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Abstract
Constraint based modeling is an approach for quantitative prediction of net reaction flux in genome
scale biochemical networks. In vivo, the second law of thermodynamics requires that net macroscopic
flux be forward, when the transformed reaction Gibbs energy is negative. We calculate the latter by
using (i) group contribution estimates of metabolite species Gibbs energy, combined with (ii)
experimentally measured equilibrium constants. In an application to a genome scale stoichiometric
model of E. coli metabolism, iAF1260, we demonstrate that quantitative prediction of reaction
directionality is increased in scope and accuracy by integration of both data sources, transformed
appropriately to in vivo pH, temperature and ionic strength. Comparison of quantitative versus
qualitative assignment of reaction directionality in iAF1260, assuming an accommodating reactant
concentration range of 0.02 – 20 mM, revealed that quantitative assignment leads to a low false
positive, but high false negative, prediction of effectively irreversible reactions. The latter is partly
due to the uncertainty associated with group contribution estimates. We also uncovered evidence
that the high intracellular concentration of glutamate in E. coli may be essential to direct otherwise
thermodynamically unfavorable essential reactions, such as the leucine transaminase reaction, in an
anabolic direction.
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1 Introduction
Biological systems can be modeled at a large scale by taking an approach which balances
computationally tractability with physically and biochemical realistic representation.
Constraint-based modeling is a flexible and scalable approach for in silico phenotype prediction
[1]. It relies on an accurate biochemical network reconstruction which is a biochemically,
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genetically and genomically structured representation of experimental biochemical &
molecular biological literature [2]. In the case of metabolic networks, biochemical
characterization of an enzyme establishes the substrate(s) and product(s) and genetic studies
establish the gene-protein-reaction associations which tie a particular metabolic function in a
model to a particular genomic location. A biochemical network reconstruction is then
converted into a prototype computational model such that predictions may be compared with
experimental data. In many cases, initial in silico tests suggest further refinements to the
reconstruction underlying the prototype computational model. Iterative refinement of a
constraint-based model, by comparison of prediction with experiment, supports its use for a
priori in silico prediction of phenotypic capabilities for a posteriori in vivo experimental
validation.

There have been many practical biological uses of constraint-based models, including study
of bacterial evolution [3], analysis of network properties [4,5,6,7], study of phenotypic
behavior [8,9], biological discovery [10,11,12], and metabolic engineering [13,14,15]. The
growing scope of applications of genome scale metabolic reconstructions in metabolic
engineering and other fields has recently been reviewed [16]. The predictive fidelity of a
constraint-based model is dependent on the accuracy of the constraints used to eliminate
physicochemically and biochemically infeasible network states. Generally, the resulting
constraint equations define an under-determined feasible set of network states. Therefore, in
unicellular organisms, a biological objective, such as maximization of growth rate, can be used
to predict a single network state within this feasible set depending on the objective. The
sensitivity of in silico predictions to the choice of objective function was treated in detail by
Savinell & Palsson [17], and more recently by comparison of predictions with fluxomics data
[18].

In this work, we focus on the assignment of reaction directionality in stoichiometric, metabolic
models since it has a significant effect on the feasible set of functional states [19,20,21,22].
There are two forms of thermodynamic constraints on reaction directionality. Local
thermodynamic constraints apply on a reaction, by reaction basis. Essentially, a negative
reaction Gibbs energy dictates a net forward reaction flux. This application of thermodynamics
to the direction of biochemical reactions has a long history [23], with the first comprehensive
treatment by Burton, Krebs and Kornberg [24]. Non-local thermodynamic constraints apply
to sets of reactions [25] and arise due to the necessity to satisfy energy conservation, in addition
to the second law of thermodynamics. Non-local thermodynamic constraints have been applied
to small systems of biochemical reactions [26], but that approach “cannot be efficiently applied
directly to genome-scale problems” [27] due to limitations imposed by computational
complexity. Here, our focus is on local thermodynamic constraints for a system of reactions
at genome scale. We summarize the theory underlying quantitative assignment of local reaction
directionality at physiologically relevant conditions. Then, we apply this theory to a
stoichiometric model of E. coli metabolism [28]. Our study relies on the extensive body of
work on the thermodynamics of biochemical reactions by Alberty [29,30] which we apply to
a genome scale model for the first time. We complemented Alberty's approach with ongoing
efforts by Henry et al. [19,20] and Jankowski et al. [31] which seek to estimate the standard
Gibbs energy of metabolite species based on a group contribution methodology.

2 Methods
2.1 Standard Gibbs energy of formation of metabolite species

There exist two complimentary quantitative methods for assigning reaction directionality based
on different ways of calculating standard Gibbs energy of formation for metabolite species.
The first involves back-calculation of standard Gibbs energy of formation using experimentally
measured equilibrium constants [29]. In the absence of apparent equilibrium constants,
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standard Gibbs energy of formation for certain metabolite species cannot be back-calculated.
In this case, a second complementary method involves estimation of standard Gibbs energy of
formation of a metabolite species by summation of terms representing contributions to standard
Gibbs energy of formation from different structural subgroups within that metabolite species
[32,31] (see Supplementary Material).

In constraint-based modeling of metabolic networks, it is typical to assume that all metabolite
species concentrations are uniform throughout a single compartment enclosed by a lipid bilayer
[33,34]. This assumption is based on a local equilibrium hypothesis; that local variation in
metabolite concentration is insignificant with respect to average compartment concentration
[35]. In theory, a chemical reaction will perturb the spatial distribution of metabolite
concentration, especially for certain metabolite intermediates at low concentration. However,
unless the rate of such a reaction is diffusion limited, one can expect such perturbations to be
insignificant on longer timescales. A significant number of publications on possible deviations
of intracellular reaction thermodynamics from a local equilibrium hypothesis have been
published and are reviewed in [36]. However, at present, due to the dearth of spatio-temporally
resolved concentration data, one cannot be sure that any deviation from a local equilibrium
hypothesis is actually significant in vivo. We assume the metabolite concentration is spatially
invariant, and that, temperature and pressure are constant. Therefore one can define a single
Gibbs energy of formation for each metabolite species which is valid throughout a single
compartment.

Adjusting to in vivo ionic strength, temperature and pH—The standard Gibbs energy
of formation of a metabolite species, , is an experimental measurement of the change in
chemical potential which accompanies the synthesis of one mole of a metabolite species from
its constituent elements in standard conditions. Standard conditions, denoted with the
superscript, o, specify the synthesis of a one molar solution of a metabolite species from its
constituent elements in their natural state, at temperature 298.15K, atmospheric pressure 1 bar,
zero ionic strength and zero pH. Throughout this study, we assume atmospheric pressure and
all thermodynamic potentials are expressed in kJ mol−1.

In our treatment of thermodynamic potentials, we assume that, with respect to metabolite
species, the interior of a cell can be approximated by a buffer solution. This assumption neglects
the fact that in general, there are effects on the equilibrium constants of in vivoreactions due
to macromolecular crowding [37], confinement, adsorption and high fluid phase viscosity
[38]. These effects are all a function of size and charge of the molecules involved. We confine
ourselves to consideration of equilibrium constants for metabolic overall reactions between
relatively small metabolites. Implicitly, with the exception of spontaneous reactions, all such
reactions involve enzymes in elementary steps within the overall reactions. Enzymes are
relatively large molecules but do not effect the equilibrium constant of an overall enzyme
catalyzed reaction. For charged metabolites, there could be significant effects due to
macromolecular adsorption and it is known that a higher intracellular fluid phase viscosity
slows the rate of diffusion of metabolites [39]. However, in this study, we omit a treatment of
these effects. The effect of macromolecular crowding and confinement is much more
significant for macromolecules than metabolites and we do not consider these further. We do
however consider the effects of in vivo pH, temperature and ionic strength.

In any quantitative system of relative measurements it is essential to have a standard reference
point. However, any thermodynamic potential given for a ex vivo chemical standard reference
condition must be adjusted to reflect in vivo conditions. The procedure for adjusting standard
Gibbs energy of formation for each metabolite species, to in vivo ionic strength, temperature
and pH, has been discussed theoretically and illustrated with computational implementation in
textbooks by Alberty [29,30]. We follow closely the same theoretical procedure, which is
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detailed in the Supplementary Material. There have been attempts to indirectly measure in
vivo ionic strength, without actually measuring the concentrations of all charged metabolite
species [40]. Such work would significantly refine our ability to model biochemical
thermodynamics. However, at present, a pragmatic approach is to assume a physiological range
of ionic strength between 0.05M and 0.35M [29], and then to adjust each metabolite species
standard Gibbs energy of formation by assuming a particular ionic strength in this range.

We assume an ionic strength of 0.25 M then use the extended Debye-Hückel equation [41], to
estimate the activity coefficient associated with each metabolite species, γj. The RT ln γi term
is then absorbed into the standard Gibbs energy of formation at in vivo ionic strength. The
advantage of this approach is that metabolomic data can be incorporated directly without
adjusting it to represent ionic strength and charge dependent activities. The chemical standard
reference temperature is typically room temperature, 298.15 K (25°C). However, generally for
biochemical thermodynamics, reactions occur at body temperature, 310.15 K (37°C). It is
possible to adjust metabolite species standard Gibbs energy of formation, within a narrow range
of the chemical standard reference temperature, provided that the standard enthalpy of
formation of a metabolite species is known,  (See Supplementary Material).

Through a variety of homeostatic mechanisms [42], E. coli can grow over a wide range of
external pH values, (5.5-9.0), yet maintains cytoplasmic pH between 7.6-7.8 [43,44]. In
contrast, the pH in the periplasmic space equals that of the external medium [44]. Metabolites,
co-factors and ions make up approximately 3.5% of the dry weight of a typical E. coli cell
[42]. While proteins account for approximately 55% of the dry weight. Cytoplasmic proteins
represent a large buffering capacity, relative to the total pool of metabolites, co-factors and
ions [45]. Effectively, the large buffering capacity of intracellular proteins maintains a constant
concentration of cytoplasmic hydrogen ions. In a thermodynamic treatment of any system,
knowledge of the values of a constant intensive variables dictates the appropriate
thermodynamic potential to be used. This is concept applies regardless of whether the intensive
variable is temperature or pH. As stressed by Alberty [29], the appropriate thermodynamic
potential may be mathematically defined using a Legendre transform. However, knowledge of
the latter is not essential to understand why it is appropriate to define a new thermodynamic
potential, rather it is an elegant mathematical device for doing so. In the Supplementary
Material, we show how to define a new thermodynamic potential for constant pH by adapting
the classical thought experiment of a ‘bath’ that maintains an intensive variable constant.

Pseudo-isomer groups at specified pH—A reactant represents the properties of a set of
related metabolite species. When pH is a known constant, a reactant may be treated as a pseudo-
isomer group of metabolite species each of which is in a different state of hydrogen ion
dissociation. e.g. at physiological ranges of pH, the reactant ATP consists of a series of different
hydrogen ion dissociated forms. The concentration of the reactant ATP is given by the sum of
the concentrations of the metabolite species in its pseudo-isomer group

Thus far, established practice in reconstruction of metabolic networks has been to approximate
each reactant with a single predominant ionic form [28,31]. Instead of this approximation, we
follow the method of Alberty [29], and quantitatively amalgamate each property of a set of
metabolite species into a property of the corresponding reactant. This retains the simplicity of
qualitatively dealing with a single reactant but quantitatively representing the properties of a
pseudo-isomer group.
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Thermodynamically, at the timescale relevant for enzyme catalyzed reactions, the metabolite
species which make up a single pseudo-isomer group may be considered to be in equilibrium
with each other [46]. The hydrogen ion transfer rate constants range between 109 –
1011 s−1 M−1 as compared to the fastest enzyme turnover rates of ~ 107 s−1 M−1 [47]. Therefore,
when modeling enzyme catalyzed reactions, it is reasonable to assume that the different
metabolite species of a reactant are at equilibrium [29]. Thermodynamic state variables [41]
for each metabolite species, such as standard Gibbs energy of formation, , must be
individually adjusted from chemical standard conditions, to in vivo pH, ionic strength, and
temperature. Thereafter, assuming equilibrium between metabolite species in a pseudo-isomer
group, the adjusted state variables for each metabolite species in a pseudo-isomer group are
then combined, and represented by a reactant state variable. The reactant state variable we
require is the standard transformed Gibbs energy of a reactant, . Note that we distinguish
a reactant, with index i, from a metabolite species with index j. Note also, the slight change in
superscript, from o to 0, which is used to remind the reader that the latter is now a function of
ionic strength (See supplementary material A.3).

The standard transformed Gibbs energy of formation of a reactant can be calculated by
assuming that each metabolite species in a group acts as an isomer and applying established
techniques for isomer group thermodynamics [46]. The equation for standard transformed
reactant Gibbs energy of formation, , in terms of metabolite species standard transformed

Gibbs energy of formation, , is

(1)

where the summation is over all the metabolite species, j, within the pseudo-isomer group, i.
Each metabolite species standard transformed Gibbs energy of formation is individually a
function of ionic strength, pH and temperature. It is important to realize that Eq. 1 does not
represent a linear average of the standard transformed Gibbs energy of formation of each
metabolite species. In other words, reactant standard transformed Gibbs energy of formation
is not additive in the standard transformed Gibbs energy of its metabolite species.

At specified ionic strength, pH and temperature, the mole fraction of a metabolite species, rj,
with respect to its pseudo-isomer group, may be calculated using

(2)

where, again, the summation is over all the metabolite species, j, within a particular pseudo-
isomer group, i [46]. This mole fraction rj, represents the fraction of a reactant which is present
as a particular metabolite species j. It is evident from Eq. 2 that the mole fraction of a metabolite
species is a non-linear function of its standard transformed Gibbs energy of formation. If each
metabolite species in a pseudo-isomer group could be adjusted identically for temperature,
ionic strength, and pH then it would be possible to adjust the properties of the reactant after it
was approximated with the pseudo-isomer group approach. Mathematically, this follows since

subtraction of any constant term from each  in Eq. 2 has no effect on the mole fraction.
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In vivo transformed reactant Gibbs energy—Transformed reactant Gibbs energy,
, is given by , where  is standard transformed reactant Gibbs

energy and xi is the concentration of reactant i (Molar), which is the sum of the concentrations
of its constituent metabolite species j. Quantitative metabolomic data [48], which can measure
simultaneously a wide selection of reactant concentrations, is increasingly becoming available
[49]. Quantitative metabolomic data can be used to estimate in vivo reactant transformed Gibbs
energy [21]. Experimentally measured reactant concentrations indicate that the concentration
of most amino acids [50], and reactants in central metabolism fall within the 0.02 – 20 mM
range [21,51]. Therefore, in the absence of metabolomic data for a particular reactant, we define
the minimum and maximum standard transformed reactant Gibbs energy of formation,

 and , where we assume xmin
= 0.02 mM and xmax = 20 mM. There are exception for water and dissolved gases (see
Supplementary Material A.7).

Quantitative assignment of reaction directionality—Although, in principle, all
microscopic processes in biochemistry are reversible, certain reactions are effectively
irreversible at typical in vivo reactant concentrations. Let Sk ∈ ℧m,1 denote a column from a
stoichiometric matrix [1], then the transformed Gibbs energy for a biochemical reaction is

. In most modeling situations, metabolomic data will not be available for all
reactants in a model. In this situation, we assume a physiological concentration range for each
reactant. We define the minimum and maximum transformed Gibbs energy for a biochemical

reaction with  and , whereinf denotes the
infimum, sup denotes the supremum, and reactant standard transformed Gibbs energy of
formation is bounded . A reaction may be assigned to be
quantitatively forward, if , or quantitatively reverse if . We assigned a
reaction to be quantitatively reversible if the physiological range of biochemical reaction
transformed Gibbs energy spans the zero line, i.e.  and .

2.2 Physiological standard transformed reaction Gibbs energy
Given a set of reactions assigned to be quantitatively reversible, we now propose a metric to
rank them in a descending sequence according to probability that each reaction is irreversible
in the forward direction. Standard reaction Gibbs energy is defined for one molar concentration
for each reactant, which far exceeds physiological concentration ranges in E. coli. We define
a new physiological group contribution estimate for each reactant standard transformed Gibbs

energy of formation, , where  is the 1 Molar group
contribution estimate of reactant standard Gibbs energy of formation, transformed to in vivo
conditions, and xi,m is the geometric mean of the concentration range for each reactant, xi,m ≡
exp ((ln (xi,min) + ln (xi,max))/2). This refines the approach of Henry et al.[19], since xi,m
represents a new standard concentration for each reactant, depending on its physiological range
in vivo. We choose the arithmetic mean of minimum and maximum concentration since
logarithmic concentration is linear in Gibbs energy.

In the group contribution method, the standard error in estimated reactant standard Gibbs

energy of formation, , assumes that the actual value of standard Gibbs energy of
formation is normally distributed. Likewise, we assume that the actual value of physiological
standard transformed reaction Gibbs energy, ΔrG′m, is also normally distributed. This is

justified by comparing the relative magnitude of  with RT ln (xi,max/xi,m) for reactants
in iAF1260. Assuming a concentration range of 0.02 – 20 mM, the former is greater than the
latter for 85% of reactants, see Figure 1. That is, for the majority of metabolites, the uncertainty
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in estimated reactant standard Gibbs energy of formation is more significant than the
uncertainty associated with a lack of metabolomic data. The qualitatively reversible reactions,
that are assigned to be quantitatively reversible, can be ranked based on the probability that
the real physiological standard transformed reaction Gibbs energy is negative, P(ΔrG′m < 0).
This probability that a reactions direction is forward is given by the cumulative of a normal
distribution

(3)

where er f denotes the error function [52]. Ranking the reactions by the probability that
physiological standard transformed reaction Gibbs energy is negative, P(ΔrG′m < 0), is superior
to ranking reactions by mean estimated physiological standard transformed reaction Gibbs
energy since the former accounts for the uncertainty in the group contribution method. (For
the sake of clarity we omit a k subscript from P(ΔrG′m < 0), but it is specific to each reaction).
Note that here probability is used in the Bayesian sense to reflect the confidence with which a
directionality assignment can be made. If P(ΔrG′m < 0) = 0.5, then we have no confidence to
assign direction either way.

3 Results
3.1 Pseudo-isomer groups

We applied quantitative assignment of reaction directionality to the genome scale model of E.
coli metabolism, iAF1260 (1668 reactants, 2076 reactions) [28]. This highlighted a few
pertinent methodological lessons which apply regardless of the organism of interest. The
assumption that a metabolite is present as a single predominant metabolite species does not
always apply. Figure 2 illustrates that certain reactants in E. coli do have significant mole
fractions present as non-predominant metabolite species. For instance, acetyl-phosphate is
almost equally present as C2H3O5P2− and C2H4O5P−, while a small mole fraction is predicted
to be present as uncharged C2H5O5P. Each metabolite species has a different standard Gibbs
energy of formation and responds individually to changes in pH, temperature and ionic
strength. Where the necessary data was available, we calculated the standard transformed Gibbs
energy of formation of each metabolite species as a function of pH, temperature and ionic
strength. The standard transformed reactant Gibbs energy, and hence standard (Legendre)
transformed reaction Gibbs energy is a function of the properties of each metabolite species in
the respective pseudo-isomer groups, not just the predominant hydrogen ion dissociated form.

Another approach reported in the literature assumes that all reactants can be approximated by
a single predominant metabolite species at a given pH [19,20]. There, in order to represent a
known constant hydrogen ion concentration, [H+], a new standard hydrogen ion Gibbs energy
of formation is defined, ΔfGo(H+) ≡ RT ln [H+], and the Legendre transformation of all
metabolite species at constant pH is omitted [19,20]. Thereafter, standard ’transformed’
reaction Gibbs energy is calculated with the newly defined standard hydrogen ion Gibbs energy
of formation and standard Gibbs energy of formation for the remaining reactants, each
approximated by a single metabolite species. Figure 3 illustrates that there is a significant
difference between the standard (Legendre) transformed reaction Gibbs energy and the
standard ’transformed’ Gibbs energy of the same reaction, calculated when one assumes that
each reactant can be approximated with one predominant metabolite species. As expected, in
exceptional cases, where all reactants involved in a biochemical reaction exist as one metabolite

Fleming et al. Page 7

Biophys Chem. Author manuscript; available in PMC 2010 December 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



species, the standard ’transformed’ Gibbs energy of a reaction is identical to the standard
transformed Gibbs energy of the same reaction.

3.2 Qualitative versus quantitative reaction directionality in E. coli
To quantitatively assign reaction directionality, where available, we used standard reactant
Gibbs energy of formation back-calculated from experimentally measured equilibrium
constants in preference to group contribution estimates. However, a minority of the reactants
in E. coli (311/1668) have standard Gibbs energy of formation back-calculated from
experimentally measured equilibrium constants [30]. Most of the remaining reactant standard
Gibbs energy of formation (1127/1668) can be estimated using group contribution
methodology [31]. Certain reactants have no estimated standard Gibbs energy of formation
due to structural subgroups in metabolite species not covered by the current version of this
method (230/1668 or 163/1039 unique iAF1260 reactants).

We compared quantitative assignment of reaction directionality with qualitatively assigned
reaction reconstruction directionality in the genome scale metabolic model of E. coli, iAF1260
[28]. The heuristics for the latter are given in the Supplementary Material A.8. Overall,
quantitative assignment of reaction directionality results in a relaxation of qualitative
directionality constraints, see Table 1. Directionality changes are in three categories: i)
unchanged directionality ii) relative relaxation of reaction directionality (qualitatively forward
yet quantitatively reversible), and iii) tightened or reversed reaction directionality. Unless
otherwise specified, we refer to quantitative assignment at a temperature of 310.15 K, ionic
strength of 0.25 M, pH of 7.7 [43,44], and an accommodating physiological concentration range
of 0.02 – 20 mM. Initially, we assumed thermodynamic reversibility for internal reactions
(309/2077) where data is missing for at least one reactant.

3.3 Quantitative relaxation of qualitatively assigned reaction directionality
In iAF1260, most of the internal reactions (1524/2077) have been qualitatively assigned to be
irreversible in the forward direction. Of these forward reactions, about a third are also
quantitatively forward (638/1524). Another third of qualitatively forward reactions are
assigned to be quantitatively reversible (603/1524), see Table 1. Taking into account the
uncertainty in group contribution estimation of metabolite species standard Gibbs energy of
formation, the fraction of qualitatively forward reactions changed to quantitatively reversible
almost doubles (1011/1524). Relaxation of directionality constraints for so many reactions
would significantly increase the flexibility of the resulting iAF1260 constraint-based model.
Such relaxation significantly effects model predictions, therefore, we conducted a detailed
analysis of these qualitatively forward, yet quantitatively reverse reactions.

Quantitative relaxation of reaction directions with no uncertainty in ΔrG′0—A
tenth of qualitatively forward yet quantitatively reversible reactions (103/1011) exclusively
involved reactant standard transformed Gibbs energy of formation back calculated from
equilibrium constants. The majority of these reactions do indeed have a negative standard
transformed reaction Gibbs energy, but within our accommodating physiological range of
reactant concentration, they are quantitatively reversible (See Supplementary Figure 10).
Strictly, these reactions are quantitatively reversible, i.e.,  and , but most
are probably forward at in vivo concentrations.

Many of the quantitatively reversible reactions transport metabolites between compartments.
Although the net electrical charge within a compartment is assumed to be neutral, an electrical
potential difference can exist between compartments. In E. coli, the cytoplasmic side of the
cytoplasmic membrane is more negative than the periplasmic side [53]. A thorough treatment
of electrochemical potential difference is beyond the scope of this current work. However,
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even when cytoplasm and periplasm are assumed to have an identical pH, an electrical potential
difference still exists across the cytoplasmic membrane. We assumed an electrical potential
difference of 90 mV, which corresponds to a Gibbs energy change of −8.7 kJ mol−1 per negative
charge transported from cytoplasm to periplasm [53]. Therefore, the passive transport of
negatively charged reactants, e.g., formate, from cytoplasm to periplasm is thermodynamically
favorable at equal concentrations of formate in both compartments. However, if the
concentration of formate is high in the periplasm, and low in the cytoplasm, this can reverse
the direction of formate diffusion. Therefore, many transport reactions are quantitatively
assigned to be reversible within a physiological range of reactant concentration. This is the
case regardless of the provenience of the reactant standard Gibbs energy of formation, see
Supplementary Figure 11.

Quantitative relaxation of reaction directions with uncertainty in metabolite
—A small minority (134/1011) of the qualitatively forward yet quantitatively reversible

reactions are assigned based solely on group contribution estimates of reactant standard
transformed Gibbs energy of formation. The uncertainty in these estimates combines with
variability in metabolite concentration to increase the feasible range of reaction Gibbs energy.
The remaining majority (774/1011) of the qualitatively forward yet quantitatively reversible
assignments are based on standard transformed Gibbs energy of formation for reactants
estimated by the group contribution method combined with standard transformed Gibbs energy
of formation for reactants back calculated from equilibrium constants. The latter reactants
include most of the widely used co-enzymes [54] and prosthetic groups. In order to understand
the reasons for relaxation of so many reaction directions ((134+774)/1011), we categorized the
reactions. Figure 4 illustrates all reactions that are qualitatively forward yet quantitatively
reversible (908/1011), using at least one group contribution estimate of reactant standard
transformed Gibbs energy of formation. Apart from transport reactions, the reactions in Figure
4 are ordered by descending probability of the reaction being forward, P(ΔrG′m < 0), at
physiological standard concentrations of reactants.

Thermodynamically favorable, qualitatively forward transport reactions—For
most transport reactions, there is no uncertainty in physiological standard transformed reaction
Gibbs energy since the same reactant is present on both sides of the reaction. In Figure 4,
transport reactions are sorted by ascending physiological standard transformed reaction Gibbs
energy since P(ΔrG′m < 0) is undefined if the denominator in Eq. 3 is zero. A non-zero standard
transformed reaction Gibbs energy for a transport reaction is due to net transport of a charged
metabolite between the cytoplasm and periplasm. Of the qualitatively forward yet
quantitatively reversible reactions, 155/1011 result in net transport of a negative (or neutral)
charge from the cytoplasm to the periplasm and therefore have a negative (or zero)
physiological standard transformed reaction Gibbs energy, ΔrG′m ≤ 0. These transport reactions
are qualitatively assigned to be forward, but within the physiological range of reactant
concentration, they are quantitatively reversible.

Thermodynamically unfavorable, qualitatively forward transport reactions—The
forward direction of a transport reaction, as for any reaction, is defined by convention.
Assuming the concentration range of the reactant is the same in both compartments, reactions
which transport a positively charged reactant from the cytoplasm to the periplasm have a
positive physiological standard transformed reaction Gibbs energy, ΔrG′m > 0. Likewise,
reactions which transport a negatively charged reactant from periplasm to the cytoplasm have
a positive standard transformed reaction Gibbs energy. At equal cytoplasmic and periplasmic
reactant concentrations these reactions would operate in reverse, despite being qualitatively
assigned to be forward reactions. These 21 transport reactions are detailed in Supplementary
Figure 12. Any facilitated diffusion reaction in this group would have to have a higher
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periplasmic than cytoplasmic concentration in order to proceed in the forward direction as
qualitatively assigned, e.g., undecaprenyl phosphate transport cytoplasm to periplasm.

At an equal pH of cytoplasm and periplasm, any proton symport reaction, transporting a
reactant with a charge of −2 into the cell, would require more than one proton to translocate
across the periplasmic membrane in order to make the reaction thermodynamically favorable.
It may be that the proton stoichiometry of these reactions needs to be revised in order to take
this into account. For example the reaction ‘GlcNAc anhMurNAc tetrapeptide transport in via
proton symport’, which symports anhMurNAc tetrapeptide (N-Acetyl-D-glucosamine
(anhydrous) N-Acetylmuramyl-tetrapeptide), a biopolymer in the bacterial cell wall, with a
charge of −2, from the periplasm to the cytoplasm, see Supplementary Figure 12. This result
indicates how thermodynamic consideration of reaction directionality can highlight reactions
with thermodynamically infeasible stoichiometry.

Qualitatively forward reactions, quantitatively reversible within a physiological
concentration range—The probability that physiological standard transformed reaction
Gibbs energy less than zero, P(ΔrG′m < 0), Eq. 3, attempts to quantify the probability that a
reaction is indeed irreversible in the forward direction at physiological standard concentrations
of reactants. Reactions that are most probable to be irreversible in the forward direction are
those where the physiological standard transformed reaction Gibbs energy is negative, even
one standard deviation from the mean, i.e. 1 ≥ P(ΔrG′m < 0) ≥ 0.86. Of the qualitatively forward,
yet quantitatively reversible reactions, a quarter (221/1011) are probably forward by this
reasoning. By the same reasoning for the opposite direction, 0.14 ≥ P(ΔrG′m < 0) ≥ 0, there are
11 reactions that are probably reverse, but are qualitatively assigned to operate in the forward
direction, see Supplementary Figure 12. These quantitative reaction directionality assignments
are interesting because they possibly change the direction of qualitative assignment.

The intermediate range of probability of forward physiological standard transformed reaction
Gibbs energy, 0.86 ≥ P(ΔrG′m < 0) > 0.14, still accounts for half (500/1011) of the qualitatively
forward, yet quantitatively reverse reactions. Figure 4 illustrates that a large uncertainty in
physiological standard transformed reaction Gibbs energy precludes definitive quantitative
forward assignment for many of these reactions. We arbitrarily set the 214 reactions with 0.86
≥ P(ΔrG′m < 0) > 0.7 to be quantitatively forward, the 279 reactions with 0.7 ≥ P(ΔrG′m < 0)
> 0.3 to be quantitatively reversible and the remaining 7 reactions with 0.3 ≥ P(ΔrG′m < 0) >
0.14 to be quantitatively reverse.

Whatever upper cutoff is chosen for qualitatively forward reactions, then in order to be logically
consistent, one minus the same cutoff must be used to quantitatively assign other reactions to
be reverse. Our conservative upper & lower cutoff was chosen to compensate for the
uncertainty in group contribution estimates of reactant standard Gibbs energy. Even with these
conservative cutoffs, the resulting model cannot produce biomass in glucose minimal medium,
because certain qualitatively forward reactions are essential in this direction and therefore
cannot be reversed. Computational analysis can reliably predict, which reaction directions are
essential in vivo for a given boundary condition [8,55]. We identified the 7 reactions that were
essential for production of biomass in glucose minimal medium, yet seemed
thermodynamically unfavorable according to 0.3 ≥ P(ΔrG′m < 0) (See Supplementary Figure
12). This highlights the importance of incorporating metabolite concentration data to refine
thermodynamic assignment of reaction directionality [21] since it is ultimately the transformed
Gibbs energy of a biochemical reaction, ΔrG′, that determines directionality.

L-glutamate and reaction directionality—The amino acid L-glutamate is the major
nitrogen donor in the cell, distributing ~88% of the total nitrogen that ends up in biomass,
largely via transamination reactions. It has been measured at a relatively high~ 100 mM
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concentration in a range of growth conditions [56]. L-glutamate is a reactant in three of the
qualitatively forward reactions, that could possibly be assigned reverse based on consideration
of physiological standard transformed reaction Gibbs energy alone (Supplementary Figure 12).
L-glutamate is a substrate for glutamate 5 kinase (E.C. 2.7.2.11) and leucine transaminase (E.C.
2.6.1.6), yet a product of the reaction catalyzed by 1-pyrroline 5-carboxylate dehydrogenase
(EC 1.5.1.12). The reaction catalyzed by leucine transaminase is essential for production of
biomass from glucose minimal medium in silico and in vivo [57]. A high concentration of L-
glutamate favors the forward direction of this reaction. In the same conditions, the other two
reactions involving L-glutamate are not essential in silico.

Leucine transaminase catalyzes the transfer of the amine group in L-glutamate to 4-methyl-2-
oxopentanoate to form L-leucine. This reaction can also be catalyzed by branched-chain-
amino-acid transaminase (EC 2.6.1.42) which catalyses the first step in the catabolism of
branched-chain amino acids, being leucine, isoleucine and valine. At 298.15 K, pH 7.21, and
ionic strength 0.31 mol kg−1, the apparent equilibrium constant of

was reported to be 2.42 ± 0.25 with respect to the forward direction [58]. Without error this
corresponds to a standard transformed Gibbs energy of −2.19 kJ mol−1. This indicates that the
reverse direction, biosynthesis of L-leucine, is thermodynamically unfavorable at equal
concentrations of substrates and products. This indicates that the high concentration of
glutamate observed in the cell may well be thermodynamically necessary to drive the
biosynthesis of L-leucine. On the contrary, depending on the needs of the cell, all else being
equal, the reaction will run in the opposite direction at low glutamate concentration. This
illustrates how thermodynamic data can be used to interpret the meaning of metabolomic data
[21].

3.4 Quantitative tightening of qualitatively assigned reaction directionality
Using quantitative assignment, a small minority of reaction directions are tightened or reversed,
depending on the quantitative method used. Using group contribution estimates alone, there
are at least 35 qualitatively reversible reactions that are deemed to be quantitatively irreversible,
see Table 1. This number rises to 56 reactions when the uncertainty associated with the group
contribution methodology is not taken into account. In contrast, the use of standard Gibbs
energy of formation back calculated from experimentally measured equilibrium constants, in
place of group contribution estimates, reduces the number of reaction directions that are
tightened or reversed. In particular, of 553 qualitatively reversible internal reactions in
iAF1260, only 6 are deemed to be quantitatively irreversible using standard transformed Gibbs
energy of formation back calculated from experimentally measured equilibrium constants, in
preference to group contribution estimates. Of course, group contribution estimates are still
required for the majority of reactants. Of 1524 qualitatively forward reactions, only 5 are
deemed to be quantitatively irreversible in the reverse direction.

The tightened or reversed directionality assignments, directly conflict with qualitative
assignments and therefore we investigated the literature on biochemical and/or thermodynamic
characterisation experiments for each of these reactions. The detailed results of this study are
given in Supplementary Material A.9. Quantitative tightening of reaction directionality was
supported for a minority of reactions, e.g. D-Erythrose-4-phosphate dehydrogenase reaction.
Other reactions had experimental evidence indicating that quantitative assignment was too
tight, which may perhaps be improved by more accurate modeling of the effect of of
Magnesium on the standard transformed Gibbs energy of ATP, e.g. galactokinase reaction. As
discussed by Alberty [29], the concept of a pseudo-isomer group may be extended to different
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metal ion dissociated forms, e.g., when pMg = −log10[Mg2+] is a known constant. The group
contribution method seemed to have difficulty in estimating the standard Gibbs energy of
metabolites with an imidazole ring structure, giving rise to erroneous, over tight assignments
for certain reactions, e.g. IMP cyclohydrolase. Similarly, certain qualitatively forward
reactions were also incorrectly predicted to be quantitatively reverse for reactions involving
other metabolites with complex structure, e.g. glycogen. Ongoing refinements to the group
contribution method can be expected to iron out these issues with structurally complex
metabolite species[31].

3.5 Quantitative assignment of reaction directionality and biomass production in E. coli
Using the stoichiometry of the latest genome scale metabolic model, iAF1260[28], we
quantitatively set reaction directionality according to local thermodynamic constraints and
compared growth rate prediction against those experimentally measured. A first pass
thermodynamic assignment of reaction directionality based on ΔrG′ alone, resulted in a
minority of reactions being assigned thermodynamically forward (242/2077), and a few
reactions being thermodynamically reverse (6/2077). A few of these reversed reactions were
incorrectly quantitatively assigned, essential for growth, and therefore qualitatively set to
forward, ignoring the thermodynamic assignment. Using flux balance analysis [33,59] to
maximize reaction representing the production of biomass, at first, the biomass production rate
of the resulting model far exceeded the in vivo growth rate on glucose minimal medium. This
indicates that significant reaction directionality constraints were missing since the published
iAF1260 model does reproduce experimentally reported growth rates in various media.

At this point, we attempted to identify the minimum number of biochemically reasonable
qualitative assignments necessary in order to match the growth rate observed in vivo. The
qualitative assignments were based the on the experimental biochemical literature used to
assign reaction directionality in the iAF1260 reconstruction [28]. In addition, care was taken
to qualitatively assess prediction of internal fluxes, such as flux through the electron transport
chain, as expected during aerobic growth. First, we assigned the qualitative reconstruction
directions to reactions without any thermodynamic data (310/2011). Similarly for reactions
involving a quinone, since quinones are structurally complex metabolite species with
significant uncertainty in group contribution estimates. Then, using the probabilistic criteria
discussed above, we made these further quantitative assignments: P(ΔrG′m < 0) > 0.7
⇔forward, 0.7 ≥ P(ΔrG′m < 0) > 0.3 ⇔reversible, and 0.3 ≥ P(ΔrG′m < 0) ⇔reverse, except
for in silico essential reactions.

In addition, it was necessary to eliminate artefactual excess ATP synthesis due to (i) reversal
of ATP consuming ATP-binding cassette transport reactions, and (ii) net shuttling of protons
from the cytoplasm into the periplasmic compartment via transport reactions, leading to excess
ATP synthase flux. We assigned reconstruction directions to all transport reactions involving
proton symport or antiport, and all ATP-binding cassette transport reactions. The majority of
transport reactions qualitatively assigned a forward direction in this way do indeed have a
negative physiological standard transformed reaction Gibbs energy, see Supplementary Figure
11. For transport reactions, compartmentally resolved reactant concentration, if available,
would significantly influence reaction directionality, since, for many such reactions, the
standard Gibbs energy is close to zero.

We qualitatively assigned reaction directionality to cytoplasmic reactions involving the
cofactors ATP, GTP, CTP & UTP. In addition, we incorporated experimentally reported
concentration ranges for key cofactors (ATP, ADP, AMP, NAD, NADH, NADP, NADPH)
measured for E. coli growing aerobically on glucose minimal medium [51]. At glucose and
oxygen uptake rates of 11 and 18.2 mmol g−1 h−1 respectively, the experimentally observed
growth rate is 0.82 h−1 [60]. The aforementioned qualitative reaction directionality
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assignments, which override the quantitative assignments, reduce the growth rate to 1.1 h−1,
which compares favorably with that observed experimentally. At this margin of error, setting
the effective stoichiometry of oxidative phosphorylation by constraints on the relative fluxes
through various NADH dehydrogenases and terminal oxidases has a significant effect on
growth rate [28]. It is clear that the latter modeling issue awaits a thorough investigation. In
summary, quantitative assignment of reaction directionality must be accompanied by
qualitative assignment, for certain classes of reactions, in order to match experimental data
with constraint based models of metabolism.

4 Discussion
In principle, the application of the second law of thermodynamics to metabolic reactions results
in a constraint on the direction of all network reactions. However, this assumes that all reactant
concentrations and standard Gibbs energies are are known. Using experimentally measured
apparent equilibrium constants, Alberty has published tables of standard transformed reactant
Gibbs energies for 200 reactants [29,30]. In addition, group contribution estimates of standard
reactant Gibbs energy have recently become available for two thirds of the 15,000 reactants in
the KEGG compound database [31]. We have integrated these estimates, with Alberty's tables
in order to quantitatively constrain the directions in the E. coli genome scale metabolic model.

Standard Gibbs energy applies to chemical standard conditions, which are markedly different
from in vivo conditions. Therefore, following the methods developed by Alberty[29], we have
theoretically summarized and practically implemented the main steps in transformation of
chemical standard thermodynamic potentials into biochemical standard thermodynamic
potentials. The large buffering capacity of proteins, relative to the size of the soluble reactant
pool means that pH is effectively held constant. Therefore, we use the transformed reaction
Gibbs energy to provide the criterion for spontaneous change, and therefore the direction of
net flux, at in vivo temperature, pressure, pH and ionic strength.

Even in the absence of quantitative metabolomic data, thermodynamic assignment of reaction
directionality can be made by assuming an accommodating range of reactant concentration
(0.02 – 20 mM). In E. coli, our thermodynamic assignment of reaction directionality rarely
conflicts with qualitatively assigned reconstruction direction based on experimental literature.
This indicates that the same algorithms may be reliably used to constrain reaction directionality
for other organisms without the same breadth of experimental evidence as exists for E. coli.
However, a large proportion of reaction directions, which were qualitatively assigned to be
irreversible in E. coli, become quantitatively reversible, by transformed reaction Gibbs energy
alone. Partially, this is due to the accommodating range of reactant concentration, especially
for transport reactions. However, the main reason is that the uncertainty associated with
computational estimation of standard reactant Gibbs energy can give rise to a significant
uncertainty in standard transformed reaction Gibbs energy. This is especially so when
structurally complex reactants are involved.

We partially overcame the uncertainty issue by formulating a probabilistic metric expressing
our confidence that a given reaction is irreversible, given the uncertainty in standard reactant
Gibbs energy. Using this Bayesian probabilistic metric, it is possible to quantitatively assign
a large number of reactions to be irreversible, at a given confidence cutoff. Even still, some
qualitative assignment of reaction directionality is necessary in order to sufficiently constrain
the genome scale E. coli model to agree with experimentally observed growth rate in glucose
minimal medium. In particular, this is so for quinone coupled oxidative phosphorylation
reactions transport reactions, and reactions involving nucleotide cofactors.
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Quantitative metabolomics data, combined with standard transformed reactant Gibbs energy
calculations, would increase the number of predicted effectively irreversible reactions.
However, metabolite concentration data only becomes important for determining reaction
directionality when the uncertainty in group contribution estimation of reactant Gibbs energy
is low (⪅ 6 kJ mol−1). Cofactor pair concentration ratios are particularly useful since these
reactants are involved in such a large proportion of reactions and since experimentally derived
standard reactant Gibbs energy are available for many cofactors from the tables compiled by
Alberty [29]. Beyond cofactors, the concentration of other key metabolites are also important
for determining the direction of essential anabolic reactions. For instance, we provide evidence
that the high concentration of cytoplasmic L-glutamate, observed in E. coli [56], may well be
thermodynamically necessary to drive the biosynthesis of L-leucine.

We observed that reaction directionality is relatively insensitive to the specific adjustments for
temperature, pH and ionic strength necessary to represent in vivo conditions. This is more due
to the uncertainty in standard reactant Gibbs energy than the absence of metabolomic data.
Integration of standard reactant Gibbs energy back calculated from equilibrium constants
significantly reduces the number of false positive irreversible reactions, as compared to the use
of group contribution estimates alone. Nevertheless, group contribution estimates are essential
to match the broad scope of current genome scale models, therefore it is evident that these
approaches to the thermodynamics of biochemical reactions are complementary.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Uncertainty in reactant Gibbs energy
The majority of reactants in the E. coli iAF1260 model have a standard error in estimated
standard Gibbs energy of formation which exceeds half the maximum error associated with
assuming that reactant concentrations lie between 0.02 – 20 mM. This means that, for the
majority of reactants, the uncertainty in reactant Gibbs energy is mostly from uncertainty in
estimation of standard Gibbs energy, and not from uncertainty in concentration.
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Figure 2. Non-predominant metabolite species
At typical in vivo conditions, a minority of cytoplasmic reactants in E. coli (15/138 with
available data), have significant mole fractions (> 0.05) present as non-predominant metabolite
species. The length within each bar (left), apportioned to each color equals the mole fraction
of the reactant present as a particular metabolite species. A bar with three colors indicates a
reactant simultaneously present as three different metabolite species differing only in their state
of protonation. Accurate prediction of standard transformed Gibbs energy of formation is
especially important for reactants, such as Co-enzyme-A, which is almost equally present in
the two different metabolites species forms, and participates as a reactant in many reactions
(connectivity bar to the right). Another example is acetyl-phosphate which is also almost
equally distributed, as C2H3O5P2− and C2H4O5P− (Inset). The mole fractions, corresponding
to a pH 7.7 [43,44], ionic strength 0.25 M and temperature 310.15 K, were calculated as
described in Section 2.1.
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Figure 3. The importance of a true Legendre Transform
When cytoplasmic pH is held constant by buffering, a Legendre transform of metabolite species
standard Gibbs energy of formation defines a standard transformed Gibbs energy of formation
for each metabolite species. Reactant standard transformed Gibbs energy of formation, and
therefore reaction standard transformed Gibbs energy, depends non-additively on the standard
transformed metabolite species Gibbs energy of formation. Due to this non-additivity, when
reactants are present as multiple species, differing in their state of protonation, it is erroneous
to replace transformation of metabolite species standard Gibbs energy of formation, with
adjustment to the hydrogen ion standard Gibbs energy of formation, when calculating reaction
standard transformed Gibbs energy. The latter gives rise to an erroneous estimate of standard
‘transformed’ reaction Gibbs energy, as illustrated above for the reactions in the central
metabolic E. coli model [61] at pH 7.7, zero ionic strength, atmospheric pressure and
temperature 298.15K. The exception is when each reactant involved in a reaction is present as
only one metabolite species. In this case both approaches agree (stars on the diagonal).
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Figure 4. Qualitatively forward, quantitatively reverse reactions
The reactions that are qualitatively assigned to be forward in iAF1260, yet quantitatively
reversible, using at least one group contribution estimate of reactant standard transformed
Gibbs energy of formation. The feasible range of ΔrG′ and  are given as red and blue
bars respectively. Far left are transport reactions with negative or zero physiological standard
transformed reaction Gibbs energy, ΔrG′m ≤ 0, but reversible depending on concentration of
reactants. Reactions with uncertainty due to estimation of standard transformed reaction Gibbs
energy are rank ordered by decreasing probability that physiological standard transformed
reaction Gibbs energy is negative. In mathematical notation this probability is represented by
the symbol P(ΔrG′m < 0), as defined in Eq. 3, and used in situabove to denote the intervals as
follows: Reactions with P(ΔrG′m < 0) > 0.7 were assumed to be irreversible in the forward
direction, and reactions with P(ΔrG′m < 0) < 0.3 or ΔrG′m > 0, were assumed to be irreversible
in the reverse direction. See Figure 12 for a detailed illustration of the latter reactions. Reactions
with 0.7 ≥ P(ΔrG′m < 0) > 0.3 were allowed to be quantitatively reversible in lieu of the large
uncertainty in estimation of standard transformed reaction Gibbs energy.
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