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ABSTRACT

Maternal obesity coupled with Western-style high-energy
diets represents a special problem that can result in poor fetal
development, leading to harmful, persistent effects on offspring,
including predisposition to obesity and type 2 diabetes.
Mechanisms linking maternal obesity to the increased incidence
of obesity and other metabolic diseases in offspring remain
poorly defined. Because skeletal muscle is the principal site for
glucose and fatty acid utilization and composes 40%–50% of
total body mass, changes in the properties of offspring skeletal
muscle and its mass resulting from maternal obesity may be
responsible for the increase in type 2 diabetes and obesity. Fetal
stage is crucial for skeletal muscle development because there is
no net increase in the muscle fiber number after birth. Fetal
skeletal muscle development involves myogenesis, adipogene-
sis, and fibrogenesis, which are all derived from mesenchymal
stem cells (MSCs). Shifting commitment of MSCs from myogen-
esis to adipogenesis and fibrogenesis will result in increased
intramuscular fat and connective tissue, as well as reduced
numbers of muscle fiber and/or diameter, all of which have
lasting negative effects on offspring muscle function and
properties. Maternal obesity leads to low-grade inflammation,
which changes the commitment of MSCs in fetal muscle through
several possible mechanisms: 1) inflammation downregulates
wingless and int (WNT) signaling, which attenuates myogenesis;
2) inflammation inhibits AMP-activated protein kinase, which
promotes adipogenesis; and 3) inflammation may induce
epigenetic modification through polycomb group proteins.
More studies are needed to further explore the underlying
mechanisms associated with maternal obesity, inflammation,
and the commitment of MSCs.

adipogenesis, fetus, inflammation, maternal obesity, mesenchymal
stem cells, myogenesis, skeletal muscle

INTRODUCTION

Maternal Obesity and Offspring Health

Obesity is a growing, serious problem in developed and
certain developing countries. According to the latest National
Health and Nutrition Examination survey (1999–2002), 26% of
nonpregnant women ages 20–39 yr are overweight, and 29%
are obese [1]. More importantly, there is a shift toward higher
gestational weight gain [2], which indicates excessive nutrient
intake during gestation in affluent countries. In addition to
maternal obesity (MO), an alarming trend in childhood obesity
is also recorded. Epidemiological studies clearly establish a
strong association between MO and obesity in offspring.
Maternal obesity might adversely affect fetal development,
producing lasting effects on offspring, including predisposition
to obesity and diabetes [3–6]. Obesity and insulin resistance are
closely linked. A growing body of evidence demonstrates that
obesity and insulin resistance have a fetal origin in many
patients. Insulin resistance indicated by slower glucose removal
rates and higher insulin levels is observed in offspring of
parents with type 2 diabetes [7–9].

Skeletal muscle and liver are the two key insulin-responsive
organs [10]. Skeletal muscle composes 40%–50% of body
mass, making it the most important tissue for glucose and fatty
acid utilization. The fetal stage is crucial for skeletal muscle
development because there is no increase in muscle fiber
numbers after birth. Poor fetal skeletal muscle development
impairs glucose and fatty acid metabolism by skeletal muscle
in response to insulin stimulation, and thus predisposes
offspring to diabetes and obesity later in life [11, 12]. Human
infants who are small at birth are at greater risk for type 2
diabetes and obesity [13–15]; decreased muscle mass is a major
factor in low birth weight [13, 16]. On the other hand, mice
with enhanced fetal skeletal muscle growth due to a muscle-
specific myostatin knockout have resistance to diabetes and
obesity induced by high-glucose and high-fat diets [17, 18].
Skeletal muscle mass and oxidative capacity are positively
related to the resting energy expenditure, and low resting
energy expenditure is associated with increased incidence of
obesity and diabetes [19, 20]. Therefore, changes in fetal
skeletal muscle development are likely to provide a link
between MO and progeny obesity.

In fetal muscle, a large number of mesenchymal stem cells
(MSCs) exist. Although the vast majority of MSCs commit to
myogenesis, MSCs are also capable of differentiating into other
cell types, such as adipocytes or fibroblasts [21, 22]. A shift
from myogenesis to adipogenesis or fibrogenesis will replace
muscle fibers with adipocytes or fibrous tissues, impairing the
physiological functions of skeletal muscle, such as reduction in
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muscle force [23] and oxidative capacity [24]. In addition,
enhanced adipogenesis within muscle leads to skeletal muscle
insulin resistance, which plays a key role in the pathogenesis of
type 2 diabetes [21].

Low-grade inflammation accompanies obesity [25–27].
Maternal obesity induces fetal inflammation, which changes
fetal skeletal muscle development by promoting adipogenesis
[28, 29]. Because the effects of maternal obesity and
overnutrition on inflammation and overall fetal developmental
programming have been reviewed previously [30–32], this
discussion will be limited to the impact on fetal skeletal
muscle development of MO-induced fetal inflammatory
response.

Fetal Skeletal Muscle Development

Skeletal muscle cells are derived from MSCs, a process
controlled by a well-coordinated set of transcription factors,
which include wingless and int (WNT), paired box gene 3
(PAX3) and PAX7, and myogenic regulatory factors (MRFs)
[33, 34]. WNT signaling is crucial for mesoderm formation.
Within the surrounding tissues, a portion of MSCs to become
myogenic progenitor cells express PAX3 and PAX7, which
then induce the expression of MRFs [35, 36]. Myogenic
precursor cells further differentiate into myoblasts and then
myotubes under the control of MRFs, which include MYOD,
MYF5, MYOG (myogenin), and MYF6 (also known as
MRF4) [37]. Skeletal muscle development can be roughly
separated into three stages: embryonic, fetal, and postnatal.
These stages correspond to primary, secondary, and postnatal
myogenesis, respectively [38]. The secondary myogenesis
during the fetal stage forms most muscle fibers [38, 39].
Because of the large number of muscle fibers needed to be
formed, secondary myogenesis is susceptible to stresses, such
as maternal undernutrition, which reduces fetal muscle fiber
numbers [24, 40]. Skeletal muscle development has lower
priority in nutrient partitioning than does the development of
the neural system, internal organs, and bone, making it
susceptible to nutrient fluctuation [24].

Formation of secondary myofibers and adipogenesis begins
in mid gestation in humans and sheep and in late gestation in
rodents [41–43]. There are a large number of MSCs in fetal
muscle that can differentiate into adipogenic cells starting at
mid gestation. Adipose tissue growth later in life is due to both
hypertrophy and hyperplasia [41]. However, new adipocytes
generated later in life are mostly located in visceral,
retroperitoneal, and subcutaneous fat depots, with few located
in intramuscular fat [44]. Thus, adipogenesis occurring inside
muscle during the fetal stage has a dominant effect on the
number of adipocytes existing inside the muscle, an event
associated with skeletal muscle insulin resistance [21].
Enhanced adipogenesis in fetal muscle produces a large
number of adipocytes in skeletal muscle, which predisposes
the offspring muscle to accumulate intramuscular fat because
of the hypertrophy of existing adipocytes [6]. Mechanisms
controlling adipogenesis in fetal muscle in vivo are poorly
defined, although there are numerous in vitro cell culture
studies [45]. These studies identify several transcription factors
regulating adipogenesis, which include CCAAT/enhancer-
binding protein (CEBPA and CEBPB), peroxisome prolifer-
ator-activated receptor (PPARG), and sterol regulatory ele-
ment-binding transcription factor 1 (SREBF1, also known as
SREBP-1c) [46]. CEBPB is the first factor induced by
adipogenic stimuli and is followed by an increase in PPARG
and CEBPA expression. PPARG and CEBPA are essential

transcription factors in adipogenesis that activate many
downstream target genes specific to adipocytes [47–49].

Fetal stage is also associated with fibrogenesis. Fibroblasts
developed during this stage synthesize connective tissue that
forms perimysium and epimysium in fetal skeletal muscle
during late gestation. Limited studies have also indicated that
maternal nutrition affects the connective tissue content in
skeletal muscle. In pigs, runts are smaller than their littermates
and experienced maternal nutrient restriction during the fetal
stage. When compared to their counterparts, grown runts have
a higher concentration of collagen in their skeletal muscle [50].
Additional studies on the association between maternal
nutrition, fibrogenesis, and collagen accumulation in offspring
muscle are apparently needed.

OBESITY, INFLAMMATION, AND FETAL MUSCLE
DEVELOPMENT

Inflammatory Signaling in Fetal Muscle of MO Mothers

Inflammation has received extensive attention recently
because of its association with several diseases, including

FIG. 1. Inflammation and fetal skeletal muscle development. Inflamma-
tion inhibits stem cell differentiation into myocytes but promotes
differentiation into adipocytes.
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cancer, diabetes, and obesity. Obesity induces chronic low-
grade inflammation that may be the primary cause of diseases
associated with obesity [51]. Generally, inflammation is
classified as acute or chronic [52]. Cellular and molecular
mechanisms in acute inflammatory response are well studied.
Events involved in chronic inflammation and their physiolog-
ical consequences are beginning to be appreciated [53].
Interleukin 6 (IL6) and tumor necrosis factor a (TNF) are
among the most studied inflammatory mediators associated
with increased body fat [54–56].

Inflammatory signaling is primarily mediated by the nuclear
factor-jB (NFKB) pathway (Fig. 1) [57]. Conserved helix-
loop-helix ubiquitous kinase (CHUK, also known as IKKa)
and IjB kinase b (IKBKB, also known as IKKb) phosphor-
ylate IjB, which results in its ubiquitination, and then
degradation. This process releases NFKB from IjB and allows
translocation of NFKB to the nucleus, where it activates the
transcription of specific genes [58]. There are several NFKB
target genes, such as IL6, TNF, and chemokine (C-C motif)
ligand 2 (CCL2, also known as monocyte chemotactic protein-
1 [MCP-1]), and their expression enhances inflammation [51].

The c-Jun N-terminal kinase (JNK) is another mediator of
inflammation (Fig. 1) [59, 60]. Obesity activates the JNK
signaling pathway [60]. JNK signaling activates JUN, which
induces expression of inflammatory-related genes [61, 62].

Toll-like receptors (TLRs) function as pattern-recognition
receptors in mammals and play an important role in the
recognition of microbial components [63]. More than 10
members have been discovered in the TLR family [64]. Among
these TLRs, TLR4 functions as a receptor of lipopolysaccha-
ride (LPS) in Gram-negative bacterial cell walls [65]. When
LPS binds to TLR4, the adaptor protein myeloid differentiation
factor-88 (MYD88) is attracted to the TLR4 receptor. This
leads to the autophosphorylation of IL1R-associated kinases
(IRAKs). The phosphorylated IRAKs then bind to TNF-
associated factor 6 (TRAF6), causing the activation of the
NFKB [65] and JNK signaling pathways [66, 67]. Recent
evidence indicates that fatty acids activate TLR4 signaling [68–
70] and associate dietary fatty acids with inflammation.

Inflammatory Signaling, Myogenesis, and Adipogenesis

Inflammation changes fetal skeletal muscle development by
downregulating myogenesis. Inactivation of NFKB restores
myogenesis, which suggests a negative role for NFKB in
myogenesis [71]. Ablation of NFKB is associated with
induction of myogenic genes [72]. Mutant mice lacking RELA,
a member of the NFKB family, exhibit enhanced myogenesis
[73]. Furthermore, TNF, which activates NFKB signaling,
inhibits myogenesis [74].

Inflammation promotes adipogenesis [28, 29]. NFKB is
upregulated during fat cell differentiation [75]. Loss-of-
function mutation in TLR4, a receptor known to induce the
NFKB signaling pathway, prevents diet-induced obesity [60].
However, contradictory reports also exist in which NFKB
signaling inhibited the expression of adipocyte-specific genes
[76] through reducing PPARG expression in 3T3-L1 cells [77]
and MSCs [78, 79]. The possible reason for such controversy
might be due to the inflammatory drug doses used in cell
culture studies. Acute inflammatory response is known to
inhibit cell growth and induce apoptosis, not only to adipocytes
but cells in general, which is quite different from obesity-
induced inflammation, which is low grade and chronic. Indeed,
in vivo studies support the role of NFKB in promoting
adipogenesis [75, 79–81].

The possible role of inflammation in MSC differentiation
was further evidenced by JNK signaling. JUN is activated by
JNK [82]. c-Jun dimerizes with protein JDP2, which inhibits
the transcriptional activity of JUN (also known as activator
protein 1 [AP-1]), and thus myogenesis [83]. Less studied is
the function of JNK in adipogenesis. The absence of JNK is
reported to decrease adipogenesis [84]. JNK scaffold protein
JNK-interacting protein 1, which binds to JNK signaling
molecules, plays a critical role in JNK activation in adipocytes
of obese mice [85]. In summary, accumulating data indicate
that chronic inflammation downregulates myogenesis and
enhances adipogenesis in fetal skeletal muscle [29].

INFLAMMATION, WNT SIGNALING, AND FETAL
SKELETAL MUSCLE DEVELOPMENT

Introduction of WNT Signaling

The canonical WNT/b-catenin signaling pathway is well
studied [86]. Binding of WNT to the Frizzled proteins activates
Disheveled family proteins, which inhibit a destruction
complex consisting of axin, glycogen synthase kinase GSK3B,
and anaphase-promoting complex (APC), which degrades b-
catenin [87]. As a result of inhibition, a pool of cytoplasmic b-
catenin stabilizes, enters the nucleus, and interacts with
members of the T-cell factor/Lymphoid enhancer factor
(TCF/LEF) family of transcription factors to activate the
transcription of specific target genes (Fig. 2) [88, 89].

WNT Signaling and Myogenesis

WNT signaling is required for early embryonic myogenesis
[90]. Activation of the WNT signaling pathway leads to the
transformation of nonmyogenic cells into the myogenic lineage
[91, 92]. Myogenesis in the mesoderm and somites is inhibited
by the WNT antagonist [93]. b-Catenin is a primary mediator
of the canonical WNT/b-catenin signaling pathway [94, 95].
Activation of WNT/b-catenin signaling pathway leads to the
stabilization of b-catenin, which enters the nucleus to activate
target genes, including MYOD and MYF5 [29, 89]. Blocking
the b-catenin pathway reduces the total number of myocytes

FIG. 2. WNT/b-catenin signaling, inflammation, and myogenesis. Wnt
signaling enhances b-catenin nuclear translocation, but inflammation
promotes the formation of b-catenin/FOXO complexes, which divert b-
catenin from forming a complex with TCF to induce myogenesis. DVL1L1,
disheveled, dsh homolog 1; GSK-3B, glycogen synthase kinase 3; PP2A,
protein phosphatase 2A.
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[96, 97]. Overexpression of b-catenin leads to increased
myoblast proliferation and enhanced muscle repair following
ischemia-induced muscle damage [92, 98]. b-Catenin is
necessary for the growth response to mechanical overload in
skeletal muscle [99]. b-Catenin regulates the expression of
transcription factors PAX3 and GLI1 [100, 101]. PAX3 is
essential for skeletal myogenesis and acts upstream of MYOD
during skeletal muscle development, whereas GLI1 mediates
MYF5 expression [102, 103]. In summary, b-catenin is
sufficient to induce skeletal muscle development, which
suggests that WNT signaling acts through the canonical
pathway to promote myogenesis (Fig. 2) [104].

WNT Signaling and Adipogenesis

Adipocytes arise from MSCs during mid to late gestation
[41, 45]. Many proadipogenic and antiadipogenic transcription
factors function in a coordinated and sequential manner to
control various steps in adipogenesis [105, 106]. Activation of
WNT/b-catenin signaling suppresses MSC commitment to the
adipogenic lineage and terminal differentiation [105]. The
canonical WNT/b-catenin pathway suppresses both white and
brown adipogenesis by blocking induction of PPARG and
CEBPA. This pathway also blocks the thermogenic program
through suppression of PPARG coactivator 1-a (PPARGC1A,
also known as PGC1a). Several studies indicate that WNT10B
activates antiadipogenic WNT signaling. The WNT10B gene is
highly expressed in preadipocytes and declines rapidly during
differentiation [107, 108]. Ectopic expression of WNT10B in
3T3-L1 preadipocytes stabilizes free cytosolic b-catenin and
blocks adipogenesis. WNT10B antiserum added to 3T3-L1
media promotes adipocyte differentiation [105, 109]. Trans-
genic mice overexpressing Wnt10b showed a 50% decline in
total body fat and were resistant to the high-fat diet-induced
accumulation of white fat [110]. On the contrary, Wnt10b
deficiency displayed increased adipogenic gene expression and
contributed to increased lipogenic potential of myoblasts and
excessive lipid accumulation in myofibers [111]. Activation of
the WNT signaling pathway enhanced myogenesis and
inhibited adipogenesis in cultured MSCs [112].

Inflammation, b-Catenin, and MSC Differentiation

Oxidative stress and inflammatory responses are inseparable
[113], and both are associated with obesity [114]. Inflamma-
tory responses attract monocytes that secrete reactive oxygen
species and induce oxidative stress [115]. On the other hand,
oxidative stress leads to inflammatory response [116–118]. In
response to inflammation, b-catenin serves as a cofactor of
forkhead transcription factors (FOXOs) [119]. b-Catenin binds
directly to FOXO and enhances FOXO transcriptional activity
in mammalian cells [120]. In OB6 cells, inflammation and
oxidative stress cause a diversion of the limited pool of b-
catenin from TCF-mediated transcription to FOXO-mediated
transcription (Fig. 2) [121]. FOXO competes with TCF for
interaction with b-catenin, thereby inhibiting TCF transcrip-
tional activity and the expression of its targeted genes, like
MYOD. Reduced binding between TCF and b-catenin is
observed after FOXO overexpression and cellular oxidative
stress [122]. Oxidative stress and inflammation decrease the
amount of nuclear b-catenin and TCF/LEF-dependent tran-
scription [123]. In an obese sheep model, an inflammatory
response was observed in fetal skeletal muscle, which
enhanced the formation of FOXO/b-catenin complex, down-
regulating myogenesis and upregulating adipogenesis [29].

INFLAMMATION, AMP-ACTIVATED PROTEIN KINASE,
AND MSC DIFFERENTIATION

PRKA Introduction

PRKA (also known as AMPK) is a serine-threonine kinase
consisting of a catalytic subunit (a) and two regulatory subunits
(b and c). PRKA serves as the energy status guardian within
cells. PRKA is activated after ATP depletion or, more
accurately, a rise in the AMP:ATP ratio within the cell, and
responds by adjusting the rates of ATP-consuming (anabolic)
and ATP-generating (catabolic) pathways in an attempt to
restore and maintain cellular energy levels [124]. Activated
PRKA enhances fatty acid oxidation and inhibits de novo
synthesis of fatty acids [125]. PRKA activation is associated
with phosphorylation of the PRKAA subunit at Thr172 by
LKB1 and calcium/calmodulin-dependent protein kinase
kinases (CAMKKs) [126–130]. Protein phosphatase 2C
(PP2C) dephosphorylates the Thr172 phosphorylation of
PRKAA subunit, inactivating PRKA [131].

PRKA Activation Enhances Myogenesis
but Inhibits Adipogenesis

Existing data suggest that PRKA mediates myogenesis.
Activation of PRKA by AICAR increases the expression of
myogenic enhancer factor 2 (MEF2), which enhances myo-
genesis [132]. In our previous studies in cattle, PRKA activity
was positively associated with muscularity and negatively
associated with the content of intramuscular adipocytes [133,
134], indicating that PRKA switches MSCs in skeletal muscle
from adipogenesis to myogenesis (Fig. 3).

Studies also point to the important role of PRKA in
regulating adipogenesis. Activation of PRKA inhibits the
expression of PPARG and CEBPs in 3T3-L1 cells and also in
obese mice [48, 135]. Genistein inhibits adipocyte differenti-
ation through activation of PRKA [136]. Overnutrition in
pregnant ewes inhibited PRKA activity in fetal skeletal muscle
and enhanced expression of PPARG, a marker of adipogenesis.
In addition, activation of PRKA by 5-aminoimidazole-4-

FIG. 3. PRKA myogenesis and adipogenesis. PRKA inhibition by
inflammation downregulates myogenesis but enhances adipogenesis.
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carboxamide-1-beta-D-ribofuranoside (ATIC, also known as
AICAR), a specific activator of PRKA, inhibited adipogenesis
in cultured 3T3-L1 cells [6, 137]. A plausible explanation for
the inhibition of adipogenesis by PRKA is through regulation
of PPARG activity. PRKA phosphorylates acetyl-coenzyme A-
carboxylase (ACACA, also known as ACC) at Ser79, which
inhibits the activity of ACACA and reduces malonyl-coenzyme
A (malonyl-CoA) formation [138]. Accumulation of malonyl-
CoA decreases fatty acid oxidation and increases lipogenesis
[139], resulting in intracellular fatty acid accumulation. To be
known ligands of PPARG, accumulated fatty acids promote
adipogenesis (Fig. 3).

Tumor necrosis factor a reduces PRKA activity in skeletal
muscle [140]. Increase in TNF production is a hallmark of the
inflammatory response. Tumor necrosis factor a regulates
PRKA activity by upregulation of PP2C, leading to PRKA
dephosphorylation [140]. In MO sheep fetuses, circulating
TNF was dramatically increased, which provides a primary
reason for PRKA inhibition in the muscle of these fetuses [6].
Chronic oxidative stress in combination with low-grade
inflammation associated with obesity leads to PRKA inhibition
[6]. Ketone bodies that are enhanced under obesity and diabetic
conditions inhibit the PRKA signaling pathway [141]. PRKA
activity was also inhibited in obese rats [142]. In summary, an
increasing body of evidence supports the notion that obesity
inhibits PRKA, which provides another mechanism for the
downregulation of myogenesis and enhancement of adipogen-
esis in fetal skeletal muscle due to MO (Fig. 3).

INFLAMMATION AND EPIGENETIC MODIFICATIONS

Because myogenesis, adipogenesis, and fibrogenesis from
MSCs are controlled by the expression of one or more crucial
genes, maternal nutrition might change fetal muscle develop-
ment through epigenetic modifications. Depending on the
nature of modifications, epigenetic modifications have different
degrees of plasticity. Histone modification only passes through
several cell generations [143], but histone modifications can

guide DNA methylation, leading to stable alterations in gene
expression [144, 145].

Polycomb group proteins (PcGs) and trithorax (trxG) group
proteins regulate histone methylation, which leads to additional
epigenetic modifications during cell differentiation [145].
Polycomb group proteins and trxGs regulate the methylation
of histone H3 by binding to PcG and trxG response elements in
the genome. Polycomb group proteins possess H3K27-specific
trimethylase activity, which mediates gene expression repres-
sion, whereas trxG complexes have H3K4 trimethylase
activity, which mediates activation of genes [146]. The crucial
development is the demonstration that PcG-mediated gene
repression leads to DNA methylation of the targeted genes
[144]. The PcG protein enhancer of zeste homolog 2 (EZH2)
interacts with DNA methyltransferases and serves as a
recruitment platform for DNA methyltransferases, which
convert plastic histone modifications to stable DNA methyl-
ation [144]. DNA methylation leads to the silence of genes by
the following mechanisms: 1) recruitment of histone deacety-
lases, which remove histone acetylation. Deacetylation in-
creases the affinity between histones and DNA and inhibits
gene expression because acetylation of the lysine residues at
the histone neutralizes its positive charges. 2) DNA methyl-
ation can interfere directly with the binding of transcription
factors. 3) DNA methylation leads to the formation of inactive
chromatin structure.

Currently, no studies are available linking maternal nutrition
to epigenetic modifications in fetal muscle. However, indirect
evidence does support epigenetic modification in key genes
controlling fetal development. It is likely that maternal
undernutrition permanently changes the insulin/insulinlike
growth factor-1 signaling in fetal muscle [147], very likely
through epigenetic modifications. Maternal diet alters the
expression of PPARs in fetal muscle through DNA methylation
[148]. Maternal cocaine administration caused epigenetic
modification to a key protein kinase gene in rat heart [149].
Maternal obesity was recently shown to induce epigenetic
changes in genes crucial for energy metabolism in primate liver
[150]. NFKB p65 might inhibit myogenesis by stimulating
expression of the PcG protein YY1 [72, 73], resulting in
H3K27 trimethylation and inhibition of myogenic gene
expression. This recent evidence points to the association
between inflammation and epigenetic modification of key
genes regulating myogenesis and adipogenesis, providing an
additional mechanism for inflammation and altered fetal
skeletal muscle development (Fig. 4).

OTHER POSSIBLE SIGNALING PATHWAYS
LINKING INFLAMMATION AND FETAL SKELETAL
MUSCLE DEVELOPMENT

There are other pathways likely involved in the differenti-
ation of MSCs in fetal muscle resulting from MO. One
important pathway is the transforming growth signaling
pathway. Transforming growth factor b has immunosuppres-
sive effects [151] and is involved in skeletal muscle
development [152]. More importantly, TGFB1 contributes to
the conversion of MSCs to fibroblasts [153]. In injured skeletal
muscle, differentiation of MSCs into fibroblasts is enhanced
through autocrine production of TGFB1 [154], enhancing
fibrogenesis. However, until now, the role of TGFB1 signaling
in fetal skeletal muscle development has not been studied,
although a related growth factor, myostatin, has been
extensively studied for its role as a negative regulator of fetal
skeletal muscle development [155]. In addition, mitogen-
activated protein kinase (MAPK) phosphatases (MKPs) are

FIG. 4. Inflammation, epigenetic modification, myogenesis, and adipo-
genesis. Inflammation may induce epigenetic modifications that alter the
expression of genes involved in myogenesis and adipogenesis in
mesenchymal stem cells.

8 DU ET AL.

D
ow

nloaded from
 w

w
w

.biolreprod.org. 



negative regulators of MAPK, which is involved in immune
suppression and negatively controls cell proliferation and
growth [156]. Although there is no direct evidence linking
MKPs to MSC differentiation in fetal skeletal muscle, further
studies may establish such a relationship.

CONCLUSIONS AND FUTURE STUDIES

Proper fetal skeletal muscle development is crucial for
offspring health. Maternal obesity changes fetal muscle
development by shifting MSC differentiation from myogenesis
toward adipogenesis. This shift is expected to have permanent
effects on offspring skeletal muscle properties. Existing
evidence points to the important role of inflammation in
changes to fetal skeletal muscle development. Chronic
inflammation associated with MO may alter fetal skeletal
muscle development through three major mechanisms, which
include: 1) downregulation of WNT signaling, 2) inhibition of
PRKA activity, and 3) induction of epigenetic modifications.
Additional pathways need to be further explored. Future
studies should focus on mechanisms leading to fetal skeletal
muscle inflammation due to MO and develop strategies to
prevent such inflammation. Possible epigenetic modification of
key genes regulating myogenesis and adipogenesis due to
inflammation induced by MO is an exciting field to explore. It
is possible that both WNT/b-catenin signaling and PRKA
regulate MSC differentiation partially by inducing epigenetic
modifications of these key genes, which awaits further
exploration.
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