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Abstract
Biomarkers that can be used in combination with established screening tests to reduce false positive
rates are in considerable demand. In this article, we present methods for evaluating the diagnostic
performance of combination tests that require positivity on a biomarker test in addition to a standard
screening test. These methods rely on relative true and false positive rates to measure the loss in
sensitivity and gain in specificity associated with the combination relative to the standard test.
Inference about the relative rates follows from noting their interpretation as conditional probabilities.
These methods are extended to evaluate combinations with continuous biomarker tests by introducing
a new statistical entity, the relative receiver operating characteristic (rROC) curve. The rROC curve
plots the relative true positive rate versus the relative false positive rate as the biomarker threshold
for positivity varies. Inference can be made by applying existing ROC methodology. We illustrate
the methods with two examples: a breast cancer biomarker study proposed by the Early Detection
Research Network (EDRN) and a prostate cancer case-control study examining the ability of free
prostate-specific antigen (PSA) to improve the specificity of the standard PSA test.
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1 Introduction
The development of screening tests that are both highly sensitive and highly specific has been
a research priority for many years. However, optimizing both sensitivity and specificity with
a single marker or test is not always possible. In cancer detection, several established tests have
high sensitivity, but yield a large number of false positives. For example, the false positive rate
associated with mammography is at least six percent (Kerlikowske et al., 1993), putting a
woman at a 50 percent risk of at least one false positive after 10 screening mammograms
(Elmore et al., 1998). As another example, the PSA test is known to have low specificity in
men with benign disease; only about 1 in three positive PSA tests will be a true positive, with
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that number dropping to 1 in 4 for men with a PSA level between 4 and 10 ng/mL (Brawer,
1999). Given the large number of healthy people involved in cancer screening, there are huge
physical, emotional, and financial costs associated with false positive results and consequent
unnecessary work-up procedures (Elmore et al., 1998; Lafata et al., 2004). In the rare disease
setting, specificity needs to be extremely high in order for a test to be of practical use in
population screening. For instance, if a screening test detected ovarian cancer, which has an
incidence rate of 13.7/100,000 (Ries et al., 2006), with 90 percent sensitivity and 99 percent
specificity, only about 1 in 100 positive tests would be true positives. New technologies
promise to yield biomarkers that will assist in screening and diagnosis. Combining existing
tests with these new technologies has become a natural step toward improving the accuracy of
screening tests.

A standard approach to improve the diagnostic performance of a sensitive but nonspecific
diagnostic test is to require a positive result on a second test, using the ‘believe-the-negative’
rule (Marshall, 1989). For example, the Early Detection Research Network (EDRN) is
constructing a set of serum samples for evaluating candidate biomarkers for breast cancer that
could be used to reduce the false positive rate associated with mammography (Srivastava and
Kramer, 2000). Similarly, there have been several attempts to improve the specificity of PSA
by requiring a positive result on a second marker, such as free PSA, PSA velocity, or PSA
density. (Catalona et al., 1998, 1995; Partin et al., 1996; Raaijmakers et al., 2004; Gann et al.,
2002) The more stringent criterion for positivity is useful if the false positives are substantially
reduced without sacrificing the number of diseased subjects detected. Indeed, many studies
examining the value of free PSA have cited unnecessary biopsies avoided (reduction in the
false positive rate) versus the proportion of cancers detected (preservation of the true positive
rate) as measures of diagnostic benefit associated with the use of information on free in addition
to total PSA.

Evaluation of combination tests is often complicated by design limitations. Procedures to verify
presence of disease, such as biopsy for detecting cancer or angiography for assessing the extent
of coronary artery disease, can be costly and invasive. When a sensitive screening test exists
in standard clinical practice, invasive procedures for individuals that test negative with the
standard screen cannot be ethically justified. Thus disease verification is obtained only on
positive screenees. This design is also typically the only one possible for retrospective studies
that have biopsy-confirmed disease status only on those who screened positive with the
standard test during a previous trial, but where the innovative test can be performed on banked
tissue or serum. In this setting, a common design is to test an innovative marker only on those
subjects who tested positive with the standard screen for which disease status is known. The
design for these screen-positive studies limits the sorts of comparative metrics that can be
investigated because some diseased subjects are not identified, namely those testing negative
with the standard test. For example, the absolute difference of true or false positive fractions
cannot be evaluated, nor can their odds ratios. Schatzkin et al. (1987) showed that the accuracy
of two binary tests can be compared using relative measures, i.e. ratios of true positive rates
and false positive rates, when disease status is verified for subjects with at least one of the tests
positive. This method can be adapted to our setting where the marker is only obtained on
positive screenees, as the ‘and-combination’ test result is known without performing the marker
test on subjects for whom the standard screen is negative. The methods of Schatzkin et al.
(1987) were developed further by Cheng and Macaluso (1997) who provided an approach for
interval estimation and Pepe and Alonzo (2001) who developed a regression framework for
the relative rates. While methods of inference for the discrete case, the combination of two
binary tests, have been established, methods for the continuous case have not.

In this article, we present statistical methods for evaluating the diagnostic performance of the
combination of a standard test with a continuous marker when disease status and the marker
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are only obtained on subjects who screen positive with the standard assessment. In particular,
we develop formal methods of inference for this setting. We first show that for the discrete
case, the relative rates proposed by Schatzkin et al. (1987) reduce to conditional probabilities
and that standard binomial formulas apply. This observation allows us to develop a natural
extension of the relative rates for the case when the innovative test is a continuous-valued
biomarker. For the continuous case, we introduce the concept of the relative receiver operating
characteristic (rROC) curve. The proposed rROC curve describes the relative accuracy of the
innovative combination compared to the standard test in the general population. We note that
for the ‘and combination’, i.e. the ‘believe-the-negative’ rule, the rROC curve can be
interpreted as the ROC curve (Green and Swets, 1966; Hanley, 1989) for the innovative test
in the test-positive population. We exploit this relationship to develop methodology for
statistical inference and study design.

Our analysis differs from previous studies. First, we develop the rROC to compare the
performance of a combination test relative to the standard in the general population.
Furthermore, using statistical methods for ROC curves, we develop proper inference for the
rROC that takes into account the uncertainty in both dimensions, namely the relative true
positive fraction (rTPF) and the relative false positive fraction (rFPF). Previous studies that
used a biomarker to improve the specificity of an existing screening test did not account for
the uncertainty in the threshold estimate when presenting estimates of the percent biopsies
avoided for a fixed fraction of cancers detected (Catalona et al., 1995, 1998; Partin et al.,
1996; Gann et al., 2002). The methods we present provide a formal statistical framework for
making inferences about these clinically relevant quantities, which was not present in these
previous studies.

The article is organized as follows. In Section 2, we present a representation of the relative
rates in terms of conditional probability when both tests are binary. For illustration, we consider
an example from the EDRN for breast cancer. In Section 3, we introduce the concept of the
rROC curve and use this to extend the methods of Section 2 to accommodate settings where
the second test is a continuous marker rather than a dichotomous test. Data from a study which
examined the ability of the free PSA biomarker to improve the specificity of the standard PSA
test for prostate cancer are then analyzed using the rROC technology. We conclude with a
summary and discussion of the applicability of the proposed methods in the broader context
of diagnostic testing and screening.

2 Performance of a combination test using a dichotomous biomarker
2.1 Relative accuracy

The diagnostic accuracy of a test is typically summarized with the true positive rate (TPR) and
the false positive rate (FPR). The TPR and FPR, also known as the sensitivity and 1 –
specificity, are:

One way to compare the combined test A and B with test A is to compute the relative true and
false positive rates, given by:

(1)
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(2)

where D denotes disease present by the definitive test, D ̄ denotes its absence, and YA and YB
denotes the results of tests A and B. The hope is that rTPR will be close to 1, while rFPR will
be substantially less than 1; that is by combining test B with test A, sensitivity will be maintained
but the false positive rate will be reduced substantially.

Observe that these relative rates are equal to the conditional probabilities:

(3)

Despite the design constraints, each of these probabilities is estimable. Furthermore, from (3),
we see that these relative rates are just the unconditional TPR and FPR for test B applied to the
subpopulation of subjects who tested positive on test A. From this key observation, we note
that standard statistical procedures for binomial probabilities can be applied to make inference
about the comparative measures, rTPR and rFPR. It should be noted that using the binomial
formulas for confidence intervals will yield strictly smaller confidence regions than the
approximate method proposed by Cheng and Macaluso (1997) for rTPR and rFPR in the more
general screen-positive setting. This can be shown by Taylor series methods. The binomial
formulas also provide the option of exact inference for small sample sizes.

2.2 Example: the Early Detection Research Network
The Early Detection Research Network (EDRN) is constructing a set of serum samples for
evaluating candidate biomarkers for breast cancer (Srivastava and Kramer, 2000). The EDRN
seeks markers that will reduce the false positive rate associated with mammography. Thus a
woman will have a positive screening test if she tests positive with mammography (test A) and
with the biomarker (test B). The proposed EDRN study will collect serum samples from
mammography positive women undergoing biopsy procedures. Samples from 300 women
found to have invasive cancer will be selected for inclusion in the reference set along with 100
women without cancer. This study is currently underway, so data are not yet available. Instead,
Table 1 shows an illustrative, hypothetical data set for a binary biomarker test used in
combination with mammography.

Most published studies express the value of the combination test in terms of unnecessary
biopsies avoided versus percent cancers detected. These quantities correspond exactly to 1-
rFPR and rTPR. The point estimates and joint 90 percent confidence intervals (Pepe, 2003) for
the relative rates are rTPR = 294/300 = 0.98 (0.96, 0.99) and rFPR = 50/100 = 0.50 (0.40, 0.60).
These relative rates have two interpretations. Interpreted as ratios of test performance measures
in the general population, the combined test has 98 percent of the sensitivity and 50 percent of
the false positive rate of mammography alone. Interpreted as conditional probabilities, using
equation (3), they show the proportions of cases and controls currently undergoing biopsy that
would still be biopsied with the requirement that they also test positive with the biomarker.
Thus, with 90% confidence, the proportion of controls unnecessarily undergoing biopsy can
be reduced by at least 40 percent with a loss of no more 4 percent of the cancers currently
detected with mammography alone.
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An advantage of the interpretation as relative performance of the combined test versus
mammography alone is that it does not require that mammography be performed first in the
combination. That is, it compares the test combination where the biomarker is performed first
then followed by mammography if the biomarker is positive to mammography alone. Even
though the study design was not carried out in this fashion, inference about the rTPR and rFPR
for that ordering of the combination is provided. If the ‘and combination’ is found to perform
well relative to mammography alone, it would be very desirable to apply the biomarker first
in practice rather than the mammogram, because women negative on the biomarker would not
need mammography and the cost savings could be enormous.

3 Performance of a combination test using a continuous biomarker
3.1 The rROC curve

For a continuous diagnostic test, a positive result is based on whether the test result exceeds a
threshold c, written as Y > c. Each cutoff value yields a binary test. Suppose that test B is
continuous. We can consider rTPR(c) and rFPR(c) for the combination of test A with test B
dichotomized at threshold c compared with test A alone. We then define the relative ROC
curve, rROC = { (rFPR(c), rTPR(c)), c ∈ (−∞, ∞) }, as the plot of all possible relative true
versus relative false positive rates. If the curve contains points where rTPR(c) is close to 1 but
corresponding rFPR(c) is substantially less than 1, this indicates that for some thresholds the
combination improves performance relative to the performance of test A alone. Again using
the conditional probability interpretations from (3), we note that the rROC curve can also be
interpreted as a true ROC curve for test B conditional on test A positivity. As with the usual
ROC, the closer the curve is to (0,1), the better the relative performance. Standard statistical
procedures for ROC curves can be applied to make inference about the comparative
performance and to perform sample size calculations. In addition, ROC regression methods
can be used to evaluate the dependence of the relative performance on covariates such as patient
demographics or clinical characteristics. In the case where multiple biomarkers are being
evaluated for their performance in combination with the standard test, regression methods may
be used to compare the rROCs and the corresponding areas or partial areas under the curves
(rAUCs,rpAUCs) so as to select the marker that is most likely to improve specificity while
maintaining acceptable levels of sensitivity.

3.2 Example: Analysis of prostate cancer biomarker data
The percentage of free to total PSA (FPSA) is a continuous biomarker which has been shown
to be lower on average in men with prostate cancer compared to those without the disease
(Gann et al., 2002; Catalona et al., 1998, 1995; Partin et al., 1996). Given that the standard
PSA test (PSA) may not always be sufficiently specific, a number of studies have investigated
whether FPSA can be combined with PSA to reduce the likelihood of a false positive test.

The Physician's Health Study (PHS) was a randomized, placebo-controlled clinical trial of beta
carotene and aspirin which enrolled 22,071 U.S. male physicians aged 40-84 years in 1982
(Hennekens and Eberlein, 1985). A case-control study of prostate cancer biomarkers, PSA and
FPSA, was conducted after the primary study was completed (Gann et al., 2002). To this end,
PSA and FPSA was obtained from stored serum samples for 430 men who developed prostate
cancer during the course of the study and 1642 age-matched controls. Here we seek to examine
the diagnostic performance of combining FPSA with the standard PSA screening test for those
who test positive on the standard. Due to the long-term follow-up of this retrospective study,
disease status was available for all subjects. The rROC curve is applicable to this setting, as
well as to the prospective setting where disease status for individuals whose total PSA does
not exceed the standard threshold of 4 ng/mL is not known.
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Consider the combination PSA > 4 ng/mL and −FPSA > c. (We use −FPSA so that higher
values of YB are associated with cancer, in accordance with our convention.) In the framework
we have developed, −FPSA is test B and the standard PSA test is test A. The rTPR(c) is
calculated as the proportion of prostate cancer cases positive with the standard PSA test whose
−FPSA values exceed c. Similarly, the rFPR(c) is calculated from the PSA-positive controls.
There are 147 cases and 144 controls who had serum samples positive with the standard PSA
test. Thus 291 subjects enter into the calculation of rROC(c).

The empirical rROC curve of  (c) versus  for all c is shown in Figure 1. This curve
shows the trade off of the reduction in unnecessary biopsies performed, 1−rFPR, versus the
reduction in cancers detected, 1 − rTPR, for the combined test relative to the standard PSA test
for each cutoff c.

Suppose we seek a combined test that maintains 90% of the sensitivity of the standard PSA
test. The corresponding threshold for FPSA in our data is 21%. As shown in Figure 1, this test
has an estimated relative false positive rate . Recognizing the rFPR that yields a
rTPR of 0.90 as the estimated inverse ROC point,  (0.90), we can apply the variance
formula 5.3 of Pepe (2003) to obtain an appropriate confidence interval. This variance estimate
incorporates the uncertainty in both dimensions of the estimated ROC curve, i.e. the rTPR and
the rFPR. Applying this formula requires estimating the slope of the rROC curve at the point
where rTPR = 0.90, which we estimate by the slope of a binormal ROC curve fit to the data
(Metz et al., 1998;Dorfman and Alf, 1969). This slope is calculated by differentiating the
function for the binormal curve rROC(t) = Φ(a + bΦ−1(t)) with respect to the relative false
positive fraction t and plugging in the fitted parameters a and b. Alternatively, the variance can
be estimated using a bootstrap confidence interval (Efron and Tibshirani, 1993) for 
(0.90) with separate resampling from cases and controls. We used the ROCFIT function in the
STATA software (Version 8.0) (StataCorp, 2003) to fit the binormal rROC curve. The resulting
90% confidence interval for the rFPR is (0.49, 0.69). That is, with 90% confidence the
combination test reduces the false positive rate of PSA by at least 31 percent while maintaining
90% of the sensitivity.

An important aspect of the effort to improve the specificity of PSA is the reduction of the false
positive rate in older men. To examine whether the relative performance of the combination
test is a function of age, rROC curves for men 65 and older (N=138) and under age 65 (N=153)
are calculated along with their corresponding rAUCs. The estimates for the rAUC and its
standard error are based on the binormal model fit to the data with ROCFIT in STATA. Figure
2 displays the age-specific rROC curves along with the pooled rROC. The relative performance
for the two age groups is remarkably different. The area under the rROC curve along with the
90% confidence intervals is 0.83 (0.77, 0.89) for older men and 0.72 (0.65, 0.79) for the younger
men. Again, fixing the rTPR at 0.90, one has a rFPR of 0.45 (90% CI: 0.29, 0.61) for the 65
and older group, and 0.79 (90% CI: 0.64, 0.94) for the under 65 group. Thus, the combined
test for the older men has 55% fewer false positives than PSA alone and this is significantly
better than the 21% reduction seen for men under 65 (p=0.01).

The methods developed in this article extend to other settings where the combination is not a
simple ‘and’ rule. They apply to any combination rule that yields a test more restrictive than
the standard diagnostic test. For example, one might require a positive result on a second test
only for a restricted range of values for the first test. In the following example, we demonstrate
the applicability of our methods for this restricted range combination using the PHS data.

Shaw et al. Page 6

Stat Biopharm Res. Author manuscript; available in PMC 2010 January 5.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



3.3 Example 3: Restricted Range Combination
For prostate cancer screening, there have been several attempts in the literature to reduce the
false positive rate of PSA by combining it with FPSA when PSA falls into the diagnostic gray
zone of 4-10 ng/mL (Catalona et al., 1998, 1995; Partin et al., 1996). Consider the combination
test where we define as positive:

(4)

The rROC curve to compare the accuracy of this test with the standard PSA test, i.e. total PSA>
4 ng/mL, is calculated with the conditional probabilities:

and

where ρ0 = P(PSA > 10|PSA > 4, D ̄) and ρ1 = P(PSA > 10|PSA > 4, D). Estimates of ρ0 and
ρ1 can be obtained from the PHS data as 0.15 and 0.33 respectively and are consistent with
those observed in the literature data (Mettlin et al., 1996). The rROC curves along with the
90% confidence intervals for  (0.90) are shown for the restricted range combination
and simple ‘and’ rule in Figure 3. The variance of  (0.90) for the restricted range
combination was obtained using the bootstrap. Here, with 500 bootstrapped samples of the
cases and controls, an estimate of the variance was obtained that accounted for the extra
variability introduced into the relative rates by estimating ρ0 and ρ1. Note for the restricted
range rule, the rROC curve traces out the points (1,1) to (ρ0, ρ1) as the cutoff for −FPSA
increases from −∞ to ∞. The rAUC in this case can be calculated from

From Figure 3 one can see that near the point of interest, rTPR = 0.90, the restricted range
combination has a similar rROC curve as the simple ‘and’ rule. This suggests that the FPSA
test provides most of its added benefit when used in combination with the standard PSA test
for individuals with total PSA levels between 4–10 ng/mL.

4 Discussion
The value of ROC methodology in evaluating the accuracy of continuous markers is well
recognized. In this article we have proposed an adaptation of the ROC curve to evaluate the
relative accuracy of tests that combine a novel, continuous marker with a standard test using
the ‘believe-the-negative’ rule. This adaptation relies on the observation that, for this
comparison, the relative rates are true conditional probabilities. The rROC curve, which plots
the relative true positive rate against the relative false positive rate, shows how the gain in
specificity and loss in sensitivity vary with the threshold for positivity of the novel marker. A
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key advantage of this approach is that it provides a summary of the relative accuracy of the
combination test in the general population while requiring disease status be ascertained only
on individuals testing positive with the standard test; therefore it can accommodate verification-
biased designs. A second advantage is that inference fully accounts for the uncertainty in both
the relative true and false positive rates.

Though the rROC curve functions as a true ROC curve, there are qualitative differences that
distinguish it from the ordinary ROC curve that need to be considered when interpreting results.
In particular, the range of relative false positive rates that are clinically useful are markedly
different than those for the non-relative rates. For instance, suppose a standard screening test
has a false positive rate of 10% and that requiring additional positivity on the biomarker test
reduces the false positive rate to 5%. The rFPR in this case is 50%. On the non-relative scale,
we are focusing on the left-hand side of the ROC curve. However, on the relative scale this
improvement translates into a point in the middle of the rROC curve. In a widely used screening
test for a relatively rare disease, small reductions in the relative false positive rate, i.e. values
of rFPR as high as say 80%, could translate into a large public health benefit.

In our setting, the purpose of the biomarker is to increase specificity of the standard test. It is
important to note that with the study design we have considered, one cannot make statements
about the unconditional performance of the second test or about the absolute performance of
the first or combined tests. To answer these sorts of questions, both tests under consideration,
as well as the definitive test for determining disease status, would have to be administered to
at least some subjects testing negative with the standard. This strategy is unethical if the
standard test is highly sensitive and either the second test or the definitive test is invasive. These
subjects are not included in the proposed design. The proposed design however does provide
a useful framework to study the potential incremental value of a biomarker over a standard test
in the early stages of development with little patient burden.

One practical limitation relevant to the proposed design, as well as to all screening studies for
rare diseases such as cancer, is sample size. In order to obtain an adequate number of truly
diseased subjects to estimate the rTPR, a potentially large number of individuals would need
to be screened. However, because disease status will be obtained for individuals who test
positive on the standard screening test, case-based sampling is appropriate and can be used to
avoid testing the biomarker on an unnecessarily large number of screen-positive individuals
without disease.

In summary, we have provided methodology to formally evaluate tests that combine a standard
test with a novel, continuous biomarker. This methodology applies to any combination rule
that yields a test more restrictive than the standard diagnostic test. Our framework for
evaluation is based on established ROC methodology, and coincides with intuitive notions,
such as unnecessary biopsies avoided and fraction of cancers detected, that have been used in
the literature. The proposed methods are applicable in the setting where disease verification is
burdensome or unethical in subjects testing negative with the standard test. We anticipate that
these methods will be useful in practice and will provide a clinically meaningful way of making
inferences about how best to use novel markers to improve test specificity while maintaining
acceptable levels of sensitivity.
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Figure 1.
The empirical relative ROC curve (rROC) for the combined PSA and FPSA test compared
with PSA alone. The point estimate for  (0.90) = 0.59 is marked with a solid vertical
line. The 90% confidence interval for  (0.90) is also shown.
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Figure 2.
Age-specific empirical relative ROC (rROC) curves for the combined PSA and FPSA test
compared with PSA alone. A 90% confidence interval for  (0.90) is also shown for the
age-specific groups.

Shaw et al. Page 12

Stat Biopharm Res. Author manuscript; available in PMC 2010 January 5.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 3.
The grey line shows the empirical rROC curve for the restricted combination, PSA combined
with FPSA when 4 ≤ PSA ≤ 10 ng/mL, compared with PSA alone. A 90% confidence interval
for  (.90) is also shown for the restricted combination. The rROC curve for the simple
‘and combination’ is overlaid (black line) for comparison.
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Table 1

Hypothetical biomarker results (YB) from 300 invasive cancers and 100 benign disease controls with positive
screening mammograms. True disease status is determined by biopsy.

Test Result

Disease Status

Cancer Benign Disease

YB = + 294 50

YB = − 6 50

Total 300 100
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