather than on

declaring their global significance. So instead of setting
The
a significance level and only following up on interactions

whose p values are smaller than that significance level, it

is just as sensible to fix some number m, identify the m

most significant associations, and then target these for

follow-up with interaction studies. The value of m depends

on resources. Because predictors are often correlated, via

linkage disequilibrium, the m most significant predictors

identified by simple linear regression may not constitute

an optimal set for follow-up.

Fortunately, penalized regression is an ideal vehicle for

finding a small subset of potent but weakly correlated

predictors. This computational advance performs con-

tinuous model selection while avoiding some of the

drawbacks of traditional forward and backward stepwise

regression. It is also exceptionally quick computation-

ally and adapts readily to allow screening of multiway

interactions.

During the last 20 years, statisticians began to consider

data sets where the number of predictors far exceeds the

number of observations, precisely the situation in GWAS.

Prior experience with shrinkage estimation suggested to

statisticians and other mathematical scientists88,90–93 that

adding penalty terms to the likelihood or other objective

function might stabilize parameter estimation. It soon

became apparent that the form of the penalty was crucial.

A ridge penalty, basically a sum of squares, was the most

obvious choice for a penalty. After considerable experi-

mentation and reflection, statisticians discovered that

a sum of absolute values is more effective. This lasso

penalty not only shrinks parameter estimates, it also zeros

out the majority of them, thus achieving model selection.

The strength of the penalty determines the number of

predictors that enter a model.

Several authors have explored lasso penalized ordinary

regression81,89,94–96 in both the l1 (least absolute deviation)

and l2 (least-squares) settings. Much of their work is largely

preserved in logistic regression.80 To move from ordinary

to logistic regression, one simply substitutes the negative

loglikelihood for the loss function. Logistic regression

takes two to three times longer than ordinary regression.

This approach to the identification of epistatic interactions

is programmed and available in the Mendel software. The

British celiac GWAS data97 were analyzed for epistasis

with the lasso regression module.80 In an analysis of the

50 most significant associations, epistatic interactions

between two human leukocyte antigen (HLA) SNPs and

three SNPs on chromosomes 2, 3, and 8 were observed.

It is particularly noteworthy that the univariate GWAS

p values for these three non-HLA SNPs, considered as

marginal effects, are far less impressive than their univar-

iate p values as epistatic effects. Strong epistatic effects

involving major histocompatibility complex (MHC) loci

are not limited to celiac disease and may be a hallmark of

diseases such as type 1 diabetes that have a strong associa-

tion with MHC loci. For example, Barrett and colleagues27

found a strong interaction between MHC loci and four

non-MHC loci where the effects of non-MHC loci are
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attenuated when an MHC risk allele is present. These anal-

yses suggest that strong epistatic effects can be helpful in

prioritizing SNPs for further study.

GWAS Pathway Analysis

GWAS pathway analysis (GWASPA) provides a means of

integrating the results of a GWAS and the genes in a known

molecular pathway to test whether the pathway is associ-

ated with the disorder. This approach is compelling, in

that it addresses two important elements of post-GWAS

prioritization: the selected pathway provides a biological

vehicle for statistically combining GWAS association

results, and an implicated pathway provides a biological

interpretation. However, although GWASPA is appealing,

the analytic methods are at an early stage of development,

and additional factors regarding study design and statis-

tical analysis need to be addressed. Here we (1) provide

a conceptual framework and motivation for GWASPA, (2)

highlight the factors to include, (3) present some online

pathway resources, and (4) discuss design and statistical

issues for successful GWASPA. Throughout this section,

publications that identify and address analytic issues in

GWASPA are reviewed, and guidelines for conducting

GWASPA with the currently available tools are suggested.

We do not discuss the methods that are being used to

develop and establish pathways in this review, although

GWAS results could also be used to support that process.

Defining Pathways and GWASPA Motivation

Although the term ‘‘pathway’’ is often used to describe

molecular processes, its definition and application are

context dependent. Pathways have been used to represent

a wide range of biological processes that include cell func-

tions, metabolic processes, biosynthesis, genetic information

processing such as DNA repair, cell signaling, immune

responses, features of embryo development, and factors

leading to human diseases. In the context of the cell,

a pathway represents a series of actions among molecules

that lead to a particular endpoint or cell function. The genes

that coordinate toachieve a specific task are grouped together

in the same pathway to reflect that process. Those genes are

sometimes referred to as gene sets and are often put on

a pathway diagram that indicates the order in which the

genes act and interact within the pathway. Alternative paths

involving the same or different genes that lead to the same

end result are also part of the pathway. There is a growing

list of pathways that are at varying stages of completion,

and the same genes appear in many of them. In addition,

there may be ambiguity about the structure of a pathway,

making pathway development an active area of investigation

and the application of pathway methods difficult to conduct

with certainty. Given these constraints, GWASPA, although

compelling on a theoretical level, have been challenging to

apply and interpret. The application of pathways is likely to

identify larger genetic effects than those seen with GWAS,

and a recent commentary on GWAS7 advocates GWASPA as

the next step in the process of GWAS data mining.
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A plausible model that motivates the application of

GWASPA derives from the recognition that biological

processes result from reaching successful endpoints in

multiple molecular pathways and that a sufficient number

of small disruptions in a sufficient fraction of those path-

ways may lead to a disorder. This molecular genetic model

is similar to the older statistical multifactorial/threshold

model (MTM), which postulates that small equal and addi-

tive variants in the genes that contribute to a biological

process accumulate until a risk threshold is crossed, result-

ing in a disorder. The classic disorder that illustrates the

MTM is the birth defect of cleft palate98 (CL/P [MIM

119530]), where the closing of the structure that becomes

the palate is contingent on a number of successfully timed

molecular processes. If we postulate that the variants that

accumulate are in genes contained within pathways that

control palate closure, a GWASPA can be viewed as

a natural extension of the MTM when SNP association

data are available. A GWASPA of cleft palate would be

accomplished by identifying the associated GWAS SNPs,

postulating the likely pathways involved during fetal

development, and connecting them analytically.

Pathway heterogeneity is an important factor, because

disruptions in different pathways are likely to lead to the

same disorder. Although affected individuals may share

the same disrupted pathways, the mutated genes or vari-

ants within those pathways are likely to differ. GWASPA

accommodate and capitalize upon this substantial degree

of genetic heterogeneity. In addition, multiple GWAS are

easily combined in a way that is potentially more powerful

than the combinations of individual genes by meta-anal-

yses. Genetic heterogeneity among ethnic groups, which

has been a source of concern in GWAS, will not affect

GWASPA if ethnic groups each contribute associations

with different genes and alleles in the same pathways.

This strength of GWASPA is illustrated by the analysis of

the IL12/IL23 pathway in multiple ethnic groups having

Crohn’s disease99 (IBD1 [MIM 266600]).

Critical Factors for a GWASPA

A successful GWASPA involves five steps that are enumer-

ated here and discussed in greater detail subsequently.

The first step is to select one or more pathways for the

GWASPA. Biological insight and perhaps postanalysis

examination of GWAS results drive this. The second is to

select the most appropriate database (or databases) to

delineate the genes in the pathway (or pathways). There

is substantial variation regarding the genes in pathways

named to represent the same process, and the specific

genes that comprise them may be contingent upon the

database used. The third is to assign the GWAS SNPs to

known genes within the selected pathway, as given in

the selected database. Rules for gene assignment or

SNP exclusion are required because, given our current

knowledge of the genome, a substantial number of the

SNPs on GWAS platforms do not explicitly tag particular

genes. The fourth requires a pathway scoring system that
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addresses the biases inherent in the unequal distribution of

SNPs among pathways resulting from differences in

pathway and gene size and SNP density. The fifth is to

identify a statistical approach for aggregating the GWAS

results that allows one to formally test the selected

pathway for association with the disorder under analysis.

Choices made for these five factors will have a substantial

impact on the GWASPA outcome, and our recommenda-

tion is that each of the factors be addressed and justified

for each study. Although fixed guidelines would simplify

GWASPA substantially by providing analytic tools that

streamline the process, they would also remove much of

the creativity from the studies in this nascent stage of devel-

opment, making their development and application

premature. Therefore, we suggest and anticipate that

GWASPA for a given trait will be tailored based on the inves-

tigators’ backgrounds, biological insights making it doubt-

ful that fixed guidelines about the choice of database, algo-

rithm to tag genes with SNPs, or statistical test will be

constructive. However, GWASPA manuscripts should be ex-

pected to justify the choices, and their results should be in-

terpreted in a context-specific manner. The next subsec-

tions are written to help elucidate those choices.

Identifying Pathways for GWASPA

There are two general approaches to identify pathways for

GWASPA. The first and most straightforward is to formu-

late a prior hypothesis regarding the pathways that are

likely to be involved in the disorder. This approach is

similar to the one used in candidate gene studies. Testing

candidates has become obsolete given the unbiased nature

of GWAS, but as yet, no approach to an unbiased evalua-

tion of pathways has been proposed, and selecting ‘‘candi-

date pathways’’ remains the method of choice for prior

selection. As an example, the pathways containing genes

associated with inflammation are good candidates for

GWASPA of autoimmune diseases. Multiple inflammation

pathways can be tested for a single autoimmune disorder,

or GWAS of multiple autoimmune disorders can be com-

bined in the same GWASPA. The differences in genotyping

platforms and sample sizes will have to be considered, just

as they are when conducting a meta-analysis.

The second approach uses the results of the GWAS to

guide the choice of candidate pathways. Tests that use this

information are biased by the observed results, and

although the methods of analysis are the same as those in

the first option, the results will have to be interpreted

within this context. That is, the GWASPA merely assess

whether the accumulated data are consistent with a role

for the pathway. We recommend that replication in an

independent study sample be performed to implicate the

pathway formally. If replication samples are available, this

approach provides an appealing GWASPA study design.

Choosing Pathway Databases for GWASPA

Information regarding the structures of specific pathways

is stored within web-based databases. A comprehensive
The
listing of these pathway resources is in the Pathguide,

which currently provides information for about 300 data-

bases that are evolving rapidly in both size and number.

Among those described, the Kyoto Encyclopedia of Genes

and Genomes (KEGG) is easy to access and commonly

used. It is being developed at Kyoto University and

provides gene lists, diagrams, and pathway classification

tools for many aspects of biology. Alternatively, the Gene

Ontology (GO) project seeks to provide a set of structured

vocabularies for specific biological domains that can be

used to describe gene products in any organism. It was

initiated by scientists associated with model organism

databases, and each of these model organism information

systems is annotating genes and gene products with GO

vocabulary terms. Tools enabling curators and researchers

to query and manipulate the vocabularies are provided.

Analogous information is provided in the Database for

Annotation, Visualization and Integrated Discovery

(DAVID) and Protein ANalysis THrough Evolutionary Rela-

tionships (PANTHER). These databases were built sepa-

rately, address different audiences with different research

questions, and are evolving as our knowledge of pathways

continues to develop. Thus, GWASPA results will be con-

tingent upon the pathway resource used, which is clearly

illustrated in a recently published study by Elbers and

colleagues.100 The authors use several currently available

databases to conduct GWASPA of the same Wellcome Trust

Case Control Consortium (WTCCC) data, a publicly avail-

able resource. They conclude that although the analyses

can highlight the relevant gene associations, the results

are likely to be biased by which database is used. The

authors find that the differences in study outcome reflect

the differences in the pathway information included in

the resource and the way in which the information is orga-

nized. Thus, for GWASPA, we recommend using several

databases for a single pathway and incorporating an algo-

rithm for deciding whether the pathway is associated

when the results are inconsistent across the databases.

Assigning SNPs to Genes in Pathways

Once the pathway and database (or databases) are selected,

SNPs in the GWAS panel should be assigned to specific

genes in the pathway. Current genotyping platforms select

SNPs based on linkage disequilibrium patterns that sup-

port coverage of the base-pair positions across the chromo-

somes rather than coverage of genes in particular path-

ways, making assignment of some SNPs difficult. This

problem has already been observed in GWAS, where strong

associations have sometimes been difficult to interpret

because of the location of the SNP in relation to the flank-

ing genes. For SNPs in the coding and known regulatory

regions, assignment is straightforward. For the other

SNPs, rules for assignment should be made, although

they are likely to be considered arbitrary. As an example,

Torkamani and colleagues,101 who are interested in illus-

trating the polygenic and multiple-pathway nature of

complex disorders, consider the possibility of an SNP
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mapping to multiple genes. They set a specific hierarchy

for gene elements to help with their assignment, where

their scheme is coding > intronic > 50UTR > 30UTR > 50

upstream > 30 upstream. It is difficult to assign SNPs that

are 500 or more kb from a known gene, and these may

have to be excluded from the analysis. We recommend

constructing a formal rule for assigning SNPs to genes

based on the most current research regarding this problem.

Scoring Pathways in an Unbiased Fashion

Several sources of bias that derive from the differences in

pathway and gene size and SNP density must be addressed.

Well-developed pathways are more likely to be included in

the publicly available databases and are therefore more

likely to be identified by GWASPA. Larger pathways con-

taining greater numbers of genes, and thus larger numbers

of genotyped SNPs, are expected to show more associated

SNPs by chance alone. These introduce bias into GWASPA.

SNP density is not consistent among genes and contributes

a similar source of bias. Unless corrections are made, there

is bias toward implicating the pathways that are large and

well known with large genes that are more densely covered

by the SNPs in the GWAS panels. This problem has been

recognized by some investigators applying GWASPA.

Currently, the most frequent approach is to select a single

SNP with the strongest association signal from each gene.

This is not optimal, because it does not remove all of the

bias, and the significance of pathways that contain a few

genes with multiple independent association signals may

be lost. In a recent analysis, Holmans and colleagues102

correct for linkage disequilibrium among SNPs and gene

size by only counting each gene once in the analysis,

regardless of how many significant associations were

observed. Yu and colleagues103 also treat genes as the units

of analysis, and for each gene they provide the most signi-

ficant multiple testing-adjusted p value. Wang and col-

leagues104 also focus on the gene and use the SNP with

the most significant permutation p value to represent it.

They recognize that although only one SNP is used per

gene, the size of the gene and pathway and the density

of SNPs are still factors that could contribute to the type

1 error. The authors use an enrichment score based on

a weighted Kolmogorov-Smirnov running sum statistic

calculated for the genes in the known pathway, and to

address bias, this enrichment score is normalized so that

different pathways are directly comparable.

Statistical Considerations in GWASPA

A formal GWASPA includes a test statistic that reflects the

aggregation of GWAS associations for the genes in the

tested pathway. The observed value of the statistic is

compared to its expected value under the null hypothesis

of no association with the pathway and compared to its

standard error. It is difficult to formulate a null distribution

from which to derive these values. Permutation tests have

been conducted to assess significance, and fortunately,

they can also be used to adjust for many sources of bias.
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A choice of what to permute is sometimes not straightfor-

ward; the investigators may have to use the original geno-

type data, and the computational burden can become

substantial. It is also possible to construct a null distribution

with scores from the pathways that are deemed unlikely to

be associated with the disorder, but each pathway has

a different configuration, making the choices for this anal-

ysis arbitrary. Additional factors that must be considered are

the choice of a cutoff value for classifying a gene as having

a positive signal, the methods by which the p values are esti-

mated and aggregated, the approach used to correct for

multiple testing, and the level of significance that is set to

implicate a pathway. We recommend justifying these

choices in reporting and interpreting GWASPA. Methods

presenting options for these choices are discussed below.

The scarcity of formal GWASPA methods has not been

a deterrent to their application. The manuscripts devel-

oping and using this approach are creative and provide

encouragement, although there are clear ambiguities in

their findings. Lesnick and colleagues105 demonstrate that

SNPs in the axon guidance pathway collectively predispose

to Parkinson’s disease (PD [MIM 168600]) even though no

individual SNP reaches genome-wide significance level;

Dinu and colleagues106 show that multiple complement

factor pathway genes, in addition to complement factor

H, are associated with the risk for developing age-related

macular degeneration (ARMD1 [MIM 603075]); and Ask-

land and colleagues107 implicate genes mediating ion

channel activity and synaptic neurotransmission in bipo-

lar disorder (MAFD1 [MIM 125480]), illustrating the broad

application of GWASPA.

Several manuscripts have made the analytic approaches

to GWASPA their focus.5,100–104,108 An early method devel-

oped by Wang and colleagues104 uses the gene-set enrich-

ment analysis (GSEA) algorithm to aggregate p values109.

Their approach has been motivated by analyses of microar-

ray data where genes in the pathway are ranked by their

strongest empirical p value test statistic. The test statistics

for genes within pathways are aggregated via a Kolmo-

gorov-Smirnov-like running sum. The p value is estimated

by permutations, where the phenotype labels of cases and

controls are permuted a fixed number of times, and the

pathway score is calculated for each permutation. A z score,

which is the difference between the observed value of the

score and the mean of the scores for the permutations

divided by the standard deviation of the scores for the

permutations, provides the overall level of significance.

Using this approach, they implicated the involvement of

cell adhesion molecules in autism spectrum disorder (ASD

[MIM 209850]). In a more extensive analysis via the same

approach, the Wnt signaling pathway was studied in type

2 diabetes (NIDDM [MIM 125853]) and did not survive a

p value correction for the testing of multiple pathways.110

More recently, Yu and colleagues103 presented an alter-

native approach to accumulating p values for GWASPA.

They base their analysis on the adaptive rank truncated

product statistic p value, which selects for analysis of the
0



k most significant genes or the set of genes with a p value

less than a certain threshold. Their analysis optimizes the

selection of truncation points and corrects for multiple

testing by permutation analyses. Through simulation,

they illustrate the important statistical property that the

type 1 error rate is the expected 0.05 under different anal-

yses for two different pathway models, thus indicating that

their permutations successfully correct for the bias intro-

duced by gene and pathway size and SNP density. The

authors also provide a comprehensive analysis of their

method and that of Wang104 and indicate that their

analytic approach is less computationally intensive.

In a very recent example of how GWASPA can be used to

accumulate relatively weak SNP associations, Baranzini

and colleagues111 report the details of a follow-up analysis

of multiple sclerosis. They begin their work with the

premise that many of the SNP associations that have not

been classified associated under a genome-wide level of

significance are in fact true associations with effects that

are too small to detect without their aggregation into path-

ways. Guidance in pathway construction is provided by

known protein interactions and the GO database.112 As

with previous studies, one marker is selected for each

gene in a pathway, and associations occurring in gene

deserts are excluded. In order to identify those pathways

specific to multiple sclerosis and other autoimmune, neu-

rological, and unrelated diseases, data from the WTCCC

are analyzed in a similar fashion, and their outcomes as

well as pathway randomizations provide the control

results for comparison. More specifically, the test statistic

accumulates a score by converting the p value for each

gene into a z score that is accumulated over the genes in

the pathway contributing to the score. The expected value

for the sum is derived from a random set of genes from the

genome and their permutations, and the test statistic is

a normal score. The choice of genes to include in the

random set impacts score. A formal discussion of the

features of their statistical approach is not provided, but

a clear description of the method is given. As expected

for preliminary groundbreaking studies, the authors indi-

cate that the interpretation of the implicated pathways

for multiple sclerosis is not straightforward, and their find-

ings are somewhat ambiguous.

The statistical methods for GWASPA that have been

described and applied differ mainly in the approach used

to accumulate the associated SNPs. A formal analysis could

clarify whether any of these is expected to be more power-

ful than the others. The methods involve permutation

testing, which can incur a computational burden,

although they address some of the sources of bias. Prob-

lems associated with testing multiple pathways are not

straightforward and remain to be addressed. The most

conservative approach would be a Bonferroni correction,

based on the number of pathways tested, although the

pathways are not necessarily independent. We recom-

mend that each factor in the GWASPA be examined care-

fully before any inferences are drawn, and the most
The
effective approach to validate the inferences would be

a replication in a comparable independent study sample.

Future Directions

This review focuses on three statistical methods that can be

used to prioritize GWAS results for in-depth follow-up

studies and reveal associations that were not detected

initially. Thus, our first suggestion for future studies is to

apply these methods to the available GWAS data following

our recommendations. As the analytic methods evolve and

new approaches are published, the results can be reconsid-

ered and evaluated. Additional suggestions are targeted

toward individuals who are focused on developing statis-

tical methodologies. We enumerate some of the analytic

problems that need solutions below. The WTCCC data

have been used to evaluate some of the methods reviewed

here and may be appropriate for the new ones that are

developed. The available data for these purposes may

increase as studies are published. It is possible that forums

and workshops could be conducted to compare and

improve these methods.

Besides the already discussed challenges of defining

appropriate priors for Bayesian meta-analyses, a number

of challenges exist. As the number of studies increases, so

can heterogeneity and errors. Thus, the development of

better tests of heterogeneity and other post hoc quality-

control measures are needed to improve the reliability of

meta-analysis. Sequence data will increase the number

and nature of the polymorphisms that need to be consid-

ered in a meta-analysis. Thus, we will need methods that

allow incorporation of association results from sequence

data to be combined with SNP chip data in a cumulative

meta-analysis. With a few exceptions,47,48 most meta-

analyses consider the results for each SNP on its own.

Thus, there is a need for highly computationally efficient

methods that can model the effects of multiple SNPs in

a region as well as gene-by-gene interactions.

The challenge for detection of epistasis is better under-

standing of the underlying biological processes rather

than new statistical methods. Elucidation of metabolic

and catabolic processes would help us understand the

effects of the environment. When gene 3 environment

interactions are not adequately taken into account, the

residual trait variation may overwhelm the evidence for

epistasis. In addition, detection of epistatic effects is hand-

icapped by the number of potential tests. Issues regarding

multiple testing can be circumvented by development of

informative priors that capitalize on network relationships

or evidence from realistic animal models.

A number of important analytic issues remain for those

contributing to GWASPA methodology. It is the newest

and least developed approach of the three discussed here.

The most general issue that, if solved, would make

a substantial contribution to these studies would be to

develop a method to examine all possible pathways within

some defined domain so that an unbiased approach could

be taken in identifying the associated pathway (or
American Journal of Human Genetics 86, 6–22, January 8, 2010 17



pathways). Such approaches will be computationally inten-

sive and biologically challenging. The current methods

select the most significantly associated SNP from each

gene. But it may be that the pathways with genes having

multiple independent associated SNPs should be weighted

more heavily. GWASPA methods to establish these con-

trasts may be very useful in pathway prioritization. Accu-

mulating the effects of multiple types of mutations in

one analysis can make the statistical power to implicate

pathways substantial, and the emerging methods of

GWASPA should be based on an appeal to this complexity.

Risk alleles for a given disorder may be all common or all

rare, but it is most likely that the alleles will be drawn

from both categories. GWASPA methods should be de-

signed to capture both. Associated alleles in a pathway

may also exhibit epistasis. GWASPA methods should be

developed to include these effects. However, epistasis is

tested by the formal models, and it will not be straightfor-

ward to incorporate this feature. The permutation studies

that are currently being conducted require raw genotype

data, which are not always available. An important meth-

odological improvement would make the p values alone,

and not raw data, the basis of analysis in GWASPA.

In conclusion, although these three statistical approaches

have limitations and analytical challenges, they also

provide a means to prioritize genes for bioinformatics and

laboratory studies focused on identifying causal variants

and their biological roles. In addition, post-GWAS studies

are likely to provide a clearer picture of the true role of

common variants in common complex disorders.
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Web Resources

The URLs for data presented herein are as follows:

Cross-Disorder Phenotype Group of the Psychiatric GWAS

Consortium, http://pgc.unc.edu/

Database for Annotation, Visualization and Integrated Discovery

(DAVID), http://david.abcc.ncifcrf.gov/

Gene Ontology Annotation (GOA) database, http://www.ebi.ac.

uk/GOA

HapMap, http://hapmap.ncbi.nlm.nih.gov/

Kyoto Encyclopedia of Genes and Genomes (KEGG), http://www.

genome.jp/kegg/

Mendel software, http://www.genetics.ucla.edu/software/mendel

MetaCore software, http://www.genego.com/metacore.php

METAL software, http://www.sph.umich.edu/csg/abecasis/metal/

Online Mendelian Inheritance in Man (OMIM), http://www.ncbi.

nlm.nih.gov/Omim/

Protein ANalysis THrough Evolutionary Relationships

(PANTHER), http://www.pantherdb.org
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R script (Chen and Witte), http://www.epibiostat.ucsf.edu/

witte_lab/gwa.htm

Wellcome Trust Case Control Consortium (WTCCC), http://www.

wtccc.org.uk/ccc2/wtccc2_studies.shtml
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