| Algorithm 2 Hierarchical STPS method | |
| 1: | i:=1; assume that an parameter net is given |
| 2: | repeat |
| 3: | Create icosahedral samples at level i for α’s and β’s |
| 4: | if i=1 then |
| 5: | Rotate the parameter net using each (αβ0), apply STPS, and keep the top K candidates that minimize the distortion costs, defined in Section 4.2.3 |
| 6: | else |
| 7: | Keep only local icosahedral samples for α’s & β’s |
| 8: | Rotate the parameter net of each top K candidate using each (αβ0), apply STPS, and select top K candidates |
| 9: | i:=i+1 |
| 10: | until The best distortion costs do not improve |
| 11: | Return the best result in top K list |