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ABSTRACT Three problems are considered. The first is
the relation between ensemble-averaged state probabilities in a
random walk with absorption and time-averaged state proba-
bilities in the corresponding closed diagram. The second prob-
lem is concerned with random walks on diagrams with cycles
in which the cycle completion rates and probabilities may de-
pend on the "remainder" after the previously completed cycle.
The final topic is a study of cycle completions prior to absorp-
tion for diagrams that involve both cycles and absorption (e.g.,
a cycling enzyme that binds a dead-end inhibitor or poison in
one of its states).

The second equation is a consequence of Y:.Pj = 1. To con-
firm this, an integration by parts gives

x~~~~~~~~~~~~~~~~~~~~~~~~~~~~O

= |I, pi(t)dt = -| t a d'dt = It I dKdt. [2]F= iL~td-tE~dt f K dt
Further confirmation of the expression for Pi comes from

the differential equation for state i in the original diagram,

di v v
[3]

This is a continuation of an earlier paper (1) on the same
general subject; the reader is assumed to be familiar with ref.
1. The first section contains further details on the relation
between time-dependent state probabilities in a random walk
with absorption and the constant time-averaged state proba-
bilities found when the absorption transitions are replaced
by appropriate one-way cycles (1). The second section pre-
sents the solution of a problem posed at the end of a 1975
paper (2) on cycle stochastics: how does one handle cycle
probabilities and cycle completion times at the individual cy-
cle level, where long-time averages do not apply? The solu-
tion depends on methods introduced in ref. 1. The third sec-
tion is concerned with the stochastic properties of diagrams
with cycles that also exhibit absorption from one or more
states (e.g., a cycling enzyme or protein complex may be
slowly inhibited or degraded).

Relations Between Two Kinds of State Probabilities

The same notation as in the first section of ref. 1 is used
here. A kinetic diagram has absorption states K and starting
state s. The immediate precursor of a given K state is denoted
K'. States i are the non-K states, including the K' states. In
the random walk with absorption, pi(t) and pK(t) are the en-
semble-averaged state probabilities at t. The mean time to
absorption is Ti The "closed diagram" (1) is formed by re-
placing each K state in the original diagram by a one-way
transition (transition probability aK'K) from state K' back to
state s. This diagram represents repeated walks in a single
system. The time-averaged steady-state state probabilities in
the closed diagram are denoted Pi.

If there are N walks in the ensemble, where N is large, the
total time spent in a particular state i in these walks is N
ojpi(t)dt. The total time spent in any state i is N1. The N
walks on the original diagram are in parallel (all start at t =
0); on the closed diagram the same walks are in series.
Hence

Pi = = pi(t)dt,
x, = EIt pi(t)dt.

i

where the sums are over those states j that can convert to
state i, or vice versa. For any i + s, integration over all t
results in

P(oo) -P(O) = 0 =-( X aij) f pidt + acr, f pjdt. [4]

Multiplication by 1/T (normalization) then gives the com-
plete set (except i = s) of steady-state equations for the Pi in
the closed diagram. Integration of Eq. 3 for i = s yields

-1 = -(> asj) f psdt + > ajs fpjdt,
or

1 -(z a"jP, + Z ajPj.-
i

Si/ [5]

The right-hand side becomes the steady-state equation for
state s in the closed diagram if we add to it IK, aK'KPK' (these
are the new one-way transitions to state s in the closed dia-
gram, already mentioned). The right-hand side is then equal
to zero. Hence, on the left-hand side,
11
- + E K'KPK' t + JK = 0

t K't +ZK

or

-= 1/J, J >I J. [6]

where J is the total absorption rate in the repeated (time-
averaged) random walk on the closed diagram (1).
The number of visits to an arbitrary state i (or the number

of transitions of a particular type) prior to absorption can
also be handled by using appropriate closed diagrams and
fluxes, but this topic will not be included here.

Detailed Cycle Fluxes and Probabilities

At the end of ref. 2, it was pointed out that mean steady-state
one-way cycle fluxes, calculated from the diagram method
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(3), are correct as long-time averages but, in general, are not
valid as cycle rate constants at the detailed cycle-by-cycle
level. (The exceptions are cases in which every type of cycle
completion brings the system back to the starting state in the
random walk, as in Fig. 1A with starting state 1.) It is shown
in this section that the cycle-by-cycle level can be handled
by using methods introduced in ref. 1. First, a discussion will
be given of the case in figures 2 and 3 of ref. 1; this is suffi-
ciently complicated to make obvious the procedure for an
arbitrary diagram. This will be followed by a simpler case for
which explicit algebra can be carried out without difficulty.
We consider a long random walk on the diagram of Fig.

LA, starting at state 2. The diagram has three cycles (Fig. 1B)
and six one-way cycles, denoted by the index i1 = a+, b±,
c±. Fig. 1C is the closed-2 diagram (1) for a walk starting at
state 2; it is equivalent to Fig. lA but is more detailed. The
diagram method (3) can be applied either to Fig. lA or to Fig.
1C in order to find the six mean (long-time) one-way cycle
fluxes J, as explicit functions of the transition probabilities
aij. Then the mean time between cycle completions (any cy-
cle) in the long random walk is t = 1/J,-where J - Jn,,.
Completed cycles, during the walk that starts at state 2,

end and begin only at one of the three central states in Fig.
1C, with index v = 1, 2, or 3. The respective "remainders"
(2, 3) are 21, 2, and 23. Suppose that the walk comprises a
total ofN completed cycles (N is large). Of these, let NF, be
the number of cycles that begin at the particular central state
v. Within this group of cycles, let J,', be the mean rate of
cycle completions of type a. Then, within this group, the
mean time per cycle completion is F, = 1/Jr, where Jv =
S Jv7 The fact that J,', and T, are different for different
choices of v (the beginning state for the next cycle in Fig.
1C) is the essence of the present problem.
The method introduced in the second section of ref. 1 can

be used to find the Ja,. For example, the closed diagram in
Fig. 2 will give the six J3., and figure 3B of ref. 1 will give the
J2., (a figure similar to Fig. 2 will give the J1l1). Fig. 2 repre-
sents a long repeated walk that always begins a new cycle
instantaneously at v = 3 after completion of a cycle at v = 1,
2, or 3. (The repeated walk, always starting at v = 3, will
produce the mean values J3., for cycle completion rates.) For
example, the cycle labeled a- in Fig. 2 is actually completed
by the transition 1 -* 2 at state v = 2 with transition probabil-
ity a12 but the bent arrow (a-) from 1 to 3 indicates that, in
calculating the steady-state state probabilities in Fig. 2, this
arrow is treated as a transition 1 -* 3 with transition proba-
bility a12-because the ending state v = 2 is instantaneously
transferred to v = 3 to start a new cycle from v = 3.
The 11 steady-state state probabilities in Fig. 2 are found

from the steady-state algebraic equations of the diagram by

4bb+ 4

J~~~b+~an-1~-hstocnrbtoseoefreape

C-

3 3

4 t4

FIG. 2. Diagram used to obtain stationary properties for cycles

that begin from state v = 3.

any convenient method (numerically, by matrix inversion, if

necessary). Each of the 8 fluxes is then found as a product of

a state probability and the appropriate aij Note that each of

J3b+ and J3b- has two contributions, denoted, for example,
J31b+ and J33b+ (the second index indicates the ending v state

of the cycle). The same comments apply to the diagrams for
v = 2 (figure 3B of ref. 1) and v = 1 (not shown).
We return now to a consideration of F., defined above.

Let p,,' be the probability that a cycle that begins at v ends at
V'. These probabilities are determined by the three sets of 8
fluxes mentioned above:

Pv1 = (Jvlb+ + J41b-)/J,
Pv2 = (Jva+ + Jva- + Jvc+ + Jvc-)/J,

Pv3 = (Jv3b+ + Jv3b-)/Jv. [7]

The six P,,, (v + v') then determine the three Fv through Fig.
3. This discrete-time diagram shows cycle-by-cycle intercon-
version probabilities for v; the unit of time is one cycle com-
pletion. The F, are the three steady-state state probabilities
calculated from the steady-state algebraic equations, for ex-
ample, by the diagram method (3). Note that the three p,, do
not enter explicitly into the calculation of the Fv.
We now have the main ingredients of this more detailed

examination ofone-way cycle fluxes, based on the beginning
state v for each cycle: J1, 4,t and F,. The self-consistency
relations with the more conventional long-time averages J.77
and Fare easily seen to be

4 4

3

a c

3 3

I0- b+1\X
v

c

FIG. 1. (A) Diagram used as an example. (B) Cycles of the dia-
gram. (C) The closed-2 diagram for a random walk starting at state
2. Cycles end only at the three central states with index v.
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FIG. 3. Discrete-time diagram used to find the fraction of cycles
F, that begin from each v.
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F = F1iT + F2T2 + F3T3

Jo= (Flil/t)J177 + (F212/F )J277 + (F373/F )J377.
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C

B
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FIG. 4. (A) Diagram used as a simple example. (B) Closed-2 dia-
gram for walk starting from state 2.

The state probabilities for cycles that begin from I' = 2 are,
from Fig. SA,

Qj- = a'(B + D)/S, Qj+ = B(B + D)/S,

Q4+ = YC/S, Q4- = 5'C/S,

Q2 = (a + f3')(B + D)/S, Q3 = (8 + Y')C/S
S = BE + CF + DE. [14]

The fluxes (J2,), and T2, are then

J2a+ = aQ1+, J2a- = )3'Ql-,
J2b+ = 8Q4+, J2b- = Y'Q4-

t2 = 1/X7J2n = S/U, U-AB + AL

[15]

) + BC. [16]

The cycle fluxes of Fig. 1A are subdivided into one-way
cycle fluxes in Fig. 1C. These, in turn, are subdivided fur-
ther, according to origin (value of v), in Eq. 9, based on Fig.
2 (v = 3) and its two analogues (v = 1, 2).
We consider now the much simpler diagram in Fig. 4A.

There are two cycles, a (upper) and b (lower); i.e., q = a+,
b±. If a walk starts in state 2, the closed-2 diagram is Fig.
4B. Cycles begin and end at either state 2 (remainder 2) or
state 3 (remainder 23); i.e., v = 2 or 3. The closed diagrams
for v = 2 and 3 (analogues of Fig. 2) are shown in Fig. 5 A
and B, respectively.
For brevity below we define at this point

A=a/3+a'/3', B= y8+ y'8', C=k(a+/3'),

D = k'( + y'), E = a + '+ a' +/3,

F = y + 8' + y' + 8. [10]

The state probabilities in Fig. 4B are easily found to be

Pi- = a'D/X, P1+ = /3D/E, P4+ = YCII,

P4- = 8'C/X, P2 = (a + 8')D/X, P3 = (8+ y')C/l,

I= CF + DE. [11]

Then the four one-way cycle fluxes (J.), and T, are

Ja+ = aPi+ = al3D/X, Ja- = 3'P1 = a'P'DII,

Jb+ = 8P4+ = yC/-, Jb- = Y'P4- = Y'8'C/X [12]

Also, for use in Fig. SC,

P22 = (J2a+ + J2a-)/Y-,7J2,7 = (AB + AD)/U

P23 = (J2b+ + J2b-)/X71J2,1 = BC/U. [17]

Similarly, the state probabilities for cycles that begin from
v = 3 (Fig. SB) are

Rj- = a'D/T, R1+ = /3D/T, R4+ = y(A + C)/T,

R4-='(A + C)/T, R2 = (a + /3')D/T,

R3 = (8 + y')(A + C)/T

T-AF + CF + DE. [18]

The fluxes (J3h), and T3, are

J3a+ = aR,+, J3a- =PBR,
J3b+ = 8R4+, J3b- = y'R4_ [19]

F3 = V/XhJ3,1 = T/U. [20]

Then

P33 = (J3b+ + J3b-)/1,J3,7 = (AB + BC)/U

P32 = (J3a+ + J3a-)/17 J3, = AD/U. [21]

Finally, from Fig. SC, the fractions of cycles beginning
from v = 2, 3 are

F2 = P32/(P32 + P23) = AD/(AD + BC)
tF= 1/YJn = X/(AD + BC). [13] F3 = 1 - F2 = BC/(AD + BC).

a--fl a

1

2

A

3

4+ 4

B

OP23-%2
P22 2=3 P33

P32

C

FIG. 5. (A and B) Diagrams used to obtain stationary properties for cycles that begin from state v = 2 or from v = 3. (C) Discrete-time
diagram that determines F2 and F3.

[22]
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One can check the self-consistency of the results by substi-
tuting the above ingredients into Eqs. 8 and 9 (omitting v =
1).

Random Walks with Absorption on Diagrams with Cycles

The first section of ref. 1 and also the first section here relate
to diagrams with absorption at one or more states K. In this
section we consider the special case of such systems in
which the diagram includes one or more cycles. In this case
there are additional properties of interest-for example,
what is the mean number of completed cycles of a given type
before absorption occurs? This is actually a realistic problem
in biophysics. Suppose that an enzyme (or protein complex)
is engaged in some kind of cyclic activity. If the enzyme can
be degraded at one or more or all of its states by binding a
dead-end inhibitor, or by denaturation or proteolysis, any of
these events would correspond to "absorption" (termination
of the random walk). This subject is introduced in this sec-
tion by a brief discussion of four examples.

In Fig. 6A, a random walk starts at state 1 and is terminat-
ed, eventually, by absorption at state 5. Except for 'y, the
transition probabilities are denoted by the usual aij. There
are six one-way cycles, 1 = a+, b±, c±, as in Fig. 1B. Ev-
ery cycle begins and ends at state 1. The ensemble-averaged
transient state probabilities pi(t) can be studied in the usual
way (1). (Incidentally, the time-dependent rate of completion
of cycles of type q could be obtained by using the closed-2
diagram in figure 4 of ref. 1 with ytransitions to states 51, 52,
and 53 out of 41, 42, and 43, respectively.) However, certain
mean values are easier to deduce from the time-averaged
properties of the closed diagram (1), Fig. 6B, with state prob-
abilities Pi.
The properties of Fig. 6B follow from the diagram method

(3). There are 13 partial diagrams: 8 are shown in figure 6 of
ref. 1, and there are 5 more in which the y transition replaces
the line 1-4. Because the y transition is one-way, states 1, 2,
3, and 4 have 13, 12, 11, and 8 directional diagrams, respec-
tively. Hence, 1 (3) is a sum of 44 terms. The y transition is
not involved in the state 4 directional diagrams because it
leads away from state 4. The six J. are then (3)

Ja± = Hla±(a41 + a43 + y)/;
Jb±*= llb±(a21 + a23)/Y
Jc+ =-I.+/Y., [23]

where Ila+ = al3a32a2l, etc. The sum in Ja+ arises from the
three flux diagrams in Fig. 6C. The total absorption flux J is

2\ 2\

30 13

A Y B
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5 W Y2 -s6
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B

FIG. 7. (A) Three-state cycle with possible absorption from each
state. The starting state is 1. (B) Corresponding closed diagram.

(see Fig. 6D)

J = (8 cyclic diagrams for J)/1 = yP4
= y(8 state-4 directional diagrams)/I. [24]

It should be noted that the 8 cyclic diagrams for J in Fig. 6D
include 3 different cycles and are constructed from the 8
state-4 directional diagrams plus the y transition.
The mean (first passage) time to absorption is T= 1/J. The

mean number of completed (one-way) q7 cycles before ab-
sorption is

in
= Jq_ (tt Ireinal d

J n y(8 state-4 directional diagrams) ' [25]

where 1'. is obvious in each case from Eqs. 23. Note that Y is
not needed for this calculation (it is needed for t7). The prob-
ability that exactly n 7rcycles will have been completed be-
fore absorption occurs is

[26]

This simple result follows because all cycles q7, in this exam-
ple, begin and end at the same state, 1 (unlike Eq. 9).
The second example is a three-state cycle with starting

state 1 and with absorption possible from each state (Fig.
7A). The two one-way cycles are q7 = +. Time dependence
can be studied in the usual way. The corresponding closed
diagram is Fig. 7B. The state probabilities in Fig. 7B are (3)

Pi = [a32(a2l + y2) + a23(a31 + Y3)
+ (a2l + y2)(a31 + YA)]/

P2 = [al2a32 + al3a32 + (a3l + y3)al2]/y-
P3 = [al2a23 + a23al3 + (a2l + y2)al3]/y,

2

i'73V \~

4

D

[27]

7

FIG. 6. (A) Example of a random walk on a diagram with cycles and with absorption (from state 4). The starting state is 1. (B) Corresponding
closed diagram. (C) Flux diagrams for cycle a. (D) Eight cyclic diagrams for J (absorption).
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FIG. 8. (A) Four-state cycle with walk starting from state 1 and
absorption from state 3. (B) Corresponding closed diagram. This can
also be interpreted as an original diagram that includes a slip from
state 3 to state 1. (C) Four cyclic diagrams for J (absorption or slip).

where Y. is the sum of the three numerators. Note that Ti
does not appear in Eqs. 27. The fluxes are

_+ = H±I/Z, J = ylPl + 12P2 + y3P3.

0D
1 3

5

A[28]
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\4/

B

4I 4

y 3 1

1 1

0
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4 ¶ 4
v

C

The probability of eventual absorption from state i is yjP1/J;
also, F = 1/J. The mean number of tq = + cycles before
absorption occurs is J.,/J (again X is not needed to evaluate
this expression). Eq. 26 is applicable.

In the special case ai = y2 = 0,

J y3(al2a23 + a23a13 + a2ja13) [29]

This has the same form as Eq. 25. It is easy to show that Eq.
29 is obtained, unchanged, if the starting state is 2 or 3 in-
stead of 1. However, Z and F depend on the starting state, as
one would expect.
The third example is Fig. 8A: the walk starts in state 1 and

absorption occurs from state 3. The two one-way cycles are
19 = ±. This is a slight extension of the case in Eq. 29. The
closed diagram is Fig. 8B. The novel feature in this example
is that Fig. 8B may also arise in a quite different context
(suggested to me by Hans Westerhoff): this is the original
diagram (not a closed diagram) for a system represented by
the square cycle which has, in addition, an irreversible
"slip" from state 3 to state 1 with transition probability y.
This slip short-circuits or decouples the business of the
square cycle. After the y transition (slip), the random walk
continues from state 1. In the absorption problem (Fig. 8A),
the walk on Fig. 8B is conceptual (we imagine the walk to be
restarted, instantaneously, over and over); in the slip prob-
lem, the walk on Fig. 8B is real. The properties of Fig. 8B are
the same in either case.
The numbers of directional diagrams in Fig. 8B are 8, 6, 4,

and 6 for states 1, 2, 3, and 4, respectively (see figure 6 of
ref. 1). Thus Z has 24 terms. As in Eq. 29,

J4 11
J y(4 state-3 directional diagrams)' [30]

The denominator on the right is also the sum of 4 cyclic dia-
grams for J (absorption or slip), shown in Fig. 8C. Eq. 30
gives the mean number of completed ± cycles before ab-
sorption or per slip transition. Eq. 26 is again applicable.
The final example is Fig. 9A, which is closely related to

FIG. 9. (A) Example with starting state 2 and absorption from
state 4. (B) Corresponding closed diagram. (C) Corresponding
closed-3 diagram. Other cycle labels are as in Fig. 1C. A walk on this
diagram shows more details than the same walk on the closed dia-
gram.

Fig. 6A. Here, the starting state is 2. The closed diagram is
Fig. 9B. Eqs. 23 and 24 are again obtained except that £ is
different (call it Z') and in the 8 cyclic diagrams for J (Fig.
6D) the curved y arrow 4 -* 1 is replaced by a y arrow 4 -*2
(these cyclic diagrams now include 4 different cycles). The
numbers of directional diagrams for states 1, 2, 3, and 4 are
12, 16, 12, and 8, respectively. Hence A' has 48 terms. Eq. 25
is unchanged: the mean number of completed cycles of any
type prior to absorption is the same whether the starting
state is 1 or 2 (or 3). However, F is different because : j 1:'.
Incidentally, if the starting state is 4, the two quotients Ja±/J
are altered because y no longer appears in la (Eq. 23).

Returning now to starting state 2, the new feature is that
Eq. 26 no longer holds because the ,q cycles may end at v =
1, 2, or 3 (Fig. 1C) and cycle probabilities depend on the
initial state v of a new cycle (see the second section). If we
apply the recipe for diagram -+ closed-2 diagram (1) to the
closed diagram in Fig. 9B, we obtain Fig. 9C (a "closed-3"
diagram). The properties of Fig. 9 B and C are the same ex-
cept that Fig. 9C contains more details. Note, in Fig. 9C, the
four y cycles already mentioned. To obtain the v dependence
of all cycle fluxes and probabilities (including 'y cycles), we
would need to direct all arrows in Fig. 9C to v = 1, 2, or 3 (as
in Fig. 2). These three diagrams would provide, in principle,
the ingredients for a generalization of Eq. 26.

I am indebted to Dr. Hans Westerhoff for his comments on appli-
cations of the third section and to Dr. Doron Zeilberger for his en-
couragement and for reading the manuscript.
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