N, N' -Dimethylthiourea dioxide formation from N, N' dimethylthiourea reflects hydrogen peroxide concentrations in simple biological systems

$(0,$ metabolites/lung injury/oxidants/antioxidants)

WILLIAM E. CURTIS*, MARGARET E. MULDROW*, NATALIE B. PARKER*, ROBERT BARKLEYt, STUART L. LINAS[‡], AND JOHN E. REPINE^{*§}

*Departments of Medicine, Pediatrics and Surgery, the Webb–Waring Lung Institute at the University of Colorado Health Sciences Center, and ‡Denver
General Hospital, Denver, CO 80262; and the †University of Colorado, Boulde

Communicated by David W. Talmage, December 31, 1987

ABSTRACT We hypothesized that measurement of a specific product from reaction of N, N' -dimethylthiourea (Me₂TU) and H_2O_2 would provide a good indication of the H_2O_2 scavenging and protection seen after addition of $Me₂TU$ to biological systems. We found that addition of H_2O_2 to $Me₂TU$ yielded a single stable product, Me₂TU dioxide. Me₂TU dioxide formation correlated with $Me₂TU$ consumption as a function of added H_2O_2 concentration and was prevented by simultaneous addition of catalase (but not boiled catalase), superoxide dismutase, dimethyl sulfoxide, mannitol, or sodium benzoate. $Me₂TU$ dioxide formation, $Me₂TU$ consumption, and $H₂O₂$ concentration increases occurred in mixtures containing phorbol 12-myristate 13-acetate (PMA) and normal human neutrophils but not in mixtures containing PMA and neutrophils from patients with chronic granulomatous disease or in mixtures containing PMA and normal neutrophils and catalase. $Me₂TU$ dioxide formation also occurred in isolated rat lungs perfused with $Me₂TU$ and $H₂O₂$ but not in lungs perfused with $Me₂TU$ and elastase, histamine, or oleic acid. In contrast, $Me₂TU$ dioxide formation did not occur after exposure of Me₂TU to '0Co-generated hydroxyl radical or hypochlorous acid in the presence of catalase. The results indicate that reaction of $Me₂TU$ with $H₂O₂$ selectively forms $Me₂TU$ dioxide and that measuring $Me₂TTU$ dioxide formation from $Me₂TU$ may be useful for assessing the presence and significance of H_2O_2 in biological systems.

Toxic oxygen metabolites appear to participate in a multitude of normal and abnormal biological responses (1-6). Because 02 metabolites are highly reactive and present in low concentrations, it has been difficult to ascertain their contribution in biological systems (2, 7). The contribution of toxic O_2 metabolites is usually assessed in biological systems by observing changes after addition of agents that decrease O_2 metabolite concentrations in vitro. One of these agents is N, N' -dimethylthiourea (Me₂TU), a highly permeant molecule, which decreases injury in a wide variety of biological systems $(8-20)$. However, because Me₂TU can scavenge hydrogen peroxide (H_2O_2) , hydroxyl radical (OH), or hypochlorous acid (HOCl) in vitro, its mechanism of action in biological systems is often questioned (8-13, 21). Recently, we addressed this concern by showing that $Me₂TU$ decreased after reaction with H_2O_2 in vitro and then used Me₂TU consumption to assess H_2O_2 and H_2O_2 -dependent processes in simple biological systems (8) . Me₂TU consumption occurred as a function of added amounts of H_2O_2 and in proportion to corresponding degrees of H_2O_2 -mediated injury in endothelial cells and isolated perfused lungs and kidneys (9-11). However, since $Me₂TU$ might also be consumed by reaction with either \cdot OH or HOCl (8, 21), we subsequently reasoned that increased specificity or sensitivity in detecting the small concentrations of H_2O_2 that probably occur in physiological systems would be achieved if a specific product from reaction of H_2O_2 and $Me₂TU$ could be identified and measured in biological systems.

METHODS

Purification and Determination of Me₂TU Dioxide. H_2O_2 (J. T. Baker Chemical, Phillipsburg, NJ) was added to triply distilled H_2O and Me_2TU (Alfa-Ventron, Danvers, MA) and allowed to react for 60 min in an ice bath. The product was purified by using a Waters Resolve C_{18} 5- μ m semipreparative column (7.8 mm \times 30 cm) and lyophilized. Elemental analysis (by Huffman Laboratories, Denver, CO), IR, NMR, and mass spectroscopy analyses were conducted on the purified product.

Measurement of $Me₂TU$ or $Me₂TU$ Dioxide Concentrations by Gas Chromatography (GC) or High-Pressure Liquid Chromatography (HPLC). An internal standard (1%) for GC analysis was made by dissolving diethyl sulfone (3.5 g, ICN Pharmaceutical, Plainview, NJ) in deionized $H₂O$ (100 ml). In some experiments, catalase (Worthington), urea (Fisher Scientific, Fairlawn, NJ), thiourea (J. T. Baker Chemical), HOCI, sodium benzoate, mannitol, superoxide dismutase (SOD), dimethyl sulfoxide (Me₂SO), or 1,3-dimethylurea (all from Sigma) was added to samples of H_2O_2 or Me₂TU. $Me₂TU$ and $Me₂TU$ dioxide concentrations were assessed by using ^a GC instrument, equipped with ^a free induction decay detector and integrator (8). The integrator was programmed to print out peak areas and retention times. The peak area for $Me₂TU$ dioxide was divided by the peak area for the internal standard to give a peak area ratio. Incubations were conducted in triply distilled H_2O or potassium phosphate buffer $(0.05 \text{ M}, \text{pH} 7.4)$. Me₂TU dioxide concentrations also were measured by using HPLC analysis (Waters model 510 pump) with a Resolve C₁₈ 5- μ reverse-phase column (3.9 mm \times 15 cm) with H_2O as the isocratic mobile phase at a flow rate of ¹ ml/min. The effluent was monitored at 229 nm with a spectrophotometric detector, with diluted $Me₂SO$ used as an internal standard for HPLC analysis.

Isolation of Neutrophils. Neutrophils were isolated from heparinized (20 units/ml) venous blood collected from healthy medication-free adult donors and an individual with X chromosome-linked chronic granulomatous disease (CGD) by using hetastarch (Hespan 6%; DuPont, Waukegan, IL)

The publication costs of this article were defrayed in part by page charge payment. This article must therefore be hereby marked "advertisement" in accordance with 18 U.S.C. §1734 solely to indicate this fact.

Abbreviations: $Me₂TU$, dimethylthiourea; SOD, superoxide dismutase; PMA, phorbol 12-myristate 13-acetate; CGD, chronic granulomatous disease.

[§]To whom reprint requests should be addressed at: Box C322, 4200 E. Ninth Ave., Denver, CO 80262.

sedimentation and Percoll gradient separation and erythrocyte lysis (22, 23). Neutrophils were counted in a hemocytometer and resuspended in complete Hanks' balanced salt solution (HBSS, GIBCO, Chagrin Falls, OH). Phorbol 12 myristate 13-acetate (PMA, Sigma) was dissolved in $Me₂SO$ and stored at -70° C (23).

Measurement of H_2O_2 Concentrations. Samples were acidified with 50% trichloroacetic acid (Sigma, 0.1 ml) and centrifuged. Supernatants (0.2 ml) were combined with isotonic saline (0.8 ml), ferrous ammonium sulfate (10 μ M, 0.2 ml), and potassium thiocyanate (2.5 M, 0.1 ml) and then assayed spectrophotometrically at 480 nm (24).

Exposure to Irradiation. Samples were exposed to ⁶⁰Co γ -irradiation under N₂O. Characteristic EPR and other values were obtained, confirming -OH production (25).

Measurement of Acute Edematous Injury in Isolated Perfused Rat Lungs. Rats were anesthetized with pentobarbital (100 mg/kg i.p.) (26). After tracheostomy, rats were continuously ventilated with a warmed humidified mixture of 95% room air and 5% $CO₂$. The thorax and abdomen were then opened with a ventral midline incision and heparin (150 units) was injected. Cannulae were placed in the pulmonary artery and left atrium. The lung vasculature was perfused clear with modified Krebs/Henseleit solution that contained Ficoll-70 (Pharmacia). Heart and lungs were then removed, suspended by the trachea, and weighed by using a force (weight) displacement transducer. Pulmonary artery perfusion pressures were measured by pressure transducer through a cannula placed in the pulmonary artery.

Statistical Analyses. Data were analyzed by using analysis of variance (ANOVA) with Student-Newman-Keuls (SNK) tests (27).

RESULTS

Identification of Me₂TU Dioxide as the Product from Reaction of Me₂TU and H_2O_2 in Vitro. Reaction of Me₂TU and H_2O_2 yielded ^a single peak on HPLC (Fig. 1) or GC (data not shown) tracings (28, 29). Elemental analyses revealed that the product from reaction of $Me₂TU$ with $H₂O₂$ fit the predicted formula $C_3H_8N_2O_2S$ for Me₂TU dioxide. Calculated: C, 26.46%; H, 5.92%; N, 20.57%; 0, 23.50%; S, 23.54%. Observed: C, 26.48%; H, 5.99%; N, 20.48%; O, 23.59%; S, 23.25%.

In addition, IR spectroscopy showed the typical sulfinic acid (S= \sim O) absorption band in the region of 1090 cm⁻¹ (30). ¹³C NMR showed three distinct carbons with hindered rotation about the C-N bond (31). Electron impact mass spectrometry revealed that the product sample fragmented into two

FIG. 1. Characteristic tracings from HPLC analysis of $Me₂TU$ or a mixture of $Me₂TU$ with $H₂O₂$ in vitro.

FIG. 2. Determination of second-order rate for reaction of Me₂TU with H_2O_2 in vitro. Initial concentrations (C₀) of the two reactants were equal. The equation used to calculate the rate was $1/C$ $-1/C_0 = kt$, in which C is concentration and t is time. Each value is the mean \pm 1 SEM of four determinations.

peaks representing sulfur dioxide and the corresponding formamidine (32). Negative chemical ionization spectra showed $a(M - 1)$ ion for the sulfinic acid at m/z 135. Positive fast atom bombardment spectra demonstrated a confirmatory $(M + 1)$ ion at m/z 137. The reaction rate of Me₂TU with H_2O_2 in vitro was calculated to be 1.4 M^{-1}min^{-1} (Fig. 2). Me₂TU dioxide decomposed in H_2O at room temperature but not in H_2O or potassium phosphate buffer kept at 0°C for 2 weeks (data not shown). Me₂TU dioxide was also stable during incubation for 30 min at 37 \degree C with H_2O_2 , and for 60 min when incubated at 37°C with neutrophils or erythrocytes (data not shown). Concentrations of Me₂TU (500 nM to 1 mM) or Me₂TU dioxide (700 nM to ¹ mM) were measurable by GC or HPLC analyses, respectively.

Specificity of Me₂TU Dioxide Formation After Reaction of H_2O_2 with Me₂TU in Vitro. Addition of increasing concentrations of H_2O_2 caused linear decreases in Me₂TU concentrations $(Me₂TU$ consumption) and corresponding linear increases in $Me₂TU$ dioxide concentrations ($Me₂TU$ dioxide formation) in buffered solutions (GC analysis, Fig. 3) or unbuffered solutions (data not shown). Less Me₂TU dioxide formation occurred after addition of catalase but not boiled catalase, SOD, Me₂SO, mannitol, or sodium benzoate to mixtures of H_2O_2 and Me₂TU in vitro (Table 1).

Me₂TU dioxide formation did not occur after reaction of $Me₂TU$ with \cdot OH or HOCI in the presence of catalase in vitro.

FIG. 3. Me₂TU concentration decreases as Me₂TU dioxide concentration increases as a function of added H_2O_2 concentration in vitro. $Me₂TU$ and $Me₂TU$ dioxide concentrations were measured by GC and are expressed as peak area relative to area of the internal standard peak. Each value is the mean \pm 1 SEM of three determinations.

Table 1. Effect of O_2 metabolite scavengers on Me₂TU dioxide concentrations in mixtures containing Me₂TU and H_2O_2 in vitro

	Me ₂ TU dioxide, mM		
Additions	Unbuffered medium	Buffered medium	
None	(3) 0	0 (3)	
$H2O2$ (36 mM)	$3.5 \pm 0.6^*$ (3)	$4.6 \pm 0.2^*$ (3)	
H_2O_2 + catalase (250 μ g/ml)	01 (3)	01 (3)	
$H2O2 +$ boiled catalase	$4.3 \pm 0.3^*$ (3)	$4.2 \pm 0.5^*$ (3)	
H_2O_2 + SOD (125 μ g/ml)	$4.2 \pm 0.3^*$ (3)	$3.0 \pm 0.5^*$ (3)	
H_2O_2 + Me ₂ SO (12.3 mM)	3.9 ± 0.5 * (3)	$3.5 \pm 0.3^*$ (3)	
$H2O2 +$ mannitol (12.5 mM)	3.1 ± 0.5 * (3)	$3.3 \pm 0.4^*$ (3)	
H_2O_2 + Na benzoate (12.5 mM)	$3.7 \pm 0.4^*$ (3)	$4.9 \pm 0.7^*$ (3)	
$H2O2 + albumin (2.5 mg/ml)$	$3.0 \pm 0.3^*$ (3)	$3.6 \pm 0.1^*$ (3)	

Me2TU (50 mM) and the substances in the first column were mixed and then incubated for 30 min at 37°C. Results are presented as mean \pm SEM, with number of determinations in parentheses.

*Value significantly different ($P < 0.05$) from value obtained after no additions.

[†]Value significantly different ($P < 0.05$) from value obtained after addition of H_2O_2 .

Irradiation (${}^{60}Co$) under N₂O for 10 min caused Me₂TU consumption (14 \pm 2% of initial value, $n = 5$), Me₂TU dioxide formation (3.4 \pm 1.0 μ M, $n = 5$), and \overline{H}_2O_2 production (2.6 \pm 2.6 μ M, $n = 5$). However, when catalase was added, irradiation caused reduced $Me₂TU$ consumption (6 \pm 2% of initial value, $n = 5$) but not Me₂TU dioxide formation (0.0 \pm 0.0 μ M, $n = 5$) or H₂O₂ production (0.0 \pm 0.0 μ M, $n = 5$). Thus, reaction of Me₂TU with either H₂O₂ or \cdot OH consumes Me₂TU but only reaction of Me₂TU with $H₂O₂$ (and not \cdot OH) yields Me₂TU dioxide. Addition of HOCl and catalase also did not produce Me₂TU dioxide (0 \pm 0 μ M, $n = 5$) from Me₂TU in vitro. Me₂TU dioxide also was not measurable in mixtures containing H_2O_2 and thiourea, urea, or dimethylurea, in mixtures of $Me₂TU$ in $H₂O$ or phosphate buffer without H_2O_2 , or in mixtures of H_2O_2 with the other constituents without $Me₂TU$ (data not shown).

Me2TU Dioxide Concentrations in Mixtures Containing **Human Neutrophils.** Me₂TU dioxide concentrations, Me₂TU consumption, and H_2O_2 concentrations were increased in mixtures containing neutrophils and PMA compared to mixtures containing neutrophils alone (Table 2). Addition of catalase (but not SOD) decreased Me₂TU dioxide concentrations, $Me₂TU$ consumption, and $H₂O₂$ concentrations in mixtures containing normal human neutrophils and PMA. By comparison, $Me₂TU$ dioxide formation, $Me₂TU$ consumption, and H_2O_2 concentration increases did not occur in mixtures containing CGD neutrophils and PMA (Table 2).

Me2TU Dioxide Concentrations in Isolated Lungs Perfused with H_2O_2 . Addition of H_2O_2 caused Me₂TU dioxide formation and acute edematous injury (increases in lung weight gains and pulmonary artery perfusion pressures) in isolated lungs perfused with $Me₂TU$; Me₂TU dioxide formation and injury did not occur in isolated lungs of rats perfused only with buffer and $Me₂TU$ without added $H₂O₂$ (Table 3). In contrast to H_2O_2 , addition of elastase, histamine, or oleic acid to perfusates of isolated lungs containing $Me₂TU$ did not produce Me₂TU dioxide regardless of the development of acute edematous lung injury.

DISCUSSION

We found that reaction of $Me₂TU$ and $H₂O₂$ yields $Me₂TU$ dioxide and that $Me₂TU$ dioxide formation from $Me₂TU$ can be used to detect H_2O_2 in simple biological systems. Reaction of Me₂TU with H_2O_2 yielded Me₂TU dioxide as a single stable product. This $Me₂TU$ dioxide formation was inhibited by catalase and did not occur after reaction of $Me₂TU$ with $\cdot OH$ or HOCl in vitro in the presence of catalase. $\text{Me}_2 \text{T} \text{U}$ dioxide formation from $Me₂TU$ also occurred with stimulated normal neutrophils (but not neutrophils from CGD patients) in proportion to the amounts of generated H_2O_2 and consumed Me₂TU. Moreover, prior addition of catalase to mixtures containing normal neutrophils and PMA decreased $Me₂TU$ dioxide formation as well as corresponding H_2O_2 concentration increases and $Me₂TU$ consumption. Me₂TU dioxide formation also occurred in perfusates of isolated lungs perfused with H_2O_2 and $Me₂TU$, but not in isolated lungs perfused with $Me₂TU$ and histamine, elastase, or oleic acid, regardless of the development of acute edematous injury.

There is considerable interest in $Me₂TU$ because $Me₂TU$ treatment dramatically decreases injury in a number of biological models in which damage appears to involve O_2 metabolites (9-11). Me₂TU protects alveolar macrophages (12) and lungs (13) from hyperoxic damage, reduces acute edematous lung injury in rabbits treated with PMA (14), and decreases injury in isolated lungs or kidneys perfused with neutrophils and PMA or chemically generated \overline{O}_2 metabolites $(9-11, 15)$. Me₂TU treatment also effectively reduces cerebral, renal, and myocardial damage after ischemia-reperfusion insults (16-20). In each instance, $Me₂TU$ has been assumed to protect by scavenging O_2 metabolites, in large part, because addition of $Me₂TU$ decreases $O₂$ metabolite concentrations in vitro. However, better ways are needed to assess the nature of the protective effects of Me₂TU in biological systems (2, 7).

Although the abilities of $Me₂TU$ to scavenge $O₂$ metabolites are well recognized in vitro and suspected in vivo, some controversy exists regarding whether $Me₂TU$ protects by specifically inactivating H_2O_2 , \cdot OH, or HOCI in biological systems. In simple nonbiological systems, Me₂TU can react with H_2O_2 , \cdot OH, or HOCl (8, 21). The present study emphasizes this point by showing that $Me₂TU$ consumption occurs after reaction with either H_2O_2 or $\cdot \overline{OH}$ in vitro. Others have

Table 2. Me₂TU dioxide, Me₂TU, and H_2O_2 concentrations in mixtures of normal (NL) and CGD human neutrophils (PMN) and PMA in vitro

Additions	Me ₂ TU dioxide, μ M	Me ₂ TU, mM	H_2O_2 , μ M
NL PMN	0.3 ± 0.3 (6)	0.31 ± 0.05 (4)	0.5 ± 0.3 (20)
NL PMN + PMA	$13.2 \pm 1.5^*$ (6)	$0.19 \pm 0.02^*$ (3)	$98.9 \pm 6.4^*$ (10)
NL PMN + PMA + catalase	6.9 ± 1.6 * (6)	$0.27 \pm 0.02^{\dagger}$ (3)	$0.5 \pm 0.3^{\dagger}$ (5)
NL PMN + PMA + SOD	$16.9 \pm 2.7^*$ (6)	$0.21 \pm 0.03^*$ (3)	$104.9 \pm 8.2^*$ (5)
$CGD PMN + PMA$	0† (4)	0.32^{\dagger} (2)	0† (2)
CGD PMN	01 (4)	0.30^{\dagger} (2)	0† (2)

Me2TU (1 mM) and the cells and substances listed in the first column were incubated for 60 min at 37°C. PMA was added at 1 μ g/ml and catalase or SOD at 100 μ g/ml. Me₂TU dioxide generation, Me₂TU consumption, and H₂O₂ generation were measured with 2×10^7 , 1×10^7 , and 1×10^6 PMN per ml, respectively. Results are mean ± SEM, with number of determinations in parentheses. *Value significantly different (P < 0.05) from value obtained for normal neutrophils.

[†]Value significantly different ($P < 0.05$) from value obtained for normal neutrophils + PMA.

Table 3. $Me₂TU$ dioxide concentrations in perfusates, weight gains, and pulmonary artery pressure (PAP) increases of isolated rat lungs perfused with $Me₂TU$ and $H₂O₂$, elastase, histamine, or oleic acid

Additions	Me ₂ TU dioxide, μ M	Weight gain, g	PAP increase, mm Hg
None	(8) 0	1.5 ± 0.2 (8)	3.8 ± 0.5 (8)
$H2O2$ (10 mM)	24 ± 0.7 * (3)	$15.0 \pm 2.3^*$ (3)	$11.2 \pm 4.6^*$ (3)
Elastase (7 mg)	(2)	$15.0*$	$8.5*$
	0	(2)	(2)
Histamine (1.4 mg)	(2)	(2)	$0.3*$
	0	0	(2)
Oleic acid (250 mg)	(2)	$10.2*$	$28.0*$
	0	(2)	(2)

Perfusates contained 14 mM Me₂TU and the additions in the first column. Results are mean \pm SEM, with number of determinations in parentheses; 1 mm $Hg = 133$ Pa.

*Value significantly different ($P < 0.05$) from value obtained with no additions.

shown that HOCl can cause $Me₂TU$ consumption in vitro (21). However, only reaction of $Me₂TU$ with $H₂O₂$ yields Me2TU dioxide; in the presence of catalase, reaction of $Me₂TU$ with \cdot OH or HOCI does not yield $Me₂TU$ dioxide. Thus, finding $Me₂TU$ dioxide indicates that $Me₂TU$ has reacted with H_2O_2 , regardless of whether or not it has also reacted with some other agent.

Because -OH and HOCI are so much more reactive than $H₂O₂$, and as a result, may react indiscriminately and rapidly with various biological molecules, it should be much easier to scavenge the less reactive H_2O_2 (33–35). Accordingly, even though Me₂TU may react much more rapidly with \cdot OH or HOCI than with H_2O_2 in vitro, the situation may be quite different in biological systems, where accessibility of $Me₂TU$ to unreacted H_2O_2 may favor reaction of Me₂TU with H_2O_2 rather than highly reactive -OH or HOCI. The latter is suggested because (except for irradiation), 'OH or HOCI (via myeloperoxidase) theoretically is formed only from H_2O_2 in biological systems. Moreover, addition of Me₂TU can inhibit H_2O_2 - and Fe²⁺/EDTA-mediated Me₂SO consumption in $vitro$ (32). This conclusion is also supported by our observations that $Me₂TU$ dioxide is made in biological situations involving neutrophils and isolated lungs. In addition, treatment with $Me₂TU$ (but not urea) decreases injury and $H₂O₂$ -dependent inactivation of catalase by aminotriazole in brains of gerbils subjected to ischemia-reperfusion insults (17). Production of Me₂TU dioxide from Me₂TU may be useful in determining the mechanism of protection achieved after addition of $Me₂TU$ and in distinguishing reactions with $H₂O₂$ from those with \cdot OH, HOCl, or other constituents in biological systems. In addition, measurement of decreases in injury and corresponding increases in $Me₂TU$ dioxide concentrations could help determine if treatment with agents that purportedly prevent injury by decreasing H_2O_2 concentrations do so by decreasing H_2O_2 or H_2O_2 -dependent reactions or by altering some other non- H_2O_2 -dependent mechanism. We hope that this method or this principle will prove applicable to intact animal models, and eventually patients, in which increased amounts of $O₂$ metabolites are purportedly being generated endogenously (2, 7).

The authors appreciate the constructive criticism and help of Drs. Joe M. McCord and Donald C. Borg. This work was supported in part by grants from the National Institutes of Health (P01-AM 35098, RO1-HL 35378, RO1-HL 28182, PO1-HL 27353, and RO1-HL 34486), the American Heart Association, the Council for Tobacco Research, Inc., and the Swan, Hill, and American Express Foundations.

- 1. Katz, N. A. (1986) West. J. Med. 144, 441-446.
- 2. Henson, P. M. & Johnston, R. B., Jr. (1986) J. Clin. Invest. 79,
- 669-674. 3. Pryor, W. A. (1977) J. Med. Chem. 5, 3310-3333.
-
- 4. McCord, J. M. (1985) N. Engl. J. Med. 312, 159–163.
5. Repine, J. E. (1985) in The Pulmonary Circulation and 5. Repine, J. E. (1985) in The Pulmonary Circulation and Acute Lung Injury, ed. Said, S. I. (Futura, Mount Kisco, NY), pp. 249-281.
- 6. Cohen, G. (1984) Neurotoxicity 5, 77-84.
- 7. Halliwell, B. & Grootveld, M. (1987) FEBS Lett. 213, 9-14.
8. Parker, N. B., Berger, F. M., Curtis, W. J., Muldrow, M. E.
- Parker, N. B., Berger, E. M., Curtis, W. J., Muldrow, M. E., Linas, S. L. & Repine, J. E. (1985) J. Free Radicals Biol. Med. 1, 415-420.
- Jackson, J. H., White, C. W., Parker, N. B., Ryan, J. W. & Repine, J. E. (1985) J. Appl. Physiol. 59, 1995-1998.
- 10. Toth, K. M., Parker, N. B., Clifford, D. P., Berger, E. M., White, J. G. & Repine, J. E. (1984) Clin. Res. 32, 88a (abstr.).
- 11. Linas, S. L., White, C. W., Parker, N. B. & Repine, J. E. (1987) J. Appl. Physiol. 22, F685-F691.
- 12. Harada, R. N., Vatter, A. E. & Repine, J. E. (1983) Am. Rev. Respir. Dis. 128, 761-762.
- 13. Fox, R. B. (1984) J. Clin. Invest. 74, 1456-1464.
- 14. Jackson, J. H., White, C. W., Berger, E. M., McMurtry, I. F. & Repine, J. E. (1986) J. Appl. Physiol. 61, 383-391.
- 15. McDonald, R. J., Berger, E. M. & Repine, J. E. (1987) Am. Rev. Respir. Dis. 135, 957-959.
- 16. Paller, M. S., Hoidal, J. R. & Ferris, T. F. (1984) J. Clin. Invest. 74, 1156-1164.
- 17. Patt, A., Harken, A. H., Burton, L. K., Rodell, T. C., Piermattei, D., Schorr, W. J., Parker, N. B., Berger, E. M., Terada, L. S., Horesh, I. R., Linas, S. L., Cheronis, J. C. & Repine, J. E. (1988) J. Clin. Invest., in press.
- 18. Bolli, R., Zhu, W. X., Hartley, C. J., Michael, L. H., Repine, J. E., Hess, M. L., Kukreja, R. C. & Roberts, R. (1987) Circulation 76, 458-468.
- 19. Morel, D. R., Lowenstein, E., Nguyendry, T., Robinson, D. R., Repine, J. E., Chenoweth, D. E. & Zapol, W. M. (1988) Circ. Res., in press.
- 20. Portz, S. J., VanBenthuysen, K., McMurtry, I. & Horwitz, L. D. (1987) Clin. Res. 35, 315a (abstr.).
- 21. Wasil, M., Halliwell, B., Grootveld, M., Moorhouse, C. P., Hutchison, D. C. S. & Braum, H. (1987) Biochem. J. 243, 867-870.
- 22. Repine, J. E., Clawson, C. C. & Friend, P. S. (1977) J. Clin. Invest. 59, 802-809.
- 23. Repine, J. E., White, J. G., Clawson, C. C. & Holmes, B. M. (1974) J. Clin. Invest. 54, 83-90.
- 24. Toth, K. M., Clifford, D. P., White, C. W. & Repine, J. E. (1984) J. Clin. Invest. 74, 292-295.
- 25. Repine, J. E., Pfenninger, 0. W., Talmage, D. W., Berger, E. M. & Pettijohn, D. E. (1981) Proc. Natl. Acad. Sci. USA 78, 1001-1003.
- 26. Tate, R. M., Morris, H. G., Schroeder, W. R. & Repine, J. E. (1984) J. Clin. Invest. 74, 608-613.
- 27. Worcestor, J. (1966) N. Engl. J. Med. 274, 27–36.
28. Havel, J. J. & Klutz, R. O. (1974) Synth. Commun.
- 28. Havel, J. J. & Klutz, R. Q. (1974) Synth. Commun. 4, 389–393.
29. Hoffman. M. & Edwards. J. O. (1977) Inore. Chem. 16. Hoffman, M. & Edwards, J. O. (1977) Inorg. Chem. 16,
- 3333-3338.
- 30. Stirling, C. J. M. (1971) Int. J. Sulfur Chem. 6, 277-320.
31. Wolfgang, W. & Gert, R. (1969) Chem. Abstr. 71, 21324 (ab.
- 31. Wolfgang, W. & Gert, R. (1969) Chem. Abstr. 71, 21324 (abstr.).
32. Wellisch, E., Ginstein, E. & Sweeting, O. J. (1962) J. Org. Wellisch, E., Gipstein, E. & Sweeting, O. J. (1962) J. Org. Chem. 27, 1810-1812.
- 33. Cohen, G. (1977) in Superoxide and Superoxide Dismutases, eds. McCord, J. M. & Fridovich, I. (Academic, New York), pp. 317-321.
- 34. Dorfman, L. M. & Adams, G. E. (1973) Reactivity of the Hydroxyl Radical in Aqueous Solutions (U.S. Dept. Commerce, Natl. Bureau of Standards, Gaithersburg, MD), NSRDS-NBS No. 46, pp. 1-59.
- 35. Neta, P. & Dorfman, L. M. (1968) Adv. Chem. Sci. 81, 222-230.