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ABSTRACT

Accurate prediction of RNA pseudoknotted secondary structures from the base sequence is a challenging computational problem.
Since prediction algorithms rely on thermodynamic energy models to identify low-energy structures, prediction accuracy relies in
large part on the quality of free energy change parameters. In this work, we use our earlier constraint generation and Boltzmann
likelihood parameter estimation methods to obtain new energy parameters for two energy models for secondary structures with
pseudoknots, namely, the Dirks–Pierce (DP) and the Cao–Chen (CC) models. To train our parameters, and also to test their
accuracy, we create a large data set of both pseudoknotted and pseudoknot-free secondary structures. In addition to structural
data our training data set also includes thermodynamic data, for which experimentally determined free energy changes are
available for sequences and their reference structures. When incorporated into the HotKnots prediction algorithm, our new
parameters result in significantly improved secondary structure prediction on our test data set. Specifically, the prediction
accuracy when using our new parameters improves from 68% to 79% for the DP model, and from 70% to 77% for the CC model.
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INTRODUCTION

Many RNA structures with important functions have
pseudoknots. Examples include most of the large ribosomal
RNA molecules (Cannone et al. 2002) and transfer mes-
senger RNA molecules (Andersen et al. 2006) with roles in
translation, Ribonuclease P RNAs (Brown 1999) with roles
in the cleavage of an extra RNA sequence on transfer RNA
molecules, viral pseudoknots that induce ribosome frame-
shifting (Staple and Butcher 2005), and the self-cleaving
Hepatitis delta virus ribozyme (Staple and Butcher 2005).
Figure 1 illustrates pseudoknotted secondary structures.

Thermodynamics-based prediction of RNA secondary
structures from the base sequence are widely used, to infer
both structure and function of biological sequences, and to
design sequences with novel structures. Some methods aim to
find the secondary structure with minimum free energy
(MFE) for the sequence, from a limited range of pseudo-
knotted structure types (Rivas and Eddy 1999; Dirks and

Pierce 2003; Reeder and Giegerich 2004). Other algorithms
use heuristic approaches (Gultyaev 1991; Ruan et al. 2004;
Ren et al. 2005), which can predict a wider variety of pseudo-
knots, often more efficiently than dynamic programming
algorithms, but are not guaranteed to find the MFE structure.

Both dynamic programming and heuristic methods use an
energy model to calculate the free energy change of struc-
tures. An energy model is described by a list of structural
features (such as a stacked pair); parameters, which are free
energy change values, one per feature; and a function (DGo)
which assigns an overall free energy change to a given
structure for a given sequence. The Mathews–Turner (MT)
features (Mathews et al. 1999, 2004) are widely used for
pseudoknot-free secondary structure prediction. The Dirks–
Pierce (DP) model added pseudoknot-specific features to the
MT features; their model is implemented in the NUPACK
software (Dirks and Pierce 2003, 2004), and is a variant of
earlier models (Gultyaev 1991; Rivas and Eddy 1999). The
Cao–Chen (CC) (Cao and Chen 2006) features account in
more detail for loop entropies within H-type pseudoknots
(see Fig. 1). We note that an earlier model of Aalberts and
Hodas (2005) also accounts for asymmetries in loop entro-
pies that arise from differences in the major and minor
grooves, using fewer features.
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The accuracy of predictions depends in part on the quality
of the free energy parameters. The primary goal of this paper
is to provide new parameters for pseudoknotted structure
prediction that can improve prediction accuracy. For pseu-
doknot-free parameters, there has been significant progress
over three decades in optimizing parameters starting with the
early work of Tinoco and others (Tinoco et al. 1973).
Recently, Do et al. (2006) and Andronescu et al. (2007)
introduced new methods for parameter estimation, using
Boltzmann likelihood and constraint generation methods,
obtaining parameters with significantly improved accuracy,
compared with the parameters of Mathews et al. (1999).

In this work, we apply our constraint generation and
Boltzmann likelihood (BL) methods to obtain new sets of
parameters for the DP and CC energy models for pseu-
doknots. Toward this end, we created training data sets of
reference structures, both with and without pseudoknots.
Our structural data set contains over 2200 sequence–
structure pairs from available databases. Our thermody-
namic data set contains over 1300 sequence–structure–
energy triples from the literature, where the energy is an
experimentally determined free energy change of the ref-
erence structure for the given sequence. Roughly 20% of
the structures in each data set are pseudoknotted.

We chose the HotKnots algorithm for pseudoknotted
secondary structure prediction (Ren et al. 2005) because it
was relatively simple to experiment with different energy
models. This is because the HotKnots algorithm uses a
modular function that returns the free energy change of
a structure for a sequence. One energy function, e.g., for
the DP model, can easily be replaced by a function for the
CC model without changing the rest of the software. In
contrast, energy parameters tend to be embedded through-
out recurrences of dynamic programming algorithms, mak-
ing the code difficult to change when the energy model is
changed. The prediction accuracy of HotKnots compares
favorably with that of other algorithms for pseudoknotted
secondary structure prediction (Ren et al. 2005). Another
advantage of HotKnots is that it outputs not one structure,
but a small set of putative structures. Moreover, HotKnots

is more efficient in both time and space requirements than
the Pknots (Rivas and Eddy 1999) and NUPACK (Dirks
and Pierce 2003) dynamic programming algorithms. How-
ever, a disadvantage of HotKnots is that it is not guaranteed
to return the minimum free energy secondary structure. As
a result, parameters that are optimized for HotKnots may
not be optimized for free energy minimization algorithms.

To obtain improved parameters for pseudoknot features, we
use our constraint generation method (Andronescu et al. 2007;
Andronescu 2008), because it can easily be adapted for use with
pseudoknots. We also use the BL parameter estimation
method (Do et al. 2006; Andronescu 2008) to obtain improved
parameters for the MT features without pseudoknots.

We performed several parameter training experiments to
obtain new parameter sets. Training experiments varied
according to whether parameters were trained in stages (with
parameters for pseudoknot-free features trained first and
parameters for pseudoknot features trained later) or all at the
same time. Our best parameters were obtained for both the
DP and CC models when the parameters for pseudoknot-free
features were trained first, followed by training of the pa-
rameters for pseudoknot features. For the DP model, pre-
diction accuracy improved from 68% to 79% compared with
the initial DP parameters, and our best parameters for the
CC model improved prediction from 70% to 77%.

To better understand the interplay between parameter
values and prediction accuracy we analyzed the predicted
structures both pre- and post-training. We show that overall,
the accuracy not only of the lowest-energy (‘‘optimal’’)
structure predicted by HotKnots improves, but also the ac-
curacy of suboptimal structures reported by HotKnots. For
the DP model, our analysis illustrates why simultaneously
decreasing the penalty for pseudoknot initiation and in-
creasing the penalty for pseudoknotted stems can significantly
improve the accuracy of pseudoknotted structure prediction.
On average, free energy changes of trained pseudoknot-free
(MT) parameters are higher than free energy changes of the
initial parameters, and we discuss the implications of this.

Another purpose of our analysis was to understand the
degree to which the heuristic nature of HotKnots may
contribute to the misprediction of structures. Using our
trained parameters on short pseudoknotted structures, we
found that the miss rate of HotKnots—that is, the percent-
age of such sequences for which the structure output by
HotKnots has a higher free energy change than the
reference (‘‘true’’) structure—is over 20%. As a result, the
trained parameters provided in this paper may not opti-
mize predictions of rigorous free energy minimization
algorithms (which are guaranteed to have a miss rate of
zero). It is likely that improvements to the HotKnots
heuristic could lower the miss rate and thereby be useful
in obtaining further improvements in the parameters.

HotKnots, with the old and new parameters, can be run
online at http://www.rnasoft.ca. Our parameter estimation
software, prediction algorithm software, data sets, and

FIGURE 1. Examples of simple pseudoknots. The structures have
been drawn with the visualization web service Pseudoviewer (Byun
and Han 2006). (A) An H-type pseudoknot with two bands (pseu-
doknotted stems). The unpaired bases form a pseudoloop. (B) A non-
H-type pseudoknot with a nested closed region (the leftmost stem and
the attached hairpin loop).
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parameters are available to download from the same URL.
Our software can be easily used for parameter estimation
for other models or on other training sets.

RESULTS

We present results on the accuracy of HotKnots predictions
with our trained parameters, and compare these results with
earlier parameter sets. We also describe other properties of
the parameters, such as fidelity to experimental free energy
change measurements. To set the context for our results, we
first briefly describe the DP and CC energy models, and then
summarize our training and test datasets, our accuracy
measures, and our training and prediction algorithms.

Energy models

An energy model is specified by a list of features, or
structural fragments (such as a stacked pair); a vector of
free energy change parameters, one per structural feature;
and a free energy change function, DGo. DGo(x, y) is the
free energy change of structure y for sequence x, with
respect to the features and parameters of the model, at
standard conditions (temperature 37°C and 1 M salt
concentration). Typically, we have

DG0ðx; yÞ ¼ +
p

i¼1

ciui; ð1Þ

where p is the number of features in the model, ci is the
number of times the ith feature appears in structure y, and
ui is the parameter for feature i.

In this paper, we train (estimate) free energy change
parameters for features of three models. Table 1 summarizes
the type and number of features of these models; further
details are provided in Materials and Methods. The MT
feature set for pseudoknot-free structures was developed by
Mathews et al. (1999). Our version of the DP feature set
(Dirks and Pierce 2003) provides 11 additional features, such
as an additive penalty for pseudoknot initiation and multi-
plicative penalties for base pairs and internal loops within
a pseudoknotted stem. The CC model provides many ad-
ditional features for H-type pseudoknots (see Fig. 1 for an
example of an H-type pseudoknot). These features account
for differences in entropies of loops that span the shallow
groove of a helix, compared with entropies of loops that span
the deep groove.5 Our version of the CC model includes

coaxial stacking features within H-type pseudoknots, and uses
the DP model for pseudoknots that are not H-type. Our DP
energy model can be applied to arbitrarily complex structures.

In Table 1, we use MT, DP, or CC to refer to the
Mathews–Turner, Dirks–Pierce, and Cao–Chen feature
sets, respectively. We refer to the initial settings of all DP
and CC parameters (including the pseudoknot-free param-
eters) using DP03 and CC06, respectively. We use dp03 and
cc06 when we refer to the parameters for the additional
features of the corresponding model. Further parameter
sets are introduced later in this section.

Data

We collected several large data sets in order to train energy
parameters and to assess their accuracy. Table 2 summa-
rizes properties of these data sets; preprocessing and other
details are provided in Materials and Methods.

We collected structural data, consisting of both pseudo-
knotted and pseudoknot-free sequence–structure pairs from
the RNA STRAND v2.0 database (Andronescu et al. 2008)
and Pseudobase (van Batenburg et al. 2001). We prepro-
cessed these data to control for length (for efficiency reasons)
and quality. We then split the resulting strands into a training
set, S-Train (z80% of the total), used for parameter training
on pseudoknotted energy models, and a test set, S-Test
(z20% of the total). We use S-Test to assess the accuracy of
both pseudoknotted and pseudoknot-free energy models. In
order to assess prediction accuracy on different types of
structures, we further split S-Test into four subsets: ShPK
contains short (<100 nucleotides [nt]) structures with
pseudoknots; ShPKfree contains short, pseudoknot-free
structures; LoPK contains long structures with pseudoknots,
and LoPKfree contains long pseudoknot-free structures. In
addition, in order to train parameters for pseudoknot-free
features alone—i.e., parameters for the MT features—we
created an additional training set, S-Train MT, which
contains only pseudoknot-free structures. Since parameter
estimation on pseudoknot-free structures is more effici-
ent computationally (in large part because the SimFold
pseudoknot-free secondary structure prediction software is
more efficient than HotKnots, and both are used for
parameter training), the average length of structures in
S-Train MT is significantly larger (246 nt) than those found
even in the long subset of S-Train (126 nt).

We collected a reference set of thermodynamic data,
T-Train, consisting of triples with sequence, structure, and
free energy changes, obtained experimentally by optical
melting (Xia et al. 1998). When training parameters for the
MT features, we use a subset of T-Train that has only
pseudoknot-free structures, and we call this T-Train MT.

Accuracy measures

We measure the accuracy of a predicted RNA secondary
structure relative to a reference secondary structure, by

5For the CC loop entropies for H-type pseudoknots, our parameters are,
in fact, entropy changes, and not free energy changes. Since the CC model
considers that the enthalpy changes of these loops are 0, entropies are
directly convertible to free energies using the Gibbs formula DGo = DHo �
TDSo, where DHo is the enthalpy change (zero in our case), T is the
absolute temperature, and DSo is the entropy change. We decided to use
entropy change parameters instead of free energy change parameters for
consistency with the findings of Cao and Chen (2006).
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using the statistical measures of sensitivity and positive
predictive value (PPV), and their harmonic mean, defined
as follows:

Sensitivity ¼ Number of correctly predicted base pairs

Number of base pairs in the reference structure
;

PPV ¼ Number of correctly predicted base pairs

Number of predicted base pairs
;

F-measure ¼ 2 3 sensitivity 3 PPV

Sensitivity þ PPV
:

When the denominators of these quantities are 0, the
measure is also 0. A perfect prediction corresponds to
a sensitivity and PPV of 1, and when these measures are 0,
there are no base pairs in common between the predicted
and reference structures. The F-measure is close to the
arithmetic mean of sensitivity and PPV when the two
numbers are close to each other, but is smaller when one of

TABLE 2. Statistics of the structural and thermodynamic data sets used for parameter training and testing

Data set Description Number
Percentage

(%)
Average
length STD

Percent of PKBP in
pseudoknot molecules

(%)

S-Train Structural set used for training of
models with pseudoknots

1807 100 74.09 40.10 32.73

Short, PK <100 nt, pseudoknotted 249 14 46.04 19.74 34.89
Long, PK $100 nt, pseudoknotted 78 4 142.42 78 25.85
Short, PKfree <100 nt, pseudoknot-free 1097 61 57.41 23.64 —
Long, PKfree $100 nt, pseudoknot-free 383 21 126.16 23.89 —

S-Train MT Structural set used for training of MT
model without pseudoknots

1840 100 246.09 206.86 —

T-Train Thermodynamic set used for training
of models with pseudoknots

1322 100 17.75 7.30 39.97

PK Pseudoknotted 22 2 42.27 9.66 39.97
PKfree Pseudoknot-free 1300 98 17.34 6.51 —

T-Train MT Thermodynamic set used for training of MT model 1291 100 17.31 6.49 —
S-Test Structural set used for testing of models

with and without pseudoknots
446 100 74.11 43.28 34.10

ShPK <100 nt, pseudoknotted 78 17 48.71 19.10 37.36
LoPK $100 nt, pseudoknotted 20 4 170.55 64.15 21.39
ShPKfree <100 nt, pseudoknot-free 261 59 57.60 23.89 —
LoPKfree $100 nt, pseudoknot-free 87 20 124.23 23.87 —

Columns 1 and 2 provide the names and descriptions of the data sets, and their subsets of short versus long, pseudoknot-free versus
pseudoknotted structures. Roughly 20% of the structural data contains pseudoknots; this is the same percentage as in the RNA STRAND v2.0
database overall. Columns 3–6 provide the number (and percentage) of molecules per set and subset, the length average, and the standard
deviation of length, respectively. Column 7, the last column, gives the average percentage of base pairs (taken over all pseudoknotted structures
in the corresponding set) that need to be removed from structures with pseudoknots, to render them pseudoknot-free.

TABLE 1. The Mathews–Turner (MT), Dirks–Pierce (DP), and Cao–Chen (CC) feature sets

Feature
set
name Description of feature set

Parameter set name
Number

of featuresInitial Our new best

MT All MT features for pseudoknot-free structures MT99 MT09 363
DP All DP features, which include all MT features

plus 11 additional features for pseudoknots
DP03 DP09 374

dp DP 11 features for pseudoknots dp03 dp09 11
CC All CC features, which includes the DP features

plus 258 loop entropies and 288 coaxial
stacking in H-type pseudoknots

CC06 CC09 920

cc CC loop entropies and coaxial stacking features
for H-type pseudoknots

cc06 cc09 546

The CC model uses the CC features, as well as the coaxial stacking features given by Tyagi and Mathews (2007), for H-type pseudoknots, and
defaults to the DP features for pseudoknots that are not H-type.
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the numbers is close to 0, thus penalizing predictions for
which the sensitivity or PPV are poor.

In addition, we measure the accuracy of the estimated
free energies êi versus reference free energies ei for each of
the t sequence–structure–energy triples in our thermo-
dynamic data sets. We use a root mean squared error
(RMSE) as a measure of average error, for a thermodynamic
data set with t triples. The closer to 0 the RMSE, the better
the fit to the thermodynamic data set:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
+t

i¼1ðei � êiÞ2

t

s
:

Training and prediction algorithms

We use two algorithms for parameter estimation. Our BL
algorithm (Andronescu 2008) uses a maximum a posteriori
approach; roughly, the goal is to find parameters that
maximize the probabilities of both the structural and
thermodynamic training data sets, given a prior distribu-
tion of the parameters. Our constraint generation (CG)
algorithm uses constraints that guide the training of
parameters, where constraints ensure that free energies of
reference structures are low, relative to alternative structures
for the same sequence. In our earlier work (Andronescu et al.
2007; Andronescu 2008) on parameter estimation for
pseudoknot-free structures, we found that both algorithms
perform comparably, in terms of the accuracy of the

resulting parameters, with the BL method performing
slightly better. Therefore, in this work, we use BL when
training pseudoknot-free parameters. A significant advan-
tage of the CG method, however, is that it is much easier to
adapt for training of parameters for pseudoknotted features.
For this reason, we chose to use CG for training of
parameters for pseudoknot features in this work.

For secondary structure prediction, we use two algo-
rithms. When the underlying model is MT for pseudoknot-
free structures, we use the minimum free energy (MFE)
dynamic programming method of Zuker and Stiegler
(1981), as implemented in the SimFold software package
(Andronescu 2003). We use the HotKnots algorithm of Ren
et al. (2005) when the model is for prediction of pseudo-
knotted secondary structures (DP and CC).

Some details of these algorithms are given in Materials
and Methods and the supplemental material, including
settings of training algorithm hyperparameters and the
HotKnots heuristic.

Accuracy of the initial parameters

Table 3 gives a summary of the secondary structure
prediction accuracy and free energy estimation of Simfold
and HotKnots on our training and testing data sets. To
provide a baseline for comparison with our trained
parameters in the following sections, Table 3, rows 1–3,
pertains to the initial parameter sets: the MT99 parameters
of Mathews et al. (1999), the DP03 parameters of Dirks and

TABLE 3. Summary of prediction accuracy for three models with and without pseudoknots, when using various model parameters

Row
number

Model RMSE (kcal/mol)
F-Measure

F-Measure on test set

Feature Parameter T-Train PKfree T-Train PK S-Train ShPK LoPK ShPKfree LoPKfree S-Test

Section 1: All parameters initial
1 MT MT99 1.24 — 0.687 0.504 0.517 0.717 0.698 0.667
2 DP DP03 = MT99 + dp03 1.24 3.39 0.690 0.616 0.483 0.711 0.684 0.679
3 CC CC06 = DP03 + cc06 1.24 6.40 0.697 0.773 0.502 0.702 0.685 0.702

Section 2: All parameters trained (one stage)
4 DP DP-new-all 0.96 3.15 0.745 0.824 0.591 0.794 0.664 0.765
5 CC CC-new-all 0.94 2.92 0.740 0.736 0.529 0.798 0.715 0.759

Section 3: Trained pseudoknot-free parameters (one stage) and initial pseudoknot parameters
6 MT MT09 (BL-trained) 1.17 — 0.751 0.499 0.545 0.828 0.756 0.744
7 DP MT09 + dp03 1.17 9.60 0.757 0.508 0.545 0.828 0.756 0.745
8 CC MT09 + dp03 + cc06 1.17 6.00 0.767 0.651 0.545 0.828 0.756 0.770

Section 4: Pseudoknot parameters and pseudoknot-free parameters trained separately (two stages)
9 DP DP09 = MT09 + dp09 1.17 3.53 0.773 0.817 0.590 0.810 0.742 0.788

Section 5: DP parameters, CC parameters, and pseudoknot-free parameters trained separately (three stages)
10 CC CC09 = DP09 + cc09 1.17 2.97 0.767 0.742 0.587 0.812 0.737 0.775

For the Mathews–Turner (MT) model without pseudoknots, we used either the initial parameters (denoted by MT99), or trained parameters
(denoted by MT09; we used S-Train MT and T-Train MT for training). For the Dirks–Pierce (DP) and Cao–Chen (CC) additional parameters
(denoted by dp and cc, respectively), we use either the initial parameters (denoted by dp03 and cc06, respectively), or our newly trained
parameters (we use S-Train and T-Train for training). The boldface values represent the best values for the column. More details, including
sensitivity and PPV, can be found in Table 4 and the Supplemental Tables 1 and 2.
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Pierce (2003), and CC06 parameters of Cao and Chen
(2006). Briefly, the F-measure data on our test set S-Test
shows that CC06 is best overall. CC06 does particularly well
on short pseudoknotted structures, with an F-measure of
0.773 on ShPK, compared with F-measures of 0.616 for
DP03 and 0.504 for MT99 on ShPK. However, the MT99
parameters provide slightly better accuracy than CC06 and
DP03 on long structures and on short pseudoknot-free
structures. Further details on measures of quality of the
initial DP03 and CC06 parameters, including free energy
values, sensitivity, and positive predictive values, are in-
cluded in Supplemental Tables 1 and 2.

Training all parameters together

Next, we use our CG parameter estimation algorithm to
train all of the parameters for the DP and CC features,
respectively. Table 3, rows 4 and 5, shows the results. When
comparing the trained DP09 parameters (Table 3, row 4)
with the initial DP03 parameters (Table 3, row 2), the
F-measure of the S-Test set increases by a significant 0.086.
For the ShPK set with short pseudoknotted structures, the
trained DP09 parameters facilitate predictions with an
F-measure of 0.824, the largest F-measure for the ShPK
column in Table 3. The trained CC09 parameters (Table 3,
row 5) facilitate predictions that are better by 0.053 than
the initial CC06 parameters on S-Test. In addition, the
RMSE values are significantly lower than those obtained
with the initial parameters, and the RMSE values for the
newly trained CC09 parameters (Table 3, row 5) are the
best for the column.

These results demonstrate that by using well-designed
parameter estimation algorithms and large and diverse
training sets, we obtain significantly better accuracy (for
example, the F-measure increases by 0.086 and 0.053 for the
DP and CC models, respectively), when averaged on S-Test.

Training the pseudoknot-free parameters

Next, using the BL algorithm, we trained the parameters of
the MT model on the training sets S-Train MT and T-Train
MT that do not include pseudoknots (Andronescu 2008).
We denote the parameters obtained as MT09, see Table 3,
row 6. The predictions of the pseudoknot-free sets are
significantly more accurate than in previous rows of Table
3. Therefore, since BL was previously shown to perform
slightly better than CG, and since the structures of the
training set S-Train are longer than those of the training set
S-Train PK, in the following experiments we fix the
pseudoknot-free parameters to the MT09 parameter set
(Table 3, row 6).

Table 3, rows 7 and 8, shows the performances of the DP
and CC models, respectively, with the newly trained MT09
parameters and the initial dp03 and cc06 parameters. The

F-measure of the longer structures with pseudoknots is the
same as for the MT09 parameters, and the F-measure is also
the same on both short and long pseudoknot-free structures.
However, for the short structures with pseudoknots, the
F-measures for the DP parameters in Table 3, row 7, are
significantly lower than the corresponding DP parameters in
Table 3, rows 2 and 4; and, similarly, the F-measures for the
CC parameters in Table 3, row 8, are significantly lower than
the corresponding CC parameters in Table 3, rows 3 and 5.
We discuss some reasons for this in the Discussion section.

Training the pseudoknot-free and the pseudoknot
parameters separately

We trained the DP and CC parameters while keeping the
pseudoknot-free parameters fixed to the MT09 parameters
obtained in the previous section.

Table 3, row 9, shows the results for the DP model. We
obtain an improvement of 0.109 from the initial DP03
parameters (Table 3, row 2), when averaged on the entire
S-Test. The average F-measures for S-Train and S-Test are
the highest for the corresponding columns in Table 3.
Compared with the initial DP03 parameters (Table 3, row
2), every set is predicted significantly more accurately. When
compared with the parameters trained altogether (Table 3,
row 4), all of the sets are predicted more accurately
(particularly the long pseudoknot-free structures), except
for the ShPK set, which has an F-measure lower by only
0.007. We denote this parameter set as DP09; this is the most
accurate parameter set we obtained for the DP model, and
the most accurate overall, when averaged on S-Test.

Table 3, row 10, shows the results for the CC model,
when the pseudoknot-free parameters are fixed to the
MT09 parameters and the DP additional parameters are
fixed to the dp09 parameters just obtained. When mea-
sured on the entire test set S-Test, these parameters, which
we denote as CC09, are the best overall for the CC model.
The average F-measure for each individual test set is
comparable with the F-measure obtained with the DP09
parameters (Table 3, row 9), except for the ShPK set, in
which the F-measure is poorer by 0.075.

Therefore, although the initial CC06 parameters give
better F-measures than the initial DP parameters (partic-
ularly for the ShPK test set), we have obtained slightly more
accurate predictions for the newly trained DP09 parameters
than for the CC09 parameters. This does not necessarily
mean the features of the DP model are better. It is possible
that the large number of additional CC features, together
with coaxial stacking features, make it infeasible to train
them accurately, given the limited available structural and
thermodynamic data. Feature relationships could be used,
as proposed by Andronescu (2008). In addition, the CC
model of Cao and Chen (2006) does not cover all possible
H-type pseudoknots. The more recent CC model (Cao and
Chen 2009) could be used in the future. Supplemental
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Tables 1 and 2 provide further details on the accuracy of
the DP09 and CC09 parameters.

Correlation of initial versus trained parameter values

We examined the correlations between the values, i.e., free
energy changes, of the trained parameters versus the initial
parameters for each of the MT, CC, and DP feature sets.
Figure 2A shows the MT09 parameters versus the initial
MT99 parameters, with a correlation coefficient of 0.79.

The trained loop entropy parameters of the CC model
(which comprise 258 of the full set of 920 CC09 parameters—
see Table 1) versus the initial loop entropy parameters are
shown in Figure 2B. These parameters are very well correlated
(correlation coefficient 0.98). Thus, our parameter training
methods selected parameters very close to CC initial estimates
(which were obtained using statistical mechanics simula-
tions). Figure 2C shows the trained coaxial stacking param-
eters (which comprise 288 of the full set of 920 CC09
parameters) versus the initial coaxial parameters. The corre-
lation coefficient of 0.72 is slightly lower than that (0.79) for
the MT parameters, most likely because the number of coaxial
stacking parameters is large and we have limited training data.

For the 11 DP features for pseudoknots, Table 6 (see
below) provides the initial and trained values. Parameters for
two of the features that penalize initiation of pseudoknots
are significantly lower for the trained parameters, compared
with the initial parameters, and the penalty for adding bands
(pseudoknotted stems) is higher. The remaining eight
parameter values are very similar for trained and untrained
data. In the next section, we show how these changes
improve the prediction quality of the DP model.

DISCUSSION

From the Results section, it is apparent that the trained
CC09 and DP09 parameters show large improvements over
the initial versions. In the following sections, we will discuss
some of the reasons for these improvements and the trends
that we have observed in structure predictions. In discus-
sing these trends, we note that HotKnots outputs several
possible structures for a given input, ranked by their free
energy change. We refer to the output structure with the
lowest free energy as the optimal structure and the
remaining structures as suboptimal structures. Note that
since HotKnots is a heuristic algorithm, the optimal pre-
dicted structure may not be the MFE structure. Of all
structures (both optimal and suboptimal) predicted by
HotKnots for a given input, we call that structure with the
best F-measure the best suboptimal structure. Table 4
provides a useful summary of our discussion, and is re-
ferred to throughout this section.

The CC09 and DP09 parameters improve on CC06
and DP03, with respect to both optimal
and suboptimal structure predictions

Before parameter estimation, the CC model (CC06) pro-
duces better predictions than the DP model (DP03), on
average, and especially for short pseudoknotted structures.
First, the average F-measure of optimal and suboptimal
predictions is slightly higher on S-Test for CC06 than for
DP03 (see Fig. 3). The most striking difference between
CC06 and DP03 is on the ShPK structures in S-Test, for
which the structures predicted by CC06 have a much higher
average F-measure than those predicted by DP03 (0.77
versus 0.62), and for which the best suboptimal predicted
by CC06 has a somewhat higher F-measure than that
predicted by DP03 (0.91 versus 0.88). This is not surpris-
ing, as CC06 handles H-type pseudoknots more rigorously
than DP03. Second, on reference pseudoknotted structures,
DP03 predictions are mainly pseudoknot-free (67.9% of
predictions on ShPK structures and 80.0% of predictions
on LoPK structures are pseudoknot free) with only one
stem being reproduced correctly or almost correctly, and an
adjacent pseudoknot-free structure sometimes added. CC
predictions, on the other hand, are more dominated by
pseudoknots (only 30.8% of predictions on ShPK struc-
tures and 70.0% of predictions on LoPK structures are
pseudoknot-free). Finally, on the ShPK data set, if the
optimal CC06 prediction is not the reference structure, but
the reference structure is found among its suboptimals,
then it is ranked higher among its suboptimals than in
DP03. On average, the best CC06 suboptimal ranks at 1.54,
while the best DP03 suboptimal ranks at 2.10 (Table 4).

After parameter estimation, DP09 is, on average, slightly
better than CC09 on S-Test, in terms of the optimal
structure F-measure, and is comparable in terms of the

FIGURE 2. Trained parameters versus initial parameters for the MT
and CC models. (A) MT model, correlation coefficient 0.786. All
parameters appear in the training data. (B) CC entropy parameters,
correlation coefficient 0.983. Only 188 out of 258 parameters ap-
pear in the training data. (C) Coaxial stacking free energy change
parameters, correlation coefficient 0.718. Only 166 out of 288
parameters appear in the training data.
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best suboptimal F-measure. On the ShPK structures, DP09
does better than CC09 on both of these measures. Despite
often finding all of the DP09 structures among its own
suboptimals, the CC09 model reverses the rank of better
predictions with poorer predictions among its suboptimals
compared with DP.

Higher sensitivity for pseudoknots comes at a cost
of slight increase of prediction of spurious
pseudoknots

Before parameter estimation, especially for reference struc-
tures that are short H-type pseudoknots, the DP model often
predicts a pseudoknot-free structure containing one stem of
the reference pseudoknot, whereas the CC model is able to
identify the whole pseudoknot. In the ShPK structures of
S-Test, 37.2% of the optimal structures are those where
DP03 predictions are pseudoknot-free, but CC06 predictions
are pseudoknotted. Parameter estimation improves the DP
model in allowing it to predict more pseudoknots where
appropriate (higher sensitivity), with only a slight increase in
the number of spurious pseudoknots.

To illustrate the higher sensitivity, we note that on the
ShPK test set (reference pseudoknots), 32.1% of optimal
DP03 predictions are pseudoknotted, whereas 79.5% of
optimal DP09 predictions are pseudoknotted (Table 4).
Additionally, there are no test cases in which DP03 predicts
a pseudoknot, but DP09 does not. This improvement is likely
due to the fact that starting pseudoknots becomes favorable
with the new parameters (�1.38 kcal/mol versus 9.6 kcal/mol
for the pseudoknot initiation penalty) (see Table 6 below).

Table 4 shows that the percentage of spurious pseudo-
knots in ShPKfree increases from 2.3% for DP03 to 6.5%
for DP09, but decreases from 12.3% for CC06 to 8% for
CC09 (a similar trend, but to a lesser extent, is seen for the
LoPKfree data set). Although the increase in sensitivity of
DP09 comes at a slight cost of the increase in the predicted
spurious pseudoknots, the percentage is lower than the
percentage for CC09.

DP09 and CC09 predict fewer false positives and false
negatives for complex pseudoknots than DP03
and CC06, respectively

Compared with the DP09 parameters, predictions with the
DP03 parameters include more unnecessarily complex pseu-
doknotted structures. To quantify this, we partition the
pseudoknotted structures into two types. We use the notion
of structure density (see Jabbari et al. 2008) for this purpose.
Roughly, the density of a structure is the maximum number
of mutually overlapping bands (i.e., pseudoknotted stems) in
the structure. For example, the structure shown in Figure 4A
has density 2, while the structure shown in Figure 4B has
density 3. Structures that have a density of, at most, 2 in-
clude H-type pseudoknots, kissing hairpins, and pseudoknot-
free structures. We consider structures that have density
3 or greater to be ‘‘complex.’’

First, consider sequences in S-Test where the reference
structure has density 2 or less, but DP03 and DP09 optimal
predictions have density 3 or density 4 (density-4 structures
are the highest density structures in S-Test). As shown in
Table 4, all of the sequences with a density >2 in the
optimally predicted structures using DP03 and DP09 had
a density #2 in the reference structure. The number of
predicted structures with a density >2 decreases from 18 in
DP03 to 9 in DP09, indicating that the initial DP03

FIGURE 4. Comparison of DP03 and DP09 predictions on the GaLV
pseudoknot. (A) Reference structure, which is also the structure
predicted using the DP09 parameters. (B) Structure predicted using
the DP03 parameters. This structure is unnecessarily complex, and has
an F-measure of 0.471.

FIGURE 3. F-measures for every sequence in S-Test, as predicted by
the initial DP parameters (DP03), the newly trained DP parameters
(DP09), the initial CC parameters (CC06), and the newly trained CC
parameters (CC09). (A) DP03 versus DP09. Correlation coefficient
0.542. DP09 is better than DP03 in 49% of the cases, equal in 34% of the
cases, and worse in 17% of the cases. (B) CC06 versus CC09. Correlation
coefficient 0.552. CC09 is better than CC06 in 46% of the cases, equal in
35% of the cases, and worse in 20% of the cases. (C) CC09 versus DP09.
Correlation coefficient 0.921. DP09 is better than CC09 in 5% of the
cases, equal in 93% of the cases, and worse in 2% of the cases.
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parameters are much more likely than the DP09 parameters
to falsely predict unnecessarily complex pseudoknotted
structures. The DP03 structures suffer because of a high
pseudoknot initiation penalty: when a pseudoknot is in-
troduced, DP03 is more likely to add more bands (as band
penalty is low and the reward of the added stem can be
high), and thus more complexity, to compensate for the
high positive free energy change of pseudoknot initiation.

A simple example of this phenomenon is the GaLV
sequence (van Batenburg et al. 2001), for which the optimal
model predictions are shown in Figure 4. The DP09
prediction is 100% accurate, whereas the DP03 prediction
is a poorly predicted pseudoknot with density 3.

To check that the DP09 model does not falsely predict
simpler pseudoknots even in cases where the reference
structure is complex, we consider the two cases in S-Test
that have complex reference structures: Ec_alpha (density
3) and PDB_00716 (density 4). For Ec_alpha, the DP03
optimal prediction (F-measure 0.361) is a pseudoknot-free
structure matching just part of one stem to the reference
structure, while the DP09 optimal prediction (F-measure
0.633) is a kissing hairpin matching parts of two stems to
the reference structure, with more base pairs added than
necessary. In addition, the four DP03 suboptimal pre-
dictions are all pseudoknot-free, whereas for DP09, the 15
suboptimals have better F-measures on average (0.514
versus 0.302), with the best suboptimal (F-measure 0.776),
predicted as a similar density-3 structure with one stem
matching the reference structure exactly, and having either
too many or too few base pairs for the other two stems. The
DP09 suboptimals also include two other structures of den-
sity 3 with shifted stems and an adjacent pseudoknot-free
region. Thus, for Ec_alpha, DP09 does well at predicting
pseudoknots of the expected complexity.

The difference for PDB_00716 is not as striking. The op-
timal DP03 and DP09 predictions both have 0 F-measures,
even though the DP09 prediction is an H-type pseudoknot,
whereas the DP03 prediction is pseudoknot free. The
suboptimal structures differentiate the models further. All
but one of the five DP03 suboptimal predictions are
pseudoknot-free with a best suboptimal F-measure of
0.326 (corresponding to a pseudoknot-free structure), while,
again, the DP09 suboptimals are more promising: nine out
of 19 are density-2 structures, one has density 4, the rest
are pseudoknot-free, and the best suboptimal (F-measure
0.930) matches a nested pseudoknot-free region and two of
the reference stems exactly, except for an extra base pair.
Although we cannot confidently generalize from only two
test cases, this suggests that if suboptimals are considered,
DP09 can also produce high-complexity pseudoknots where
expected.

The discussion above also holds for the CC models. As
shown in Table 4, the number of predicted structures with
a density >2 decreases from 20 (in CC06) to 9 (in CC09);
again indicating that the initial parameters are more likely

than the CC09 parameters to falsely predict unnecessarily
complex pseudoknotted structures.

In terms of falsely predicting simpler pseudoknots, we
again consider the Ec_alpha and PDB_00716 pseudoknots.
CC09 predicts the Ec_alpha pseudoknot complexity better
than CC06, generating the optimal structure and 38.5% of
suboptimals as pseudoknot-free with a best F-measure of
0.731. In comparison, all of the CC06 predictions are
pseudoknot-free with a best F-measure of only 0.393. The
PDB_00716 pseudoknot does not show the same striking
difference. CC09 does predict 43.8% compared with 33%
of CC06 suboptimals as pseudoknotted. However, the best
suboptimal F-measure is 0.564 for CC09, compared with
0.681 for CC06.

CC09 performs better than CC06 on average,
at the cost of slightly decreased accuracy
on short pseudoknotted structures

On S-Test, the CC09 model achieves a higher average
F-measure on the optimal predictions than CC06. In fact,
on all structures except ShPK, CC09 performs much
better than CC06 (with 9%, 11%, and 5% increases) (as
shown in Tables 3,4) and does only 3% worse than CC06 on
ShPK. One reason for the relatively poor performance
of CC09 on ShPK may be that the new parameters often
force CC09 energies to be much higher than CC06 energies
for pseudoknotted structures. (We compare free energy
changes of CC06 and CC09 further in an upcoming section.)
The HIV-1-RT-1-7 pseudoknot (illustrated in Supplemental
Fig. 1) is an example of where CC09 fails to predict
a pseudoknot. The CC06 prediction is perfect, whereas the
CC09 prediction F-measure drops significantly, now form-
ing a pseudoknot-free structure that matches only one stem
of the reference H-type pseudoknot (and adding the second
stem would increase the free energy change). Of all 22 struc-
tures in the ShPK test set for which the CC09 F-measure is
worse than the CC06 F-measure, seven (31.8%) are struc-
tures in which the CC09 prediction is pseudoknot-free,
whereas the CC06 prediction is pseudoknotted. Rather, the
majority of cases (9/22 = 40.9%) are structures where both
models predict pseudoknots, but CC09 shifts stems or adds/
misses base pairs. The remainders are cases where both are
pseudoknot-free or CC09 predicts a pseudoknot that is less
accurate than the CC06 pseudoknot-free prediction.

Use of the heuristic prediction algorithm
may adversely affect model results

Because of its heuristic nature, HotKnots may not find the
MFE structure as its optimal prediction. An example of this
phenomenon is the HIV-1-RT-2-10 pseudoknot (shown in
Supplemental Fig. 2) with the CC and DP predictions be-
fore and after parameter estimation. For both models, be-
fore and after parameter estimation, the reference structure
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is not predicted as the optimal prediction even though the
energy of the reference structure is less than the energy of
all structures predicted by HotKnots.

To obtain a lower bound on the number of times our
predictions suffer from this limitation of HotKnots, we can
compute the percentage of sequences in a given data set for
which the energy of the reference structure is less than the
energy of the optimal model prediction. We call this per-
centage the miss rate of HotKnots on the data set. On
ShPK, the miss rate is 3.8% for DP03, 24.4% for DP09,
16.7% for CC06, and 23.1% for CC09 (see Table 4). The
miss rate is much lower (mostly 0%) for the other test sets,
as shown in Table 4. Thus, HotKnots’ miss rate is worse on
the trained parameters than on the initial parameters.

This arises in part because the DP03 and CC06 param-
eters cause the reference structures to have high free energy
changes relative to alternative structures. For example, with
the DP03 parameters, most of the pseudoknotted structures
in ShPK have higher free energy changes than the MFE
pseudoknot-free structures. Since the MFE pseudoknot-
free secondary structure is always considered by HotKnots,
HotKnots always avoids increasing its miss rate in such
cases. With the new DP09 parameters, it is harder for
HotKnots to find a structure with a free energy change less
than or equal to the reference structure—since the MFE
pseudoknot-free structure is less likely to suffice for this
purpose. HotKnots uses a number of thresholds to make
decisions (for details, see Ren et al. 2005). These thresholds
were set based on the DP03 parameters. We expect that
different thresholds would be more appropriate for the
revised energy parameters, and could reduce the miss rates
further. For example, when generating an initial list of
hotspots, HotKnots uses an extra penalty for including
bulge loops of size 1 or 1 3 1 internal loops. These pen-
alties were chosen in a fairly ad hoc manner, and optimized
to work well with the DP03 model. With new free energy
parameters, these penalties may not apply as well.

It is likely that improvements to the HotKnots heuristic
could lower the miss rate and thereby be useful in obtain-
ing further improvements in the parameters, either for
HotKnots itself or for minimum free energy prediction
programs. An important caveat, highlighted by the low
miss rate of HotKnots on DP03, is that a low miss rate is
not enough on its own to guarantee high prediction accu-
racy. Rather, the energy parameters are key because Hot-
Knots outputs the lowest-energy structures it finds for a
given sequence. To what degree HotKnots can be improved
(with the current or even better parameters) by reducing its
miss rate is an interesting direction for future work.

Energies for post-parameter estimation structures are
higher than for pre-parameter estimation structures

In this section, we describe the effect of the new parameters
on the free energy changes of structures. We first discuss

the RMSE values shown in Table 3. On T-Train PK, the
initial DP03 and CC06 parameters yield RMSE values of
3.39 and 6.40 kcal/mol, respectively. Our new DP09
parameters yield a slightly worse RMSE value than initially
(3.53 versus 3.39), but the CC09 parameters yield a much
better RMSE (2.97 versus 6.40). All of the RMSE values on
T-Train PK are worse than the RMSE values obtained for
the pseudoknot-free structures in T-Train PKfree (which
are around 1.0 kcal/mol). This suggests that the sets of
features and parameters for pseudoknots are currently
much harder to estimate than for pseudoknot-free struc-
tures. This is likely because there is much less available data
with pseudoknots; we have only 22 pseudoknotted struc-
tures in T-Train PK, compared with 1300 structures in
T-Train PKfree.

As an example, we consider the human telomerase RNA
pseudoknot (see Fig. 5) and two mutants, which are part of
our T-Train PK data set. The free energy changes of these
structures at 37°C and 1 M NaCl were determined ex-
perimentally by Theimer et al. (2005). Table 5 shows the
experimental and predicted free energy changes for the ref-
erence structures, and for the initial and trained DP and
CC parameters. While the wild-type free energy is approx-
imated more poorly with the new parameters, the approx-
imation is better for the mutant variants.

An important trend in free energy changes can be
observed from Figure 2. In Figure 2A, which shows the
correlation between MT99 and MT09 energies, there are
more points above the diagonal than below. Thus, the
structure energies for MT09 tend to be higher than energies
for MT99. The MT features contribute more to structure
energy changes than do the CC or DP features, especially
for long sequences. We therefore expect post-training
energies to be higher than pre-training energies. This is
confirmed by the average free energy changes of reference
structures in S-Test: the CC model energies increase from
�19.92 kcal/mol pre-parameter estimation to �12.80 kcal/
mol post-parameter estimation, and DP model energies
similarly increase from �16.95 to �12.80 kcal/mol. The

FIGURE 5. The human telomerase RNA pseudoknot (wild type).
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correlation plots in Supplemental Figure 3 provide further
evidence.

Figure 2B shows that the trained CC09 loop entropy
parameters are on average lower than the CC06 loop en-
tropy parameters. This may be a consequence of the
higher MT09 parameters: in order for pseudoknots to be
predicted, given the MT09 parameters, it may be necessary
for loop entropies in pseudoknots to be more favorable.
Similarly, the higher MT09 parameters likely have the effect
of depressing the trained pseudoknot initiation penalty for
the dp09 parameters. As further evidence of this, we note
that with the MT09 + dp03 parameters, no pseudoknots are
predicted at all on sequences in ShPK. We believe that this
is because the high pseudoknot initiation penalties in dp03,
together with the relatively high MT09 parameters, cause
pseudoknots to be energetically unfavorable.

Conclusions

In summary, we have developed two new parameter sets,
DP09 and CC09, for pseudoknotted secondary structure
prediction with HotKnots. On our test set (which has 446
sequences with an average length of 74 and their reference
structures) our new parameters provide significantly better
structure prediction accuracy than the initial DP03 and
CC06 parameter sets, resulting in 11% and 7% improve-
ment in prediction accuracy, respectively. For the DP
model, the improved accuracy results, in part, from higher
sensitivity in prediction of short (H-type) pseudoknotted
structures, with a corresponding decrease in prediction of
pseudoknot-free structures or unnecessarily complex pseu-
doknots when the reference structure is H-type. In contrast,
the CC09 parameters are somewhat poorer than the CC06
parameters in prediction of short pseudoknots, but im-
prove prediction accuracy on other test data.

Training the DP parameters on training sets that did not
contain specific families of pseudoknotted RNAs (specifi-
cally, in one experiment we excluded all 62 transfer
messenger RNAs, and in another we excluded all 181
RNase P RNA molecules), resulted in comparable pre-
diction accuracy on our test sets: <2% difference for ShPK,
and <1% difference for the remaining three sets, when
compared with DP09. This suggests that our new param-
eters are likely to perform well on RNA families that have
not been used for training.

Besides prediction accuracy, another measure of quality
of energy parameters is the degree to which they accurately
predict experimentally determined energies. With respect
to a RMSE measure, the CC09 parameters predict energies
that are closest to experimentally determined energies. We
also found that on our test data, the trained parameter sets
predict energies that are higher, on average, than the initial
sets. Finally, we note that HotKnots has a higher miss rate
with the new parameters than with the initial parameters.
Further improvements in prediction accuracy may be
possible by changing HotKnots to reduce its miss rate.

MATERIALS AND METHODS

Data sets

Here, we describe the details of the structural and thermodynamic
sets.

Structural data

We have collected structural data, that is, reference sequence–
structure pairs, from three sources: (1) The first set, S1, includes
the data used for evaluation of pseudoknotted prediction algo-
rithms (Ren et al. 2005; Jabbari et al. 2007). This set has 89
structures, with an average length of 62 nt. (2) The second set, S2,
contains the sequences and secondary structures included in
Pseudobase (van Batenburg et al. 2001), from which we elimi-
nated 15 structures that are already in S1. Pseudobase contains
a collection of RNA fragments with pseudoknots, including a large
number of viral RNA fragments, and some ribosomal RNAs,
messenger RNAs, transfer messenger RNAs, ribozymes, and
aptamers. S2 contains 228 molecules with an average length of
46.6 nt. (3) The third set, S3, was created using the database RNA
STRAND v2.0 (Andronescu et al. 2008), and contains 1936
structures with an average length of 78 nt (we eliminated all
structures that were already in S1 and S2). To obtain the S3 set
from the full collection RNA STRAND v2.0, we applied the
following selection and preprocessing steps (Andronescu 2008):

1. We eliminated any structures formed from more than one
strand, as well as structures for sequences <10 nt long.
Modified nucleotides (e.g., in tRNA structures) were replaced
by the original nucleotide before modification. For each
hairpin loop with less than three unpaired nucleotides, we
opened up (removed) one or two base pairs, such that the
number of free bases in a hairpin loop is at least three.

2. We removed noncanonical base pairs (i.e., AA, AC, AG, CC,
CU, GG, and UU). We replaced unknown nucleotides
(denoted by N) that are in base pairs by the Watson–Crick
complement of its partner in the base pair. Unknown nucle-
otides that were unpaired, and for which there were no base
pairs between them and the 59 or 39 end of the molecule, were
removed by shortening the ends of the molecule. In all other
cases where structures contained unknown nucleotides, we
eliminated the structures from the set.

3. We eliminated all structures that contained a long loop, since
we were concerned that these regions were poorly annotated.

TABLE 5. Experimental and predicted free energies (kcal/mol) for
the human telomerase RNA pseudoknot (wild type and two
mutants)

Variant Experimental DP03 DP09 CC06 CC09

WT �18.70 �12.99 �12.43 �18.50 �12.89
C116U �11.60 �12.08 �11.21 �16.30 �9.88
A172U �11.50 �12.99 �12.43 �18.50 �12.89
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Specifically, we eliminated structures containing hairpin loops,
bulges, and internal loops with lengths >50, and multiloops
with lengths >100. We shortened very long structures, such
that the maximum number of nucleotides per structure is 200,
and we split the structures at external loops, keeping folding
domains (i.e., external loop branches) intact. In addition, since
most of the transfer messenger RNAs are longer than 200 nt,
we split the structure at the large multiloop.

4. We eliminated isolated base pairs (i.e., those forming a band
with no other base pairs) from structures, since these would be
considered tertiary, rather than secondary structure features.
We eliminated duplicated sequences and their corresponding
secondary structures, such that all the sequences in the final set
are pair-wise distinct.

5. We combined S2 and z80% of S3 to obtain the set S-Train and
use it for training. Then, we combined S1 and the remaining
z20% of S3 to obtain S-Test and use it for testing (see Table 2).

6. Additionally, we created a separate training set called S-Train
MT to train pseudoknot-free parameters only. This was created
in the same way as the set S3 described above, except the
maximum sequence length was 700 nt, and the structures that
had long pseudoknots were eliminated (including transfer
messenger RNAs, RNase P RNAs, group I introns, and
hepatitis delta virus ribozymes). If any of the remaining
structures contained pseudoknotted base pairs, we opened
up these pairs to obtain pseudoknot-free structures.

Thermodynamic data

We have collected data from 31 thermodynamic experiments on
structures with and without pseudoknots described in five studies
(Puglisi et al. 1988; Wyatt et al. 1990; Qiu et al. 1996; Theimer
et al. 2003, 2005), and we have added these experiments to the
thermodynamic set T-Full (Andronescu 2008), to obtain the
thermodynamic set T-Train. Twenty-two of the 31 added exper-
iments contain pseudoknots.6 Table 2 gives the statistics of
T-Train.

Energy models

In this section, we describe details of the MT, DP, and CC feature
sets and energy functions, and provide some background on the
initial parameters for these feature sets. Supplemental Figures 4–6
provide concrete examples.

Mathews–Turner (MT) model

Our version of the MT feature set (Mathews et al. 1999) is as
implemented in the SimFold software (see also Andronescu 2003).
There are 363 features overall, including features for hairpin loops
(such as terminal mismatches and length), internal loops (with
distinct features for small loops, such as 1 3 1 loops, as well as

terminal mismatches, a length penalty, and an asymmetry pen-
alty), multiloops (initiation, branch, and unpaired base penalties),
and external loops. We include a penalty for all closing AU pairs,
including those in pseudoknotted stems, but do not include
features for coaxial stacking.

The MT99 parameters were provided by Mathews et al. (1999);
they were inferred from available data using linear regression and
genetic algorithms. The MT free energy change function is exactly
as given in Equation 1.

Dirks–Pierce (DP) model

The DP feature set includes all of the MT features, along with
additional features for pseudoknots, which are summarized in
Table 6. We use the following notation given by Rastegari and
Condon (2007) to describe the features for the pseudoknots of the
DP model. If bases are numbered from the 59 end, starting at 1,
then base pair i.j is pseudoknotted if it crosses at least one other base
pair i9.j9; that is, if i < i9 < j < j9. A band is a maximal collection of
pseudoknotted base pairs, all of which cross the same base pairs.
Base pairs in a band are nested, with an internal loop or multiloop
between successive base pairs. These internal loops and multiloops
span the band. Unpaired bases in a pseudoknot are those bases
that are interspersed between (but not within) connected bands,
and are not in nested substructures. For example, in Figure 1B, all
base pairs are pseudoknotted except for the three forming the
short (horizontal) hairpin stem at positions 23.31, 24.30, and
25.29. The base pairs comprising each vertical stem form a band,
and each stacked pair between successive base pairs in these bands
is an example of an internal loop that spans a band. In contrast,
the stacked pairs in the short horizontal stem do not span a band.
All unpaired bases are in the pseudoknot, except for those at
positions 26, 27, and 28, which are in the hairpin of the horizontal
stem. Further examples are given in the supplementary material.
The DP model can be applied to assign a free energy change to
arbitrarily complex pseudoknots.

The DP features for pseudoknots include three different
penalties for initiating a pseudoknot, depending on whether
the pseudoknot is external (i.e., is not a nested substructure), is
nested within a multiloop, or is nested within another pseudo-
knot; a penalty for a band; and a penalty for unpaired bases in
a pseudoknot. There are three penalties pertaining to multiloops
that span a band. Finally, following the model given by Rivas and
Eddy (1999), we include two additional features, namely, multi-
plicative penalties for stacked pairs and internal loops that span
a band. Thus, there are 11 new DP features in total, one per row in
Table 6.

The dp03 parameters. Dirks and Pierce (2003) chose their
parameters to balance the quality of prediction on two different
sets: (1) a set of 200 pseudoknot-free tRNA structures, where it is
desirable that predictions do not include spurious pseudoknots;
and (2) a set of 100 short pseudoknotted structures obtained from
Pseudobase (van Batenburg et al. 2001), where it is desirable that
pseudoknots are indeed predicted (Dirks and Pierce 2003). A
limited space of possible parameters was explored, in the neigh-
borhood of the earlier energy parameters given by Gultyaev
(1991). From this space, parameters were chosen that avoided
introduction of pseudoknots in at least 90% of the tRNA

6Some experimental conditions are different across the five papers, for
example Theimer et al. (2005) used 1 M NaCl, while Qiu et al. (1996) used
50 mM NaCl. Since, to the best of our knowledge, it is not well agreed upon
in the literature how to accurately convert free energies at different
experimental conditions, and since the amount of data for pseudoknots is
very sparse, we chose to include all these experiments with no transformation.
All the pseudoknot-free experiments were performed at 1 M NaCl.
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structures, while correctly predicting as many structures as pos-
sible from the pseudoknotted structures. Following Rivas and
Eddy (1999), the multiplicative penalty was initialized to 0.83.

The DP free energy change function. This is as given in
Equation 1, except for the following change that results from
the use of a multiplicative penalty. If the ith feature pertains to an
internal loop, then in Equation 1, the term ci ui is replaced by

ðci � cs
iÞui þ cs

iuspanui;

where uspan is the multiplicative penalty and cs
i is the number of

times that feature i appears in an internal loop of structure y that
spans a band. (Thus ci � cs

i is the number of times that feature i
appears in an internal loop of structure y, whose closing base pairs
are not pseudoknotted.) As a result, the energy function is no
longer a linear function of the parameters, but has quadratic
terms. (The model could be changed, so that stacked pairs and
internal loops that span a band are considered to be separate
features. However, this would significantly increase the number of
features and would complicate parameter estimation.)

Cao–Chen (CC) model

Cao and Chen (2006) introduced additional features, to better
model H-type pseudoknots. As illustrated in Figure 1, H-type
pseudoknots are comprised of three unpaired regions, L1, L2, and
L3, and two stems, S1 and S2, with S1 and L1 being closer to the 59

end than S2 and L2. Unpaired bases may appear between the base
pairs of stems in an H-type pseudoknot, but nested substructures
may not appear in either the unpaired regions or the stems.

The CC feature set includes all of the DP (and thus MT)
features, along with two types of new H-type pseudoknot features.
There are 258 loop entropy features that account for the entropic
cost of loops L1 and L2 (Cao and Chen 2006, see their Tables 1,2
and their Equations 3,4). Additionally, there are 288 features that
account for coaxial stacking, provided by Tyagi and Mathews
(2007). The CC features are counted in H-type pseudoknots when
the parameters are provided by Cao and Chen (2006). The DP

features are counted in pseudoknotted structures that are not
H-type pseudoknots and in H-type pseudoknots when no param-
eters are provided by Cao and Chen (2006) (i.e., when the entries
of their Tables 1,2 contain dashes). We chose to use DP for these
cases, rather than setting the parameters to infinity, because
structures whose loops correspond to the ‘‘dashed’’ entries of
the Cao and Chen (2006) tables arise in our data set.

The cc06 parameters. The cc06 loop entropy parameters for
small stem and loop lengths were estimated computationally,
using a virtual bond model of pseudoknot conformation mapped
onto a diamond lattice (Cao and Chen 2006, their Tables 1,2), and
for large loops the parameters are fit to a simple formula. Our
cc06 parameters for the coaxial stacking features were obtained
from David Mathews (pers. comm.), and are similar to those
given by Mathews et al. (2004) and Tyagi and Mathews (2007).

The CC free energy change function. This is the same as the DP
free energy change function, except for the following. First, counts
of DP features cover only those pseudoknots that are not H-type
and pseudoknots that are H-type, but for which the CC model
does not provide parameters (Cao and Chen 2006, dashed entries
in their Tables 1,2). Second, linear terms are added for each loop
entropy feature (see Table 1). Third, nonlinear terms are added for
cases where coaxial stacking may arise within H-type pseudo-
knots. These terms are nonlinear, because the free energy change
of coaxial stacking competes with the possibility of energy changes
due to one or two dangles, and the minimum free energy change
of the two possibilities is taken.

Prediction and energy calculation algorithms

Our HotKnots prediction algorithm (Ren et al. 2005) works as
follows. First, a list of 20 hotspots (energetically favorable
structures) is generated, by aligning the input sequence in either
direction (59 to 39 and vice versa) with bases i and j paired, for all i
and j with j � i > 3. These hotspots are kept in a tree of partially
formed structures, to which new hotspots are added using

TABLE 6. DP pseudoknot features and the dp03 and dp09 parameters

DP feature description
Covered

by T-Train

Parameters

dp03 dp09

Penalty for initiating an external pseudoknot Yes 9.60 �1.38
Penalty for initiating a pseudoknot in a multiloop No 15.00 10.07
Penalty for initiating a pseudoknot in a pseudoknot No 15.00 15.00
Penalty for initiating a band Yes 0.20 2.46
Penalty for unpaired base in a pseudoknot Yes 0.10 0.06
Penalty for nested substructure in a pseudoknot No 0.10 0.96
Penalty for initiating a multiloop that spans a band No 3.40 3.41
Penalty for a branch in a multiloop that spans a band No 0.40 0.56
Penalty for an unpaired base in a multiloop that spans a band No 0.00 0.12
Multiplicative penalty for a stacked pair that spans a band Yes 0.83 0.89
Multiplicative penalty for an internal loop that spans a band No 0.83 0.74

Columns, from left to right, provide a description of the feature, indicate whether or not it is covered by the thermodynamic set T-Train, and
show the initial dp03 values and our new dp09 values obtained after training. Note that none of these features depend on the sequence; rather
they depend only on structural features.
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a dynamic programming algorithm that predicts low energy
structures for the sequence, given that bases in existing hotspots
remain unpaired in the prediction. For each node (structure) in
the tree, a pseudoknot-free prediction algorithm, in this case the
SimFold algorithm given by Andronescu (2003), is used to predict
the structure of all regions not occurring in the hotspot set at each
node. Secondary structures are deemed promising if they do not
exceed a certain energy threshold chosen through preliminary
testing.

To calculate the energy of the structures at the nodes, we
developed an energy calculator algorithm, which we refer to as
PKEnergy. We implemented two different versions of PKEnergy,
one based on the DP energy model and one on the CC energy
model. Both versions run in time linear in the size of the input
sequence, using the algorithm given by Rastegari and Condon
(2007).

The current implementation of HotKnots is fairly slow, taking
>2 h on our reference machine (3 GHz Intel Xeon CPU with 1 MB
cache size and 2 GB RAM, running Linux 2.6.16) to predict
secondary structures for strands longer than 400 nt.

Parameter estimation algorithms

Constraint generation (Andronescu et al. 2007) iteratively opti-
mizes the parameter values that are then used for predictions,
which in turn, contribute to possibly improved parameters at the
next round, until convergence (i.e., when the parameters cannot
be improved any longer). At each iteration, CG seeks parameters
that satisfy three types of constraints. The first type ensures that
reference structures have low energies, compared with alternative
structures for the same sequence. The second type ensures that the
energies of structures in the thermodynamic data set respect
experimental measurements. The third type ensures that the
trained energy parameter for each feature is within bound 6B
of the initial energy parameter. Additionally, to avoid overfitting
and also the case where parameters reach the upper limits
determined by the bounds B, the parameters are constrained by
a ridge regularizer.

We have modified the CG algorithm described by Andronescu
et al. (2007) to work with quadratic energy functions, such as
those that are part of the DP and CC models. This involves being
able to solve nonconvex quadratically constrained quadratic
programs. We use IPOPT (Wächter and Biegler 2006), an interior
point line search algorithm for solving large-scale constrained
nonlinear problems. CG converges in <10 iterations on all runs we
have performed. Solving the optimization problem at each CG
iteration takes <1 min for all runs we have performed on our
reference machine (a 3 GHz Intel Xeon CPU with 1 MB cache size
and 2 GB RAM, running Linux 2.6.16 of OpenSUSE 10.1).

To train parameters for an energy model M using CG, the user
must supply secondary structure prediction programs, data sets, and
additional inputs, which we call hyperparameters, to distinguish
them from the parameters of the model. These are described in detail
by Andronescu (2008). Here we summarize the settings of the
programs and data sets used in our parameter training experiments
(the hyperparameters are given in Supplemental Table 3).

For secondary structure prediction and free energy change
calculation programs, we use HotKnots and PKEnergy as de-
scribed in the section on prediction and energy calculation
algorithms. We also provide a function that takes a reference

structure and a second, predicted, structure as input, and cal-
culates the accuracy (sensitivity, PPV, and F-measure) of the
predicted structure. In addition, we developed computer pro-
grams that calculate feature counts for a given structure, with
respect to the DP and CC energy models. Since the free energy
change function of the CC energy model has nonlinear terms,
specifically terms that minimize over energies of coaxial stacking
or dangles, for these terms we count only the minimum-valued
features. For example, if the coaxial stacking free energy is lower
than the free energy of dangling end parameters, then coaxial
stacking features are used; otherwise dangling end features are used.

We use the BL parameter estimation method for training of
the MT parameters. This method is also described in detail by
Andronescu (2008).7 Supplemental Table 3 describes our choices
for the hyperparameter settings used in our experiments.

For secondary structure prediction, as well as calculation of
feature counts, free energy changes, partition functions, and its
gradient, we use the software SimFold (Andronescu 2003).

SUPPLEMENTAL MATERIAL

Supplemental material can be found at http://www.rnajournal.
org.
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