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Abstract
G protein-coupled receptors (GPCRs) are a large superfamily of signaling proteins expressed on the
plasma membrane. They are involved in a wide range of physiological processes and, therefore, are
exploited as drug targets in a multitude of therapeutic areas. In this extent, knowledge of structural
and functional properties of GPCRs may greatly facilitate rational design of modulator compounds.
Solution and solid-state nuclear magnetic resonance (NMR) spectroscopy represents a powerful
method to gather atomistic insights into protein structure and dynamics. In spite of the difficulties
inherent the solution of the structure of membrane proteins through NMR, these methods have been
successfully applied, sometimes in combination with molecular modeling, to the determination of
the structure of GPCR fragments, the mapping of receptor-ligand interactions, and the study of the
conformational changes associated with the activation of the receptors. In this review, we provide a
summary of the NMR contributions to the study of the structure and function of GPCRs, also in light
of the published crystal structures.
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G protein-coupled receptors (GPCRs), also known as seven transmembrane-spanning
receptors (7TMRs), are a large superfamily of signaling proteins expressed on the plasma
membrane that function as receivers for extracellular stimuli [1]. About 1000 GPCRs have
been identified in the human genome [2]. Since their signaling is involved in numerous
physiological functions and pathological conditions, GPCRs constitute the molecular target of
a significant percentage of the currently marketed drugs. Moreover, many additional members
of the superfamily have been identified as potential targets for the treatment of a variety of
diseases and are the object of substantial drug discovery efforts. From the molecular point of
view, all GPCRs share a common molecular architecture, being composed of a single
polypeptide chain folded into a bundle of seven α-helical transmembrane domains (TMs)
connected by three extracellular and three intracellular loops (ELs and ILs). The N-terminus
is located in the extracellular space, while the C-terminus is in the cytosol (Fig. (1)).

Given that structure-based drug discovery is an efficient method to rationally design novel
drugs and improve the properties of old drugs, the scientific community has been striving for
a long time to shed light onto the elusive structure-function relationships of GPCRs employing
a variety of direct biophysical and indirect biochemical methods [3]. The most direct method
that has been used is X-ray crystallography. However, up until now, this technique has been
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applied successfully only to a limited number of receptors, namely rhodopsin, the unliganded
opsin, the beta-adrenergic receptors (β-ARs), and the adenosine A2A receptor [4–13]. In
particular, the low resolution projection map of bovine rhodopsin published by Schertler in
1993 [14] and the subsequent 2.8 Å resolution structure published by Paczewski in 2000 [15]
provided the first static three-dimensional (3D) pictures of a GPCR, and have been widely used
as templates for the construction of homology models. The subsequent recent publication of
the X-ray structure of the β-ARs and the A2A receptor [6;7;10;11] proved conclusively that
GPCRs share a common arrangement of the TMs, while suggesting a greater variability for
the extracellular and intracellular regions. This includes the second extracellular loop (EL2),
which, together with the portions of the TMs facing the extracellular side, is thought to line
the ligand binding pocket for the great majority of GPCRs.

On the basis of the available crystallographic information, various studies reported insights
into the structure and functions of GPCRs obtained through indirect methods such as site-
directed mutagenesis, zinc crosslinking of histidines, photoaffinity labeling and site-specific
chemical labeling (see as examples [16–22]). In this context, in silico molecular modeling
conducted in an iterative manner with the gathering of experimental data became a widespread
tool to infer the 3D structure of the receptors [23–25]. Like other researchers, we have
successfully applied this approach to the identification of modulators of several GPCRs (see
as examples [26–29]). Despite the relatively low sequence identity between rhodopsin and
most other GPCRs, which instilled many doubts on the reliability and the scope of rhodopsin-
based modeling, a recent comparison between in silico models and X-ray structure of theβ2-
AR firmly supported the applicability of homology modeling and molecular docking to the
study of GPCR/ligand complexes [30].

Besides crystallography, other direct methods of investigation aimed at gathering atomic-
resolution information have been also applied, among which electron crystallography, electron
paramagnetic resonance, UV absorbance and fluorescence spectroscopy, and, as we will
discuss at length in this review, nuclear magnetic resonance (NMR) spectroscopy (see as
examples [14;31–38]).

NMR spectroscopy, conducted in solution or in solid-state, is a powerful method to study
protein structure, protein dynamics, and protein-ligand interactions. NMR techniques are
routinely used in drug discovery for soluble protein targets [39;40]. Although their application
to GPCRs is hindered by difficulties related to the preparation of receptor samples and the
interpretation of the complex spectra, many studies directed towards a structural
characterization of GPCRs through NMR have been reported, providing useful information
for structure-based drug discovery.

The methods and technical challenges underlying the application of NMR spectroscopy to
membrane proteins and GPCRs have been covered in recently published reviews [41–43].
Here, we will focus on the advances in the understanding of the structure and function of GPCRs
that have been made through NMR studies. In particular, the review is divided in three sections:
in the first one, we will discuss attempts to determine 3D structures of GPCRs; in the second
one, we will illustrate studies on receptor-ligand interactions conducted by labeling ligands
and/or selected residues in the binding pocket; in the third section we will review studies
intended to elucidate the motions and the structural changes consequent to the activation of the
receptor, also conducted by labeling selected receptor residues.

1. Determination of the 3D structure of GPCRs
Many obstacles interfere with the determination of the complete 3D structure of a GPCR.
Structural studies by NMR require the assignment of all resonance picks in the spectra.
Since 1H is the only NMR active isotope abundantly present in proteins, a complete assignment
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of the complex NMR spectra for a whole protein the size of a GPCR is contingent to the
preparation of protein samples uniformly labeled with NMR active C and/or N isotopes.

NMR spectra are complicated by anisotropic nuclear spin interactions, such as dipole-dipole
coupling, chemical shielding anisotropy, and quadrupole coupling. Solution-state NMR, which
takes advantage of the averaging effect on anisotropic interactions due to the fast tumbling of
the samples, is routinely applied to the analysis of proteins with a molecular weight between
30 and 50 kDa. Solid-state NMR spectra, ideal for membrane proteins such as GPCRs, are
complicated by the restricted molecular movements that prevent the averaging of the
anisotropic effects, inducing a peak-broadening that lowers significantly the resolution of the
spectra [42;43].

The introduction of the magic-angle spinning and oriented-sample techniques substantially
addressed these problems. However, the complexity of the solid-state NMR spectra and
difficulties related to sample preparation have prevented, so far, the solution of the structure
of whole GPCRs through NMR. For these reasons, most of the studies have been directed
toward the solution of individual portions of the receptor structure either in aqueous solution
or in different lipid-mimetic solvents [41]. In Table 1, we report a synoptic view of the available
3D structural data. Additionally, for the NMR-derived GPCR fragments with 3D coordinates
available in the Protein Data Bank, we provide, in Fig. (2) and (3), a structural alignment with
the X-ray structure of rhodopsin and the β-ARs.

Transmembrane domains
We now know from crystallographic data that some of the TMs present kinks in their α-helical
structures, particularly pronounces in TM6 and TM7. These data emerged clear from NMR
studies, even before the publication of GPCR X-ray structures. In particular, kinks were
detected studying portions of TM6 of the Saccharomyces cerevisiae α-factor receptor (Ste2pR)
[44] and TM7 of the tachykinin receptor NK1 [45] (Table 1). Solution and solid-state NMR
studies of the TMs of the Ste2pR continued after the disclosure of the X-ray structure of
rhodopsin and, among other findings, confirmed the existence of the helical kink of TM6
previously detected through solution NMR with the a more sophisticated solid-state NMR of
the 15N labeled TM6 peptide in 1,2-dimyristoyl-sn-glycero-phosphocholine bilayers [46–49].
As mentioned, the kinks of TM6 and TM7 postulated on the basis of the NMR results are
consistent with the conformation of the homologous regions of the receptors that have now
been crystallized (Fig. (2), panel A) [12;15], supporting the idea that even structural data
gathered for isolated domains can be very informative. Probably, even greater insights could
be obtained from the analyses of larger substructures or even whole receptors. At this purpose,
Zheng and coworkers biosynthesized a quite large segment of the cannabinoid CB2 receptor,
including TM1, IL1 and TM2, using a fusion protein overexpression strategy [50]. The
preliminary results gathered by the authors for the 13C/15N labeled peptide argue in favor of
the applicability of this strategy to the synthesis of GPCR helical bundles for NMR studies.

Extracellular loops
While homology modeling based on the available GPCR X-ray structures allows the
construction of reliable models of the TMs, modeling the 3D structure of extracellular and
intracellular regions remains a difficult task [30]. Low sequence similarity as well as numerous
insertions and deletions, hamper an effective application of homology modeling to these
regions. NMR spectroscopy could prove particularly useful in solving this problem: the
structures of loops and termini of the receptor of interest could be derived through NMR and
subsequently combined with homology models to build complete 3D structures.
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To obtain structures of ILs and ELs close to the naturally occurring ones, many experimentalists
turned to the application of structural constraints meant to keep the termini at a distance
compatible with their role of connecting two TMs. In some cases, portions of the adjacent TMs
have been added to act as anchors for shackling loops or termini to the lipid environment.
Alternatively, the loops have been constrained with disulfide bridges between cysteines [51]
or S-carboxymethylcysteines [52] added to the peptide termini, with or without methylene
linkers [53].

Since for most of the GPCRs activated by peptides ligand binding is thought to occur at the
level of the extracellular domains, NMR analyses have been extensively applied to study
receptor-peptide interactions. For example, the contact interactions of CCK8–the natural
cholecystokinin peptide, composed of eight amino acids–with the N-terminus and EL3 of the
CCK1 and with EL3 of the CCK2 subtypes of the cholecystokinin receptors have been studied
by NMR by monitoring chemical shift perturbations and intermolecular NOEs [54–56] (Table
1). For the CCK2 the analysis has been complemented by integrating NMR-derived structural
information with rhodopsin-based homology modeling. With a similar strategy, the
interactions between the CCK1 and synthetic agonists have also been studied [57]. The
integration of homology modeling and NMR-derived information provided also a structural
hypothesis for the binding of substance P to the NK1 receptor, confirming and rationalizing
the results previously obtained through a variety of indirect biochemical methods [58]. A
similar approach also corroborated the postulated existence of a disulfide bridge between EL1
and EL2 in the thromboxane A2 receptor (TP), highlighting also the involvement in ligand
binding of the WCF motif of EL2 [59;60].

Lastly, Pham and coworkers developed an alternative methodology for studying GPCR loops
based on the computational design of a peptide containing segments that mimic the self
assembling of the ends of two TMs connected by the loop under examination [61]. When
applying their strategy to the analyses of EL1 of the sphingosine 1-phosphate receptor S1P4,
the authors obtained the best results with the coiled-coil strategy, i.e. by substituting the TM2
and TM3 segments with sequences from structurally characterized water-soluble proteins with
a pair of antiparallel helices oriented in a way consistent with the S1P4 homology model. The
addition of a disulfide bridge appeared also necessary to keep the helices together. The ability
of the peptide to bind an analog of the agonist’s headgroup suggested that EL1 adopted a
biologically relevant conformation. Here, we superimposed this NMR-derived structure to the
homologous regions in the crystal structure of the β2 receptor (Fig. (2), panel A) and, in
agreement with the conclusions of the authors, revealed a sensible conformation and orientation
for the TM2 and TM3 mimetics.

Intracellular loops
Since the ILs, and IL2 in particular, are directly involved in the coupling of the receptors with
the G proteins, [62–64] the experimental elucidation of the structure of these binding interfaces
would provide insights into the molecular mechanisms of the selectivity toward the various G
protein subtypes.

NMR studies of IL2 in the adrenergic α2A receptor, rhodopsin, the bradykinin B2 receptor, and
the vaspressin V1a receptor have been performed (Table 1) [52;65;66]. In particular, NMR
studies of the peptide corresponding to the IL2 of theα2A receptor revealed the presence of a
cytoplasmic helix not detected in the analogous rhodopsin peptides [65] or in the crystal
structure of rhodopsin. X-ray crystallography revealed that this helix, although not detected in
the β2, is indeed present in the β1 subtype [7;11].

Conversely, the NMR-derived structure of IL2 of the B2 receptor revealed a “U” shape [66]
similar to that detected in rhodopsin. Also in the case of the vasopressin V1A receptor, the
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NMR analysis of a linear and a cyclic IL2 peptide revealed a conformation in TFE/H2O solvent
similar to that shown in rhodopsin, particularly with the cyclic peptide [52].

The structure of IL3 has also been determined for several receptors, including the cannabinoid
CB1 receptor, the β2 receptor, and the parathyroid hormone PTH1 receptor (Table 1) [53;67;
68]. Of note, the IL3 peptide of the CB1 receptor (Fig. (2), panel A) assumed a helical
conformation in aqueous solution when Gαi1 was added, while a mutated IL3 formed just a
single helixturn [68]. The authors proposed the importance of this portion of IL3 in the
formation of the G protein binding interface.

Also for the ILs, hybrid solutions composed of molecular modeling and NMR studies have
been applied. In particular, Wu and coworkers derived by NMR the structure of all three ILs
of the thromboxane A2 receptor and subsequently incorporated them into a rhodopsin-based
homology model [51]. They consequently proposed a list of amino acid residues potentially
involved in the formation of the G protein-binding interface that proved consistent with
available mutagenesis data.

N-/C- termini
In addition to the mentioned NMR structure of the CCK1 N-terminus, the structure of the N-
terminus of PTH1 receptor has also been solved [69], revealing to be different from that of
rhodopsin (Fig. (2), panel A). These data confirm the idea that each GPCR may be characterized
by unique extracellular regions that contribute to the selectivity of the receptors for specific
ligands.

All the available GPCR X-ray structures are characterized by the presence of aα-helix, known
as helix 8 (H8), in the portion of the C-terminus proximal to TM7. NMR in conjunction with
CD spectroscopy confirmed the presence of an H8 for the CB1 andCB2 receptors, the Ste2p
receptor, the β1and β2 receptors, the angiotensin AT1A receptor, and the bradykinin B2 receptor
in detergent [70–75]. In Fig. (2), panel B, we superimposed the NMR-derived the β1 receptor
H8 to the corresponding segment of the crystal structure of the same receptor, revealing a very
good agreement between crystallographic and NMR data. Conversely, a random coil
conformation was detected in water for this region [71–73]. These conformational changes of
H8 have been speculated to be indicative of possible structural rearrangements consequent the
activation of the receptors. For instance, partial unfolding of H8 upon light activation has been
detected in rhodopsin by Fourier transform infrared (FTIR) and fluorescence spectroscopy
[76].

Several NMR studies of the rhodopsin C-terminus have been published [33;77;78]. Beyond
H8, this region resulted unstructured in aqueous solution, both in unphosphorylated or
phosphorylated form, while has adopted a defined 3D structure when phosphorylated and in
the presence of arrestin (Fig. (2), panel C) [78]. Here we could only compare this NMR-derived
structure (pdb code: 1nzs) with the crystal structures of lumirhodopsin and batorhodopsin (pdb
code: 2hpy and 2g87), for which this distal portion of the C-terminus has been determined.
The detected fairly high root mean square deviations of 5.5–6 Å suggest that the C-terminus
of rhodopsin undergoes a conformational change when bound to arrestin.

Yeagle’s approach to derive the structure of rhodopsin through NMR
Before the obtainment of high resolution X-ray structures of GPCRs, Yeagle and coworkers
devised a methodology intended to solve the 3D structure of portions of the receptors and
subsequently assemble them together. Through two dimensional homonuclear 1H NMR
analyses in solution, the authors determined the structure of overlapping peptides spanning the
entire sequence of the rhodopsin and subsequently computationally assembled the fragments
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into a single structure [79–81]. The information about the packing of the helical bundle,
necessary to put the pieces together, was gathered from electron paramagnetic spectroscopy
(EPS) [36;82;83], zinc crosslinking of histidines [16], and electron cryo-microscopy data
[84]. In the form of distance constraints, this was then applied to the NMR-derived fragments
through simulated annealing. Using different sets of experimental data collected for the ground-
state and activated (META II) rhodopsin, the authors intended to generate models for both
states (PDB codes: 1jfp and 1ln6). After the publication of the crystal structure of rhodopsin,
the authors discovered that the largest TM peptides yielded the best superimposition with the
corresponding segments of the crystal structure [85].

Here we superimposed Yeagle’s ground state rhodopsin to the crystal structures of the ground
state rhodopsin (PDB code: gzm), detecting a RMSD of the backbone of about 6 Å (Fig. (3),
panel A). The packing of the TM helical bundle is similar in the two structures, however,
Yeagle’s model predicts the presence of several non helical portions, in particular in TM7, not
confirmed by the crystallography. The intracellular and extracellular regions appear
significantly divergent in the Yeagle’s model and the crystal structure. We also superimposed
Yeagle’s Meta II rhodopsin to the recently solved crystal structure of opsin in its G protein
interacting conformation [8], detecting, also in this case, an RMSD of the backbone of about
6 Å (Fig. (3), panel B).

Whole GPCRs
Dispite the difficulties, several attempts to solve the structure of whole GPCRs by NMR are
currently being undertaken. Solution NMR spectroscopy experiments, conducted for the
uniformly 15N-labelled vasopressin V2 receptor, solubilized with lyso-
myristoylphosphatidylcholine, indicated the potential suitability of the technique for structural
studies of GPCRs. Notably, the authors observed over 250 amide peaks out of the expected
349 in their 1H,15N-TROSY spectrum [86]. Additionally, solid-state NMR studies of a
uniformly 15N-labeled and selectively 15N-Ile-labeled chemokine CXCR1 receptor in
magnetically aligned bicelles provided spectra that suggested the potential applicability of
NMR to structural determinations and the elucidation of structure-activity relationships (vide
infra) [32].

2. Mapping receptor-ligand interactions
Direct atomic resolution information on the interactions of GPCR with their ligands is available
through X-ray crystallography only for a limited number of receptors, while, for the great
majority of them, indirect methods of analysis have been used. A synergistic application of
mutagenesis studies, photoaffinity labeling, chemical modifications of the ligands, and
computational modeling has been the most common way of studying the determinants of ligand
recognition. Taken together, these results have contributed to the general definition of a
common binding pocket for GPCRs located towards the extracellular opening of the helical
bundle [87;88]. Also for receptors naturally stimulated by ligands that bind to their N-terminal
ectodomains, such as the calcium sensing or the glycoprotein hormone receptors, the possibility
of modulation through ligands that bind within their helical bundle has been demonstrated
[89–93].

In this context, structure-activity relationships (SAR) analyses and drug-discovery studies
would greatly benefit from direct experimental proofs of receptor-ligand interactions, such as
those that NMR could provide. Solid-state NMR spectroscopy has been applied successfully
to membrane proteins to detect ligand binding and to analyze protein-ligand interactions,
especially when coupled to selective isotopic labeling of specific residues located in the binding
pocket and/or of the ligand [94]. Through this expedient, significantly simplified spectra with
a manageable amount of signals have been obtained, thus rendering NMR applicable to the
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analysis of bioactive ligand conformations, protonation states, receptor/ligand interactions and
residue/residue interactions. Moreover, although not yet for GPCRs, NMR coupled to selective
isotopic labeling has successfully been applied to rational fragment-based drug discovery. In
particular, ligands or fragments that bind to specific pockets of a protein have been identified
by monitoring the changes in the chemical shifts of 15N or 1H-amide atoms in 15N-labelled
protein, an approach known as SAR by NMR [95;96].

Rhodopsin has been extensively studied by solid-state NMR coupled to selective labeling.
Before any high-resolution crystal structures were released, selective 15N-labeling of Lys
residues led to the conclusion that the distance between the protonated Schiff base by which
the retinylidene chromophore is covalently bound to K296(7.43 according to the Ballesteros
and Weinstein residue indexing [97]) and the E113(3.28) counterion (Fig. (4)) was greater than
4 Å [98]. The subsequent publication of crystal structures, revealed that the distance is, in fact,
about 3.5 Å.

The conformation of retinal and its interactions with rhodopsin have also been studied
extensively through NMR coupled to selective labeling. For example, high-resolution solid
state deuterium (2H) NMR experiments provided detailed information on the orientation of
retinal in the binding pocket and on the conformational changes that occur with the transition
from the ground state to the Meta I intermediate of the activation cycle. The study applied three
retinal analogues labeled with deuterium at three different pairs of adjacent carbons [99]. Ultra
high field solid-state magic angle spinning 2D homonuclear and 2D heteronuclear NMR
spectroscopy has also been used to study rhodopsin reconstituted with a uniformly 13C-labeled
11-cis-retinal. Complete assignment of the 13C and 1H chemical shifts for retinal highlighted
nonbonding interactions between the protons of the methyl groups of its ionone ring and the
nearby aromatic acid residues F208(5.43), F212(5.47), and W265(6.48) (Fig. (4)).
Furthermore, it was shown that binding of retinal involves a chiral selection of the ring
conformation, resulting in equatorial and axial positions for CH3-16 and CH3-17 [100].
Additional evidences of the interactions between retinal and rhodopsin in the ground and Meta
I states have also been obtained through NMR experiments conducted variously labeling the
ligand with 2H [101–104]. These data support the hypothesis that a strain in the polyen around
the cis bond assists the photoisomerization of retinal. A 13C-labelled 9-cis retinal isomer,
typical of isorhodopsin, has also been investigated, leading to similar conclusions [105].

Application to rhodopsin of an NMR technique named by the authors “selective interface
detection spectroscopy” (SIDY), based on the detection of the correlations between 13C atoms
of labeled ligands and 1H atoms of unlabelled receptors, led to the detection of several contacts
between the aliphatic carbons of the 11-cis-retinal ionone ringand residues in the binding
pocket. Although, SIDY data do not provide sequence-specific assignments of the contacts,
these could be identified by means of additional data, and, in the case of rhodopsin, resulted
in good agreement with the available crystallographic structures [106].

NMR spectroscopy provides also a very effective way of studying the conformational changes
that a ligand undergoes upon binding to a receptor. In this context, the analysis of the unbound
and receptor-bound 13C,15N-labelled neurotensin, a 13-residue peptide, revealed that the ligand
is in a disordered state in the absence of the receptor, while adopts a beta-strand conformation
when bound to the NTS1 receptor [107]. Similarly, the structure of the bradykinin (BK) peptide
bound to the bradykinin B2 receptor has been studied through solid-state NMR, revealing a
double S-shape structure [108]. These type of studies can be also conducted to rationalize the
biological activities of compounds on the basis of their bioactive conformations, as it has been
done in the case of two natural peptides active at the neuropeptide NPR-1 receptor one [109].
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In addition to conformational changes, NMR spectroscopy can also detect changes in the
protonation state of a ligand as a consequence of binding to a receptor. In this context, solid
state NMR experiments conducted with uniformly labeled 13C,15N-histamine bound to the
human histamine H1 receptor revealed that the ligand can bind either in a monocationic or a
dicationic form. On the basis of their data, the authors hypothesized that, in analogy with
rhodopsin, also in the case of the H1 receptor a protonation switch might be part of the activation
mechanism [110].

3. Detection of motions and conformational changes associated with
receptor activation

Upon binding of agonists, which typically occurs in proximity of the extracellular opening of
the helical bundle, GPCRs undergo a series of structural changes that cascade from the
extracellular to the intracellular part of the receptor and ultimately lead to G protein activation.
Detailed structural knowledge of the ground and activated state of the receptor and mechanistic
insights into the activation process would significantly assist drug discovery, allowing a more
rational design of compounds capable of stimulating or blocking the receptor.

A wealth of information has been derived by the analysis of mutations that affect the basal
activity of GPCR, either naturally occurring or generated through site-directed mutagenesis.
Mutations that cause an increase of the basal activity are likely to stabilize the activated state
of the receptor and are referred to as constitutively active mutants. Those that prevent the
activation of the receptor are, instead, called uncoupling mutants and are likely to stabilize its
inactive state or to disrupt the cascade of conformational changes that lead to signaling.
Through such mutational analyses, various molecular switches for GPCR activation have been
proposed [111;112]. Alternatively, the structural changes that occur upon receptor activation
have been monitored through electron paramagnetic resonance spectroscopy (EPR) [34;36;
83;113], UV absorbance spectroscopy [35], engineering of metal-ion-binding sites [16], as
well as site-specific chemical labeling coupled to fluorescence spectroscopy [37], and, as we
will see in the coming paragraphs, NMR spectroscopy. These data shed light onto a number
of intramolecular distances that are characteristic of the activated receptors. We recently used
these biophysically measured distances to construct a computational structure of the activated
rhodopsin based on coarse-grained and all atom simulations, and subsequently study the
dynamics of the activation process [114]. The substantial conformational changes predicted
by these indirect methods were not detected in the crystal structure of a photoactivated
deprotonated intermediate (PDI) of rhodopsin that shows absorption maxima consistent with
the META II state [13]. The crystal lattice may have prevented large-scale structural
rearrangements. However, a significant opening of the intracellular surface of the receptor and
a furthering of the intracellular ends of TM3 and TM6 have been captured in the crystal
structure of opsin with a fragment of the C-terminus of transducin. At least relatively to the
cytosolic half, this may represent the first detailed structure of an activated GPCR [8].

Compared to crystallography, NMR spectroscopy offers the possibility of conducting structural
analyses in a less constrained membrane-like environment. In this context, NMR is well suited
to the study of receptor activation through isotopic labeling of specific residues located in areas
affected by the structural changes. In this context, the specific labeling of rhodopsin led to
observance of the transition between its inactive and activated states.

2D-dipolar-assisted rotational resonance NMR measurements between 13C-labels on the C14,
C15, C19, C20 atoms of retinal and 13C-labeled G114(3.29), T118(3.33), G121(3.36), Y178
(4.68), G188(EL2), Y191(EL2), S196(EL2), and Y268(6.51), all located in the retinal binding
pocket, was performed for the ground state and META II rhodopsin (Fig. (5), panel A, purple
and green spheres indicate retinal and rhodopsin atoms, respectively) [115]. The results
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highlighted that the extracellular portion of the receptor undergoes conformational changes
upon activation. In particular, a large rotation of the C20 methyl group of retinal toward EL2
and also a translation of about 4–5 Å of the retinal chromophore toward TM5 were observed.
This displacement of retinal has been associated with the motions of the TM5, TM6, and TM7
predicted by different biophysical and biochemical methods [115]. Subsequent measurements
between the C19 and C20-methyl groups of retinal and 13C-labeled W265(6.48) confirmed
that, in agreement with what suggested by atomic microscopy [38], the movement of the beta-
ionon ring causes a reorientation of the side chain of W265(6.48) upon activation (Fig. (5),
panel A, a blue sphere indicates W265). In agreement with what seen in the crystal structure
of opsin [8], the study also suggested that TM6, but not TM3, undergoes a significant
rearrangement [116]. Most likely, the local movements triggered by the isomerization of retinal
cause a perturbation of the complex network of hydrogen bonds that stabilizes the helical
bundle of the ground state rhodopsin. This is suggested also by the comparison of the chemical
shifts of 15N and 13C-labeled wild type and mutant rhodopsin in the ground and META II states
[117], which, among other observations, led to the detection of the disruption of the strong
hydrogen bond between Glu 122 in TM3 and H211 in TM5 (Fig. (5), pink spheres indicate
Glu122 and H211), thus indicating a motion of TM5. A more recent study demonstrated that
the transition to META II is accompanied also by a displacement of EL2 from the retinal
binding site, and suggested that this displacement is coupled to the rotation of TM5 and the
breakage of the ionic lock connecting TM3 and TM6 [118]. As mentioned, all these
interconnected conformational changes caused by the photoisomerization of retinal eventually
cascade down towards the cytosolic portion of the TMs, thus leading to G protein activation.
To specifically monitor the changes that occur in this region, NMR spectroscopy of 19F labeled
rhodopsin has been applied after mutation of specific residues to Cys and subsequent
attachment of trifluoroethylthio groups via disulfide bridges (C65, C139, C140, C251, C316,
indicated by yellow spheres in Fig. (5), panel A). The results support the idea that the tertiary
structure of the cytoplasmic face of the receptor changes significantly upon light activation
[119;120].

Beyond the activation process, NMR analyses of 15N labeled rhodopsin have been applied also
to the study of the dynamics of the dark adapted receptor. In particular, a study on α-15N-Lys-
labeled rhodopsin revealed that, while the single Lys residue located in the C-terminus is
endowed with nanosecond scale movements, those located in different regions of the receptors
present micro- to millisecond timescale motions (Fig. (5), panel B). In contrast with Lys
residues, which in rhodopsin are located mostly in the cytosolic domains, Trp residues are, for
the most part, present in the TMs (Fig. (5), panel B). A subsequent study of α and ε-15N-Trp-
labeled rhodopsin, confirmed that there are micro- to millisecond timescale backbone motions
in the inactive dark state, while suggesting a substantial restriction of the Trp side chains to a
single specific conformation [121;122].

Conclusion
Despite the numerous technical challenges, NMR spectroscopy has the potential of becoming
a leading technique in the study of the structure-function relationships of GPCRs and their
interactions with ligands. In contrast to crystallographic methods, which provide high-
resolution but static molecular snapshots, NMR techniques can provide dynamic pictures of
receptor structures and receptor-ligand interactions, thus offering insights into the molecular
mechanisms of ligand recognition and receptor activation.

Through this article, we reviewed many of the contributions that NMR studies have given to
the understanding of the molecular structure and functioning of GPCRs. In particular, NMR
spectroscopy has been extensively applied to the study of individual portions of GPCRs, also
in combination with homology modeling. Through selective labeling of ligands and/or specific
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receptor residues, NMR studies have also been applied to the study of GPCR-ligand
interactions and to the investigations of the molecular changes coupled to activation of the
receptor.

Recently, dynamic nuclear polarization (DNP), a technique intended to increase the NMR
sensitivity by transferring the polarization of electron spins to nuclei, has been successfully
applied to the study the photocycle of bacteriorhodopsin, a 7TM light-driven ion pump with
some structural analogies to rhodopsin [123]. Due to the enhanced sensitivity of the
experiments, DNP allows the analysis of low concentration samples in a lower timeframe, and
the detection of low populated conformations.

The introduction of DNP, as well as other advances in solution and solid-state NMR
technology, together with progresses in the preparation of GPCR samples, are expected to lead
in the future to the determination of the 3D structure of whole GPCRs, and to provide further
mechanistic insights into the complex cascade of motions and rearrangements characteristic
of the activation process. Furthermore, these methodological advances are also likely to foster
the application of SAR by NMR techniques to the discovery of lead compounds for GPCRs
through NMR-based high throughput screenings and their subsequent structure-based
optimization.
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Figure 1.
The topology of G protein coupled receptors.
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Figure 2.
Structural alignment of the NMR coordinates of GPCR portions deposited in the PDB and the
crystal structures of the and bovine rhodopsin. Panel A: superimposition of the β2-AR crystal
structure (2RH1, red) with the NMR-derived structures of the N-termini of PTH1 (1BL1–white)
and CCK1 (1D6G, orange), EL1 of S1P4, (2DCO, aquamarine), IL3 of CB1 (1LVQ, light blue),
TM6 of Ste2pR (1PJD, yellow), and EL3 of CCK1 (1HZN, pink) and CCK2 (1L4T, dark blue).
Panel B: superimposition of the crystal structure of the β1-AR (2VT4, plum) with the NMR-
derived structure of H8 of the same receptor (1DEP, green). Panel C: superimposition of the
crystal structure of rhodopsin (2HPY, white) and the NMR-derived structure of the C-terminus
of the same receptor (1NZS, blue purple). Pictures prepared with Maestro 8.0.308, Schrodinger.
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Figure 3.
Superimposition of the crystal structures and the NMR-based three-dimensional models of
bovine rhodopsin. Panel A: Superimposition of the X-ray structure (1GZM, white) and the
NMR-based model of the ground state (1LN6, purple) receptor. Panel B: Superimposition of
the X-ray structure of opsin in its G-protein-interacting conformation (3DQB, orange) and
NMR-based model of Meta II rhodopsin (1JFP, green). Picture prepared with Maestro 8.0.308,
Schrodinger.
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Figure 4.
Two dimensional schematic representation of the retinal binding site in ground state rhodopsin.
Picture prepared with MOE 2008.10, Chemical Computing Group.
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Figure 5.
Panel A: Positions of the ligand atoms and residues labeled in order to study the activation-
related conformational changes of rhodopsin. The retinal atoms (C5, C9, C11, C13, C14, C15,
C19, C20) are in purple; residues 114, 118, 121, 178, 188, 191, 196, and 268 are in green;
residue 265 is in blue; residues 122 and 211 are in pink; the residues mutated to Cys to be
labeled with trifluoroethylthio groups are in yellow. For simplicity, only one carbon of the
residue backbone is shown. Panel B: All Trp and Lys residues of rhodopsin. Picture prepared
with Maestro 8.0.308, Schrodinger.
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