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ABSTRACT

Eukaryotic gene expression is controlled at the post-transcriptional level by small noncoding RNAs called microRNAs (miRNA).
miRNAs play important roles during early development and participate in gene regulatory circuits in the cell. Different high-
throughput expression analysis methods including microarrays, bead-based detection, and small RNA cloning have been applied
to quantitatively detect miRNAs in various tissues, cell types, and biological conditions. High-throughput expression data was
collected from public repositories and processed to create a database of miRNA expression profiles. Several commonly used
normalization methods were compared to identify suitable methods for cross-platform comparison of high-throughput miRNA
expression data. The database provides interlaboratory and interplatform validated reference expression levels for miRNAs. The
normalized expression profiles were validated by querying for well-established features of miRNA expression. Firstly, expression
profiles of several tissue-specific miRNAs showed good agreement between the database and previously reported profiles. We
have also identified a set of miRNAs that are constitutively expressed across mammalian tissues. Secondly, we used the database
to compare the expression patterns of miRNAs belonging to the let-7 family, where the divergence in expression patterns
implies that they may have diversified functionally. Lastly, we compared expression profiles of intronic and clustered miRNAs.
Expression profiles of intronic miRNAs and clustered miRNAs showed either very good, or in certain cases, very poor
correlation with the host gene. Interplatform comparison of miRNA expression profiles thus provides a resource of consensus
expression profiles that can be used in the future for studying miRNA function and regulation.
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INTRODUCTION

miRNAs are small noncoding RNA molecules, about 21–23
nucleotides (nt) in length, that negatively influence post-
transcriptional expression of target genes bearing partial
complementary regions in their 39UTR, in eukaryotic cells
(Bartel 2004). Several miRNAs are expressed in specific
spatio-temporal patterns during development (Krichevsky
et al. 2003) and in adult tissues (Liang et al. 2007). Aberrant
expression of miRNAs has been reported in several cancers,
leading to the suggestion that they could act as biomarkers
(Cummins and Velculescu 2006). Expression patterns of
miRNAs are important in the discovery of biomarkers,

functional characterization of miRNAs, and in the study of
gene regulation in development and disease. Due to the
importance of miRNA expression patterns, many platforms
have been developed for rapid high-throughput expression
profiling of miRNAs (Castoldi et al. 2006; Wang et al. 2007;
Chen et al. 2008). However, the expression profiles gener-
ated by these methods have not been compared. In the past,
comparison of mRNA microarray data has helped in gen-
erating valuable reference expression profiles (Shi et al.
2005; Chen et al. 2007).

miRNA encoding regions fall within exons and introns
of protein-coding genes, noncoding transcripts, and re-
petitive elements. The vast majority of miRNAs are
transcribed by RNA polymerase II (Kim and Kim 2007).
An unusual cluster of Alu repeat-associated miRNAs
originally believed to be transcribed by RNA polymerase
III (Borchert et al. 2006) has been recently shown to arise
from a RNA polymerase II-transcribed noncoding RNA
(Bortolin-Cavaille et al. 2009). miRNA genes give rise to
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long transcripts called pri-miRNA that are capped and
polyadenylated (Kim 2005). Each pri-miRNA is cleaved by
the heterodimeric RNase III enzyme complex, Drosha:
DGCR8 in the nucleus (Lee et al. 2003; Denli et al. 2004;
Han et al. 2004; Landthaler et al. 2004). The resulting
precursor, called pre-miRNA, is transported into the
cytoplasm by Exportin5 (Yi et al. 2003; Bohnsack et al.
2004; Lund et al. 2004) and subsequently cleaved by the
cytoplasmic RNase III, Dicer, to release double-stranded
RNA molecules (Bernstein et al. 2001; Hutvagner et al.
2001; Ketting et al. 2001). The RNA molecules in this
duplex can bind to Ago proteins within multiprotein
complexes called miRNP (Mourelatos et al. 2002). Mech-
anisms proposed (Tomari and Zamore 2005; Pillai et al.
2007) for the inhibitory effect of miRNPs on the translation
from target mRNAs include (1) translational block or
interference in functioning of the ribosomal machinery
(Humphreys et al. 2005; Petersen et al. 2006); (2) de-
stabilization of the target through deadenylation (or cleav-
age in case of perfectly complementary targets) (Giraldez
et al. 2006; Wu et al. 2006); and (3) sequestration of
mRNAs in subcellular sites (Liu et al. 2005; Bhattacharyya
et al. 2006).

miRNA expression profiling methods measure the ex-
pression level of functional and mature miRNAs, distin-
guishing them from precursor molecules and highly ho-
mologous isoforms. Three major technologies used for
miRNA expression profiling include bead-based expression
profiling, miRNA microarrays, and small RNA cloning.
miRNA-microarray platforms incorporate different design
strategies to improve the specificity of the probes. These
include locked nucleic acid-based probes (Castoldi et al.
2006) and an extended loop and 59G to capture 39C
introduced into miRNAs during labeling in miRNA arrays
(Wang et al. 2007). Although there exists a large body of
data from miRNA expression profiling studies in public
repositories, typically an experimentalist has to use tedious
low-throughput methods like Northern blotting to estab-
lish the expression pattern of a specific miRNA of interest.
While there are online resources for miRNA sequences
(Griffiths-Jones et al. 2006) and computationally predicted
miRNA-target pairs (John et al. 2004; Krek et al. 2005;
Wang et al. 2007), miRNA expression information remains
largely inaccessible.

Tissue-specific expression of a few miRNAs has been
revealed by high-throughput experimental analysis using
several approaches (Lagos-Quintana et al. 2002; Liu et al.
2004; Lu et al. 2005; Nelson et al. 2004; Baskerville and
Bartel 2005; Mineno et al. 2006; Nakano et al. 2006).
However, there has not been any systematic comparison of
miRNA expression profiles generated by different plat-
forms. Recently, normalization methods originally devel-
oped for mRNA expression profiling have been evaluated
for miRNA data generated using the Agilent platform
(Pradervand et al. 2009). Beside this, there have been no

comprehensive studies on interlaboratory and interplat-
form comparison of miRNA expression profiles.

Here we have normalized and scaled expression data
from high-throughput studies from different laboratories
to create a compendium of miRNA expression profiles for
mouse and human tissues, cell lines, cancer samples, and
developmental stages. We have compared normalization
methods to identify methods suitable for normalization of
miRNA data. Tissue-specific miRNA expression patterns,
in agreement with previously reported profiles and novel
expression patterns, were found. Our analysis also identified
18 constitutively expressed miRNAs. We have also explored
coregulation of intronic miRNAs arising from the same
parent transcript and coordinated regulation of miRNA and
mRNA transcripts. To our knowledge, this is the first attempt
at comparing miRNA expression profiles from different
platforms and deriving consensus expression profiles.

RESULTS AND DISCUSSION

We collected high-throughput experimental data on ex-
pression profiling of miRNAs from public microarray
data repositories like Gene Expression Omnibus (GEO)
(Edgar et al. 2002; Barrett et al. 2007) and Array Express
(Parkinson et al. 2007). The experiments include several
tissue-specific expression profiling studies using, different
platforms, on cancer biopsy samples and developmental
stages (summarized in Supplemental Table S1). The plat-
forms include bead-based study and microarray platforms
developed by different laboratories. Small RNA cloning and
RNA-seq studies were not included, since there are very few
studies using these techniques. Each data set was processed
through a series of steps summarized in the flowchart
provided in Figure 1. Datasets providing only relative fold
change values derived from comparison with reference
samples were not used, since this data is fundamentally
different from expression level measurement and not suit-
able for comparison with other datasets. The data was
subjected to a series of quality control checks to ensure that
datasets with a majority of undetected spots were excluded.
If the reported data was already background corrected, the
data was used directly. In datasets not corrected for back-
ground, the median value of background intensities was
subtracted from feature intensity. Negative values were sub-
stituted with null values and, subsequently, all null values
were replaced with imputed values. KNNimpute, based on
imputation of expression levels of similar miRNAs, was
found to be more suitable than other methods that use
mean or median (Troyanskaya et al. 2001). The low num-
ber of replicates in most datasets renders mean and median
measurements unreliable for imputation. If it had not been
done previously, the data were linearized using log trans-
formation, before normalization.

The number of miRNAs in miRNA–microarray experi-
ments is low, typically in hundreds, compared with a few
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thousands of genes measured in conventional gene expres-
sion profiling. Moreover, there is a greater diversity of gene
expression profiling platforms already used in miRNA
profiling: bead-based methods, massively parallel signature
sequencing, and oligonucleotide arrays. Both of these
factors can influence the suitability of conventional nor-
malization methods. We investigated the suitability of
several normalization methods in order to choose the
method most suitable for pre-processing gene expression
profiles, giving preference to measures of normalization
that are independent of other datasets, since such a strategy
would enable a one-time, internal normalization of each
data set, irrespective of subsequent addition of newer
datasets. From our total set of 1507 experiments spanning
18 datasets, we selected a subset suitable for testing
normalization methods. This subset included miRNA
expression profiles of six experiments (two bead-based
studies and four microarray studies) corresponding to
prostate tissue and four (one bead-based study and three
microarray studies) related to brain tissue. The prostate
datasets included two studies on a PC3 cell line that is
derived from prostate cancer. The un-normalized expres-
sion values showed large differences between different
methods and laboratories. In both prostate and brain
datasets, normalization to mean (Fig. 2) or median (data
not shown) had comparable effect. The data set after
normalization had comparable central tendency, but the
spread of the data was highly variable. Constitutive genes
have earlier been used for normalization of gene expression
profiles. Since they are measured during the experiment,
they serve as internal controls in quantitating expression. A

recent attempt to compare normaliza-
tion methods for miRNA data gener-
ated using Agilent microarrays also re-
ported that miRNAs based on invariant
normalization performed better than
other normalization methods. We used
a mean of the expression levels of a set
of 16 miRNAs that showed minimum
variability in these datasets, as a nor-
malization factor. This method of nor-
malization was reasonably successful in
comparing datasets generated using the
same platforms. However, normaliza-
tion using constitutive miRNAs was
ineffective when comparing bead-based
and microarray-based datasets. Quan-
tile normalization and Z scores were
both successful in transforming the data
sets generating comparable means and
scale. The normalization factors in
mean, median, invariant, and quantile-
based normalization are derived from
multiple datasets. Consequently, addi-
tion of new datasets alters the normal-

ized values of the existing datasets, making it difficult to
create databases of prenormalized expression profiles.
However, Z scores, unlike other normalization methods,
are not influenced by the addition of new datasets. We
normalized log-transformed data from all of the datasets
using the Z score method for further studies. A database of
Z scores from miRNA expression studies in zebrafish,
Arabidopsis, mouse, and human—miRex (miRNA expression;
http://miracle.igib.res.in/mirex/datasets.html)—has been con-
structed by our group. Z scores of 1507 experiments span-
ning 18 datasets used in this study are available through
miRex.

The Z score provides a mean-centered rank for the
expression level in units of standard deviation (Cheadle
et al. 2003). The expression levels are represented in terms
of ranked normalized data. Z scores have been used
previously by our group and others to compare data
between experiments. This method is specially suited for
database development, since the internally normalized
values do not change with subsequent addition of new
datasets. We internally normalized log-transformed inten-
sity values by centering them to the respective averages. The
Z scores thus provide an index of the expression level of the
miRNA with respect to the cellular pool of miRNA and
allow classification of miRNA with respect to their basal
and tissue-specific expression levels. The Z score expression
levels, expressed in terms of ranks, cannot be used directly
to calculate fold change between samples. We calculated Z
ratios, the equivalent of fold changes from Z scores, to
overcome this limitation. miRNAs up-regulated in a certain
tissue were identified using the average of Z scores from

FIGURE 1. A flowchart summarizing the steps carried out to generate the normalized data.
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replicates of that tissue as the ‘‘test’’ value and the average
expression profile of all of the other conditions/tissues as
the ‘‘control’’ value. A Z ratio of 1.96, corresponding to
95% confidence interval (P-value < 0.05) (Cheadle et al.
2003), was used as a cutoff to identify tissue-specific
miRNAs. We validated this approach of comparing nor-

malized miRNA expression profiles by
looking for the Z ratios for miRNAs
widely acknowledged to be tissue spe-
cific. In a majority of cases, our results
agree with the reported literature (Table
1). The expression of many of these tissue-
specific miRNAs was also reflected in
cell lines derived from these tissues; for
instance, hsa-miR-15b and hsa-miR-
19b were found in MCF7 cell line and
breast carcinoma tissue in high levels.
However, the larger number of condi-
tions available in miRex allowed us to
expand the expression profiles of some
miRNAs reported to be tissue specific.
For instance, hsa-miR-92 identified in
a screen for fetal liver-specific miRNA
(Fu et al. 2005) was found to be
constitutively expressed at high levels
in all conditions using miRex. On the
other hand, we found that hsa-miR-
133a was expressed in the heart at levels
higher than the widely studied heart-
specific miRNA, hsa-miR-1, thus offer-
ing a better tissue-specific miRNA sig-
nature (Lagos-Quintana et al. 2002).
hsa-miR-155, previously reported to be
CLL specific (Eis et al. 2005), was found
at high levels in normal blood samples
studied by different groups. Figure 3A
provides an overview of tissue-specific
expression profiles of miRNAs, newly
identified in miRex. In agreement with
independent experimental findings in
mouse (Mishima et al. 2008), the
microRNA hsa-miR-125b is amongst
the most highly expressed miRNAs in
testis and ovary. Interestingly, miR-
125b, miR-99a, and let7c arise from
the same transcript, but do not show
similar expression profiles. Both miR-
125b and miR-99a are expressed highly
in the ovary, while let7c, in agreement
with its role in neurogenesis (Wulczyn
et al. 2007), is expressed highly in the
fetal brain. We used Z scores to study
expression profiles of miRNAs arising
from genomic loci in close proximity to
each other (described later) (Supple-

mental File 1). A subset of miRNAs (from Fig. 3A) show-
ing high Z scores in many tissues is shown in Figure 3B.
The heterogeneity of cell types in certain tissue samples
like liver, lung, and blood could result in overlap with
cell-type expression profiles. For instance, hsa-miR-223
reported to be expressed highly in macrophages and

FIGURE 2. The box plots were generated using a subset of normalized data. Four brain
samples and six PC3 and prostate samples were selected from bead-based (B1, B2) and
oligonucleotide microarray studies (M1–M4). The distribution of log transformed un-
normalized values (A), mean normalization (B), quantile normalization (C), normalization
with respect to mean expression level of sixteen constitutive miRNAs (D), Z score
normalization (E) is shown.
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granulocytes (Chen et al. 2004) was also found in lung,
liver, and spleen samples.

Although there are several reports of tissue-specific
miRNAs, there have been very few reports of constitutively
expressed miRNAs. We calculated averages of Z scores of
data from different laboratories to derive interlaboratory
validated miRNA expression profiles for various tissues.
Subsequently, we clustered miRNAs according to their
expression profiles in various tissues using Self Organizing

Maps (Fig. 4A; Tamayo et al. 1999b). We used coefficient
of variation as a measure of fluctuation in expression of
miRNAs in different tissues. The miRNAs with the lowest
coefficient of variation were identified. The expression
profiles of these miRNAs show that constitutive miRNAs
with invariant low and high levels exist (Fig. 4B).

Recently, Liang et al. (2007) have identified universally
expressed microRNAs using real time PCR-based measure-
ment of 345 miRNAs in 40 tissues. We compared the

TABLE 1. Previously reported tissue-specific miRNAs and respective Z ratios found in our study

miRNA Organism Tissue Literature Z ratio

hsa-miR-10b Homo sapiens Kidney Beuvink et al. (2007) 2.40
hsa-miR-146a Homo sapiens Spleen Beuvink et al. (2007) 2.15
hsa-miR-155 Homo sapiens B cell lymphoma Eis et al. (2005) 3.46
hsa-miR-205 Homo sapiens Breast Baskerville and Bartel (2005) 7.52
hsa-miR-205 Homo sapiens Thymus Baskerville and Bartel (2005) 2.14
hsa-miR-223 Homo sapiens Spleen Beuvink et al. (2007) 6.98
hsa-miR-30c Homo sapiens Kidney Beuvink et al. (2007) 3.14
mmu-miR-1 Mus musculus Heart Lagos-Quintana et al. (2002);

Sempere et al. (2004)
3.15

mmu-miR-122 Mus musculus Liver Lagos-Quintana et al. (2002) 4.68
mmu-miR-124a Mus musculus Brain Lagos-Quintana et al. (2002) 3.16
mmu-miR-133a Mus musculus Heart Lagos-Quintana et al. (2002);

Sempere et al. (2004)
3.94

FIGURE 3. (A) Tissue-specific expression profiles of miRNAs based on Z ratios calculated as described in the Mterials and Methods section. The
red boxes signify a z ratio of >1.96, which corresponds to a P-value of <0.05 for tissue-specific expression. (B) A subset of the miRNAs in A show
a high basal level of expression across different tissues.
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constitutively expressed miRNAs identified in our study
with those reported in two previous experimental studies
(Supplemental Table 2; Liang et al. 2007; Peltier and
Latham 2008). The miRNAs identified in each study had
low coefficient of variation, with four miRNAs, hsa-miR-92,
hsa-miR-93, hsa-miR-191, and hsa-miR-103 being identi-
fied in multiple studies, including our own. It has been
suggested that these miRNAs maybe involved in regula-
tion of constitutive metabolic functions. We noticed that
several constitutively expressed miRNAs, for instance, hsa-
miR-23b, hsa-miR-26a, hsa-miR-92, and hsa-miR-18a,
have been shown to occur at fragile sites in genomic re-
gions involved in cancer (Calin et al. 2004). Beside met-
abolic functions, constitutive miRNAs could perhaps be
involved in cell cycle, apoptosis, and growth control
pathways, irrespective of cell type.

Certain miRNA families have undergone significant ex-
pansion in the human genome. Comparison with lower
organisms has led to the prediction that increase in sequence
variants is associated with functional diversification through
an increased range of targets against the miRNA (Chen and
Rajewsky 2006). If, indeed, increased sequence variants in
humans are associated with specialized functions, they
maybe expected to show diversified expression profiles. We
checked the extent of expression diversification amongst
sequence-related miRNAs, using the hsa-let-7 family mem-
bers. The let-7 family of miRNAs consists of intergenic (hsa-
let-7a-2, hsa-let-7i, hsa-let-7e, hsa-let-7a-1, and hsa-let-7f-1),
intronic (hsa-let-7c, hsa-let-7g, hsa-let-7d, and hsa-let-7f-2),

and exonic (hsa-let-7a-3 and hsa-let-7b) miRNAs. The eight
members of the hsa-let7 family were clustered according
to their Z scores from 140 experiments, which included
samples from cell lines, in vivo tissue samples, and clinical
cancer samples. Using a cutoff correlation coefficient of 0.6,
hsa-let-7b and hsa-let-7e formed a separate group. The hsa-
let-7b and hsa-let-7e miRNAs showed significant up-regu-
lation in 17 cancer samples. The similarity in expression of
the members of the hsa-let-7 family (Fig. 5) is not correlated
to their arising from the same genomic locus, since hsa-let-
7a-3 and hsa-let-7b, hsa-let-7a-1, hsa-let-7f-1, and hsa-let-7d
arise from two clusters, while hsa-let-7e arises from a differ-
ent genomic locus.

Studies on the genomic organization of miRNAs have
shown that miRNAs present in close proximity in the
genome, called clusters, usually have similar expression
patterns. In some cases, intronic microRNAs arising from
the same gene have been shown to be coexpressed with
each other and with the gene from which they arise. For
instance, the functional relation between an intronic
miRNA hsa-miR-208 and the corresponding host gene
aMHC in cardiomyocyte hypertrophy has been described
(van Rooji et al. 2007). A general correlation between
intronic miRNAs and host genes would reduce the appar-
ent complexity of gene regulatory networks, since expres-
sion patterns of the host gene, intronic miRNA, and targets
would be tightly linked. However, several reports show that
intronic miRNAs may be regulated by miRNA-specific
promoters. Using a real-time PCR-based assay, Liang et al.

FIGURE 4. (A) Cluster of 130 miRNA expression profiles across 23 different tissues. Z scores for miRNA expression profiles were calculated as
described in Materials and Methods. Average Z scores were calculated wherever multiple replicates of the same sample were available. Clustering
was performed using Self Organizing Maps. (B) Identification of constitutive miRNAs. Coefficient of variation for Z scores of each miRNA was
calculated. miRNAs with <0.65 CV were selected, and their expression profiles visualized by generating a heatmap of Z scores of 23 tissues.
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(2007) also showed that only a subset of intronic miRNAs
(22 out of 31) show high correlation with source transcripts
in 19 out of 40 tissues. The differences in intronic miRNA
expression profiles maybe attributed to differences in
processing (Thomson et al. 2006), stability, and turnover
(Guil and Caceres 2007). Recent attempts to identify
miRNA promoters in human have also shown that intronic
miRNAs may have their own promoters (Ozsolak et al.
2008). Notably, as many as one-third of intronic miRNAs
in C. elegans were reported to have miRNA-specific pro-
moters (Martinez et al. 2008). We used the consensus
expression profiles to explore coregulation of clustered and
intronic miRNAs. miRgen (Megraw et al. 2007), a database
of positional relationships between miRNAs, was used to
identify 37 clusters of miRNAs that occur within 500
nucleotides of each other. Eight of these clusters could
not be analyzed further since their miRNAs did not have
probes in any of the microarray studies. Seven clusters arise
from introns of protein-coding genes and the remaining
clusters are from intergenic transcripts. A summary of the
correlation of expression in clustered miRNAs is presented
in Supplemental File 1. Some of the clusters contained
miRNAs with similar expression profiles; for instance, hsa-
miR-183 and hsa-miR-96 showed a correlation coefficient
of 0.67. Similarly, the intronic cluster of hsa-miR-15b and
hsa-miR-16 arising from the SMC4L1 gene showed a high
correlation (correlation coefficient = 0.8). However, in
other clusters, miRNAs differed significantly in their ex-
pression patterns. One such example of a discordant pair is
hsa-miR-212 and hsa-miR-132. Twenty-three pairs could

be unambiguously classified as coexpressed (correlation
coefficient >0.7), while 32 pairs were clearly discordantly
expressed (correlation coefficient <0.3). Three miRNAs,
hsa-miR-25, hsa-miR-93, and hsa-miR-106b arise from the
same intron of the MCM7 gene (Fig. 6A). Scatterplots of
expression over 105 samples (Fig. 6B) show high correla-
tion between hsa-miR-25 and hsa-miR-93 (R2 = 0.7059).
However, hsa-miR-106b, apparently arising from the same
transcript, showed no correlation (R2 = 0.08) in expression
with hsa-miR-25 and hsa-miR-93 (Fig. 6C). Our analysis
may be affected by miRNAs arising from multiple locations
and with closely related isoforms. For instance, hsa-miR-
106a is closely related to an isoform hsa-miR-106b that
arises from a different location on the genome.

In summary, we have compared normalization methods
to allow cross-platform validation of miRNA expression
profiling data from microarray experiments. We have
identified a core set of constitutively expressed miRNAs
that can serve as normalization controls. We have also
generated a database of prenormalized expression profiles
using an internal normalization method and used the data to
study the expression of miRNA family members and intronic
miRNAs. This study is the first attempt to generate consen-
sus expression profiles for miRNAs derived from interplat-
form and interlaboratory comparisons. Such expression pro-
files are a valuable resource to guide in target validation
experiments and elucidation of regulatory networks.

MATERIALS AND METHODS

Source of data

We collected high-throughput experimental data on expression
profiling of miRNAs from public repositories, Gene Expression
Omnibus (GEO) (Edgar et al. 2002; Barrett et al. 2007), and
Arrayexpress (Parkinson et al. 2007). The GNF atlas (Su et al. 2004;
Ganapathi et al. 2007) containing expression data for mRNA
transcripts was retrieved from GEO. miRNA sequences, flanking
regions, and other miRNA-related information was downloaded
from miRbase. Relationships between intronic miRNAs and host
genes and positional information regarding miRNAs was visualized
using the UCSC Genome Browser (Kent et al. 2002) version hg18.

KNNimpute

KNNimpute is a method of imputing missing values by replacing
the missing value with a weighted average of ‘‘K’’ other miRNAs
of a similar expression profile (nearest neighbors). Missing values
were imputed using the program for implementation of the
KNNimpute algorithm available from Stanford Microarray data-
base. The parameters used include Euclidean matrix and an
optimal K value of 15.

Comparison of expression profiles

miRNA expression data was downloaded and background-sub-
tracted signal intensity values were calculated. Mean, median,

FIGURE 5. Expression levels of different members of the let-7 family
of miRNAs across different samples. Z scores for expression of eight
members of the hsa-let-7 family were calculated. The expression
profiles for 140 experimental conditions were clustered using Self
Organizing Maps.
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constitutive miRNA, and quantile normalization were carried out
using commercial microarray analysis software, Avadis. Boxplots
were generated using R. The expression levels were then log
transformed and Z scores (Cheadle et al. 2003) were calculated
using the formula

Z scoregi =
signalgi �mean signalgl...gn

� �

standard deviationð Þgl...gn

;

where g is any gene in the microarray.
The Z scores were used for clustering miRNAs using the

commercial software for clustering microarray data, Avadis. Z
ratios (Cheadle et al. 2003) represent the expression level of
a miRNA in one tissue relative to its average expression level across
all other tissues. For each miRNA, the difference between the Z
score in a tissue (ZT) and the average Z scores across all other tissues
(ZC) was divided by the Standard Deviation of the differences,

Z ratiogi =
ZT � ZCð Þgi

standard deviation ZT � ZCð Þgl...gn

;

where g is any gene in the microarray, ZT is average Z score of
gene g in a tissue (T), and ZC is average Z score for gene g across
all other tissues.

Identification of constitutive miRNAs

Clustering of Z scores was performed using self-organizing maps
(Tamayo et al. 1999a) in the microarray analysis software package
Avadis. A coefficient of variation (CV) of Z scores was calculated

for each miRNA. Since Z scores can be negative, the CV can also
be negative. The mean was squared and the square root calculated
to convert the CV to a positive value. The miRNAs with CV below
0.65 were selected,

CVg =
standard deviationð Þtl...tnffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

meanð Þtl...tn
� �2

q ;

where g is any gene in the study. The mean and standard deviation
were calculated across all tissues (t1. . .tn).

SUPPLEMENTAL MATERIAL

Supplemental material can be found at http://www.rnajournal.org.
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