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Summary
Ecological studies, in which data are available at the level of the group, rather than at the level of the
individual, are susceptible to a range of biases due to their inability to characterize within-group
variability in exposures and confounders. In order to overcome these biases, we propose a hybrid
design in which ecological data are supplemented with a sample of individual-level case-control data.
We develop the likelihood for this design and illustrate its benefits via simulation, both in bias
reduction when compared to an ecological study, and in efficiency gains relative to a conventional
case-control study. An interesting special case of the proposed design is the situation where ecological
data are supplemented with case-only data. The design is illustrated using a dataset of county-specific
lung cancer mortality rates in the state of Ohio from 1988.
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1. Introduction
In an epidemiological ecological study the association between disease risk and exposure is
investigated at the level of the group, rather than at the level of the individual. Such studies are
appealing as they offer the possibility of high power due to large population sizes and increased
exposure variability across areas (Prentice and Sheppard, 1995). In addition, they are
logistically convenient since they may make use of routinely-available data (Morgenstern,
1998). Scientific interest, however, usually lies at the level of the individual and it is well known
that ecological studies are susceptible to a range of biases with respect to the estimation of
individual-level associations. There is a large epidemiological literature on the topic, in
particular the difficulty in controlling for confounding, see for example Greenland (1992),
Greenland and Robins (1994) and Richardson and Monfort (2000). Ecological studies are also
used extensively in the social sciences, Wakefield (2004) provides a review and critique. The
collective impact of these biases, for which an umbrella term is ecological bias, may give rise
to a phenomenon referred to as the ecological fallacy. This occurs when conclusions regarding
individual-level associations drawn on the basis of a group-level analysis differ from those
drawn on the basis of an individual-level analysis.

The fundamental difficulty in using group-level data to assess individual-level associations is
that of identifiability. Given an individual-level model, the loss of information associated with
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only observing ecological data typically results in an inability to estimate all components of
the model. A well-known example of this difficulty is in the estimation of contextual effects,
where an individual's response is influenced not only by their own characteristics but also by
the characteristics of other individuals in a shared environment. Such effects are of great interest
in the social sciences and social epidemiology. Unfortunately ecological data alone do not
allow the simultaneous estimation of individual and contextual effects (e.g. Wakefield,
2004). In more general settings, non-identifiability arises from the inability of ecological data
alone to characterize within-area variability in exposures and confounders. While ecological
data provide information regarding the marginal distributions of exposures and confounders,
estimation requires knowledge of their joint distribution. Without further information,
additional assumptions are required to induce identifiability. Lasserre et al. (2000), for
example, propose approximating the within-area variability in the case of binary risk factors
by assuming within-group independence of these factors. Given ecological data alone,
however, such assumptions are generally untestable (Greenland, 2001; Wakefield, 2004).

The solution to the ecological inference problem is to collect individual-level information.
Prentice and Sheppard (1995) describe an aggregate data design in which exposure/confounder
data are collected on surveys of individuals within each area in order to estimate the within-
area distribution of exposures and confounders. Individual-level outcome data are not obtained,
however, and consequently one cannot distinguish between diseased and non-diseased
individuals among those surveyed. Subsequent analyses, therefore, are still viewed as being at
the level of the group (Sheppard, 2003). Another approach is to combine ecological data with
cohort data; the utility of this approach was demonstrated by Wakefield (2004) in a social
science context. However, in the situation of a rare event this strategy is not efficient since a
random sample of individuals within an area would produce a small number of cases, indicating
a rationale for the aggregate data approach of Prentice and Sheppard (1995).

In this paper, we propose a hybrid design in which ecological data are supplemented with case-
control data. The case-control data provide a direct link between individual-level responses
and explanatory variables. Analyses are therefore at the level of the individual, which allows
the direct assessment of the risk-exposure-confounder model. In epidemiological settings,
groupings are often based on geographic location and consequently referred to as areas; this
will form the context here. Numerous applications of ecological studies exist, in particular for
chronic diseases. For example, Prentice and Sheppard (1990) discuss the association between
international differences in cancer rates and dietary fat intake, and Maheswaren et al. (1999)
examine the association between ischaemic heart disease mortality and magnesium in areas
containing a maximum of 50,000 people in north-west England. We focus on inference for a
series of 2×2 tables. Although this scenario will be overly simple for most applications, it
provides an extendable framework within which the various issues may be examined and for
which there is a large body of existing literature (see Wakefield, 2004, and references therein).

The structure of this paper is as follows. In Section 2 we develop the likelihood for the hybrid
design with a single binary exposure. There are connections between the proposed design and
two-phase sampling (Breslow and Holubkov, 1997a), and these are explored in Section 3.
Section 4 provides a simulation study and in Section 5 we extend the design to the case in
which the outcomes are stratified by a binary confounder variable, and Section 6 demonstrates
the benefits of the hybrid approach via simulation. Section 7 illustrates the proposed methods
using lung cancer mortality data from the state of Ohio. Section 8 contains a concluding
discussion, including a number of extensions to the basic design. An appendix provides some
technical details.
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2. Single binary exposure
We begin by developing the likelihood for the case in which the association between a disease
outcome Y and a binary exposure X is to be investigated. Suppose the study area is partitioned
into K sub-areas and let Y = 0/1 represent non-disease/disease, and X = 0/1 unexposed/exposed.
For notational convenience, we temporarily omit the area-specific index.

The target of inference is assumed to be the individual-level association between Y and X. Let
px denote the probability of disease, within some well-defined period, for an individual with
exposure status x, x = 0, 1. We assume the logistic model

(1)

so θ0 = exp(β0) is the baseline odds, and θX = exp(βX) the multiplicative change in odds
associated with exposure. For a rare disease θX approximates the relative risk.

Table 1 summarises the data that are available for a generic area, Nyx represents the number of
individuals with disease status y and exposure status x, y, x = 0, 1. In an individual level study
the number of unexposed cases, N10, and exposed cases, N11, would be observed. If the internal
cells N10 and N11 were observed then, assuming independent outcomes within areas, the
likelihood would correspond to the product of:

(2)

for x = 0, 1, and with px as given in (1). We refer to (2) as the individual-level likelihood, LI(θ,
N11) with θ = (θ0, θX). If N01 and N11 were observed then estimation and inference would
proceed in the usual manner where, assuming independent outcomes across areas, the
likelihood consists of the product of contributions from each of the K study areas.

The ecological data consist of the aggregate response N1 = N10 + N11, along with the marginal
exposure data M0, M1. Hence, the internal cells of the ecological 2×2 table are unobserved. In
the design we consider a case-control sample is drawn, consisting of n0 controls randomly
selected from the N0 total non-cases and n1 cases randomly selected from the N1 total cases;
nyx represents the number of individuals in the case-control sample with disease status y and
exposure x (Table 1). We emphasize that nyx are sampled directly from nyx, and so are a subset
of the population data. In a conventional case-control study, n0 and n1 are treated as being fixed
and are conditioned upon. In the present context, however, if the number of cases and controls
are fixed in advance then the number of cases, N1, may exceed the total total number in the
ecological data, n1, which is random with support on the range [0, N]. Consequently n0 and
n1 must be treated as random, conditional upon the ecological data, N1, and the total case-
control sample size, n. Specific schemes for determining n0 and n1 are described in Section
2.2. Figure 1 provides a graphical model of the hybrid design. Conditional independencies are
displayed using single line arrows, double line arrows indicate deterministic relationships, and
circular and square boxes represent unobserved and observed quantities, respectively; N10 and
N11 are unobserved random variables, and N00 and N01 are deterministic quantities that depend
on these variables, along with the ecological exposure totals, which are observed.

To simplify notation let Mx = (M0, M1) and Ny = (N0, N1) for the ecological data, Nyx = (N10,
N11) for the internal cells, ny = (n0, n1) for case-control sample sizes, and nyx = (n01, n11) for
the case-control outcome data. The probability distribution of the observed data may be
decomposed into three components:
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(3)

corresponding to the distributions of the ecological data, the case-control sample sizes, and the
case-control outcomes. We now derive the forms of each of these components.

2.1. Ecological data
Given the marginal exposure counts Mx, the induced likelihood based on the ecological data,
Ny, is obtained by averaging over the distribution of the unobserved internal cells of the
ecological 2×2 table. Conditional on the margins, only a single entry needs to be specified to
complete the internal structure. If exposure is less common than non-exposure in a particular
area then N11 should be chosen since it will have the smallest range over which to average.
Under (1) and (2) the ecological data follow a convolution of two binomial distributions:

(4)

for N1 = 0, …, N, and where R1 = {max(0,N1 − M0), …, min(N1,M1)}. We define the ecological
likelihoodLE(θ) as

where LI(θ,N11) is the individual likelihood corresponding to pr(N10|M0)×pr(N11|M1) with each
component given by (2), and wE(N11) = 1 for all N11 ∈ R1.

A number of authors including Plackett (1977), McCullagh and Nelder (1989, Section 9.3.3)
and Wakefield (2004) have discussed (4). For estimation there is a clear lack of identifiability
if only a single area is considered, since we have a single response, N1, and two unknown
parameters (θ0, θX). The likelihood for (θ0, θX) has a ridge with a saddle point at (N1/N0, 1)
and attains its maximum on the boundary of the parameter space, either at θX = 0 or θX = ∞.
As N → ∞ the ridge becomes progressively flatter so that in the limit the score equations are
satisfied by all values of (θ0, θX) on the ridge, illustrating the lack of identifiability. This ridge
is equivalent to the tomography line, defined in terms of the exposure-specific probabilities,
which is considered by King (1997, Chapter 5). Figure 2(a) shows the ecological likelihood
for a particular 2×2 table with (N1,M0,M1) = (125, 20000, 20000). The corresponding profile
log-likelihood for βX = logθX, with minimum at βX = 0, is shown in Figure 2(b). Wakefield
(2004) describes a variety of approximations to the ecological likelihood in non-rare settings.
In the case of a rare disease each of the binomial distributions (2) may be approximated by
Poisson distributions. In this case it is natural to replace the logistic model (1) with the log-
linear form log px = β0+βXx, to obtain the aggregate distribution N1|Mx ~ Poisson(M0θ0 +
M1θ0θX), resulting in a likelihood that is flat along the ridge.

2.2. Case-control sample sizes
Care must be taken when the case-control sample sizes are chosen since we cannot sample
more cases than are available in the ecological data; a similar issue arises in two-phase sampling
(e.g. Breslow and Holubkov, 1997a, p. 453). Hence the control and case sample sizes, n0 and
n1 respectively, are random variables. In the econometrics literature random case-control
sample sizes are common (e.g., Manski and Lerman, 1977; Scott and Wild, 1997). One
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possibility is to fix n, and sample cases and controls with probabilities π and 1 − π respectively;
if the cases are exhausted then the remaining individuals are selected as controls. An alternative

is to fix a nominal number of cases , in addition to n, and then take  and setting
n0 = n−n1. These schemes do not impact point estimation since the distribution of n0 and n1 is
specified so that it is independent of both (θ0, θX) and the unobserved (n10, N11). Hence n0,
n1 are ancillary and there is no contribution to the overall likelihood from this component. The
decomposition given by (3) may therefore be simplified to

(5)

Calculation of the expected information matrix, which is of particular interest for study design,
does depend on the scheme adopted, however.

2.3. Case-control outcomes
Crucial to the development of the likelihood for the case-control data is the recognition that
conditional upon the internal cells of the ecological 2×2 table, the number of exposed controls,
n01, and the number of exposed cases, n11 follow independent hypergeometric distributions.
For example, suppose we have a population of cases N1 of which N11 are exposed, and we
draw a random sample of size n1 from this population; in this case the number exposed, n11,
follows a hypergeometric distribution. Upon conditioning on the unobserved nyx, the case-
control outcomes do not depend on the parameters of the model, as is clear in Figure 1.
Unconditionally, the likelihood is found by averaging over the unobserved internal cells of the
ecological data; given the margins we only need to consider a single cell and we again choose
as auxiliary variable N11. The average is with respect to the distribution of N11|Ny, Mx, which
is an extended hypergeometric random variable (Johnson and Kotz, 1969, Chapter 6). Note
that pr(N11|Ny, ny, Mx) = pr(N11|Ny, Mx), so that N11 is conditionally independent of ny given
Ny. This conditional independence can be determined from Figure 1, since every path between,
N11 and n1, given N1, is closed (Pearl, 2000). Said another way, once we know Ny there is no
further information concerning N11, contained in ny. Hence the joint distribution of the number
of exposed cases and controls, n11 and n01, is given by the product of two hypergeometric
distributions averaged over an extended hypergeometric random variable:

(6)

where the support of N11 is given by
. The latter range reflects

the ecological constraints in R1, together with constraints from the case-control contribution,
specifically, N10 ≥ n1 − n11 and N11 ≥ n11. To emphasize the finite-sample nature of this
contribution, due to the conditioning on the ecological data, we refer to this likelihood as the
finite sample case-control likelihood. Averaging over the unobserved N11 hence provides a
likelihood, (6), which depends only on θX and provides no information regarding θ0. Similarly,
in a traditional case-control study the baseline odds parameters cannot be estimated from the
case-control data alone.
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In a conventional case-control study Mx is not conditioned upon, and inference proceeds via
logistic regression with implicit sampling from a hypothetical super-population in which N,
N1 → ∞ in such a way that the proportions of exposed controls, N01/N0, and exposed cases,
N11/N1, tend to non-zero constants. Under these conditions each of the exposure-specific
hypergeometric distributions tend to a binomial distribution. Prentice and Pyke (1979) showed
that, in the semi-parametric setting of a parametric logistic regression model with an
unspecified distribution for the covariates, asymptotic inference for non-intercept parameters
is identical for prospective or retrospective data collection. In our setting we are adding extra
finite sample information via the ecological margins, and hence we increase effciency over the
unrestricted situation considered by Prentice and Pyke (1979). Chatterjee and Carroll (2006)
illustrate that adding additional constraints can provide improved inference over an
unconstrained analysis; in their case the additional constraint arose from assuming
independence of genetic and environmental factors in the population.

In Section 4 we illustrate that the use of the finite sample case-control likelihood, (6), can
provide significant effciency gains over conventional logistic regression analyses, even without
the direct contribution of the ecological data contained in (3). The use of the finite sample case-
control likelihood does not seem to have been previously considered, perhaps because within
the survey sampling literature design-based inference, which avoids parametric assumptions
such as a logistic risk model, is typically carried out. For discussion of this aspect see Chapters
8 and 12 of the edited volume of Chambers and Skinner (2003).

2.4. Likelihood inference
The hybrid likelihood, which we denote LH(θ), is the product of (4) and (6), and is a function
of θ = (θ0, θX). Following simplification to give a single summation we have

(7)

where

so that again we have a representation as a weighted sum of individual-level binomial
likelihoods.

So far we have considered a single area only; in practice we will have contributions of the form
(7) from K areas. In the simplest case the K areas will share the baseline risk and association
parameters. We consider the asymptotic distribution of the maximum likelihood (ML)
estimator  as K → ∞; with an obvious notation, Nyk, nyxk, k = 1, …, K, are independently
distributed across areas, and consistency of the hybrid ML estimator follows from its
representation as an M-estimator and from Wald's conditions for consistency of such estimators
(van der Vaart, 1998, Theorem, 5.14) and asymptotic normality from van der Vaart (1999,
Theorem 5.39). Hence asymptotic inference for the ML estimator  may be based upon
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(8)

where IH(θ) is the observed information. The asymptotics require Σk M0k and Σk M1k, and at
least one of Σk n0k, Σk n1k → ∞, with the area-specific components going to infinity if there are
area-specific parameters in the risk model. The expected information, which is useful for
comparing different designs, is computationally daunting since one must take the expectation
with respect to the joint distribution of Ny, ny, nyx, which is given by (3).

We now consider the form of the observed information. Details are presented in terms of θ,
since the forms are simpler to represent; in practice asymptotic interval estimates will be
evaluated on the log odds β scale and then transformed to the θ scale. Let SI(θ), SE(θ) and
SH(θ) denote the score statistics for the individual, ecological and hybrid likelihoods,
respectively, where

Similarly II(θ), IE(θ) and IH(θ) are the corresponding observed information matrices with

Convenient forms for the score and information of both the ecological and hybrid designs are
obtained by exploiting the missing data representation of the likelihood, e.g. Little and Rubin
(2002, Chapter 8) . The score vector and observed information for the ecological data are given
by

(9)

(10)

where the expectations are with respect to the distribution of Nyx|Ny, Mx, which is an extended
hypergeometric distribution (Section 2.3). These forms were also presented in the context of
survey sampling by Breckling et al. (1994), and in an ecological context by Steel et al.
(2004). The expression for IE(θ), clarifies the loss of information (given by the second term on
the right-hand side of (10)) due to the aggregation of individual level data. The score and
information for the hybrid likelihood are give by
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where the expectations are with respect to the distribution

(11)

which we call the supplemented extended hypergeometric distribution. In (11) the distribution
on the right of the numerator is an extended hypergeometric distribution, and is supplemented
via the addition of the case-control data, which is the distribution on the left of the numerator.

2.5. Case-only data
In some situations it may be straightforward to determine the exposure status of cases, for
example, from a disease registry, while for the controls no such information is directly
available. A hybrid design is available for this situation with a likelihood of the same form as
(7) but with weights

for N11 ∈ {max(n11, N1 − M0), …, min(N1 − n1 + n11, M1)}. Inference follows in a similar
fashion to the full hybrid design, except that the expectations of the score and information
matrices are with respect to the above weights. Supplementing ecological data with case-only
data, therefore, provides an interesting alternative design that is practically attractive.
Identifiability also results from the addition of control-only data but this scenario is less
practical and will generally require more samples than a case-only sample.

2.6. Illustrative example
We consider a single 2×2 table in detail, before reporting a more comprehensive simulation
study in Section 4. Returning to the example referred to in Figure 2, we supplement the
ecological data (N1, M0, M1) = (125, 20000, 20000) with the case-control data (n0, n1, n01,
n11) = (50, 50, 26, 35). These data result in a range for the unobserved number of exposed
cases, N11, of R1 = {0, …, 125}, based on the ecological data alone, and  for
the combined data, illustrating how the support is constrained by the addition of the case-control
data. The likelihood (7) was maximised using a Newton-Raphson algorithm with analytical
derivatives. For a single table, the ecological likelihood does not provide an identifiable
estimator since we have two parameters and a single observation, as illustrated in Figures 2(a)
and 2(b).

Analyses of the case-control data only using logistic regression yields an estimate (asymptotic
95% confidence interval) for θX of 2.15 (0.95,4.89); the likelihood surface is shown in Figure
2(c). Use of the finite sample case-control likelihood, (6), gave an estimate of 2.34 (1.28,4.29)
illustrating the reduction in the width of the interval due to the marginal constraints available
from the ecological data. In this example identical values resulted from the hybrid design which
adds the direct contribution of the ecological outcome data via the likelihood (4). In general,
the hybrid analysis also exploits between-area differences in the exposure margin, but for a
single area there is no such gain. The likelihood surface in this case is plotted in Figure 2(d),
comparison with Figure 2(c) clearly shows the concentration of the likelihood; this is confirmed
by the profile likelihood for βX = log θX shown in Figure 2(e). In this example the case only
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estimate and asymptotic standard error were unchanged from the values produced by the case
and control data combined; weights wH(N11) are virtually identical under the two schemes.
Figure 2(f) shows the likelihood surface in the case-only situation.

3. Connections with two-phase sampling
In two-phase sampling, a large phase I sample is cross-classified by outcome and discrete
covariates. At phase II data on additional variables are sampled from within each of the cross-
classified cells. Such a design can provide large efficiency gains over a study which stratifies
solely on the basis of outcome status (as in a case-control study). There are clear similarities
between the hybrid design and two-phase sampling, with the ecological and case-control data
being analogous to phase I and phase II data, respectively. There is a large literature on two-
phase studies, see for example White (1982), Flanders and Greenland (1991), Breslow and
Holubkov (1997a), Scott and Wild (1997) and Breslow and Chatterjee (1999). Lawless et al.
(1999) consider more general outcome-dependent sampling schemes. In an ecological context
a plausible two-phase scheme would consist of phase I data that are a 2×K cross-classification
of disease status by area, with phase II data sampled within each of the 2×K strata. The crucial
distinction between this and the hybrid design is that marginal exposure data are not used in
the two-phase scheme. For exposure to be incorporated into the phase I stratification, we would
require cross-classification of disease counts by exposure status which corresponds to knowing
the internal cells of the K 2×2 tables and is therefore not consistent with an ecological study.

For inference, various approaches have been suggested, including pseudo-, weighted, and full
ML estimation (Breslow and Holubkov, 1997b). In comparisons with the hybrid design we
implement full ML estimation, for details see Scott and Wild (1997) and Breslow and Holubkov
(1997a). Briefly, the two-phase likelihood is complex, with the parameter space constrained
because the phase II data are a subset of the phase I data; stratum-dependent offsets are specified
within an iterative algorithm, in order to acknowledge the phase II outcome-dependent
sampling design. Breslow and Chatterjee (1999) provide details of available code for an R/
Splus implementation. In one sense, two-phase regression lies between logistic regression and
the hybrid design. In contrast to logistic regression, the group-level disease totals across areas
(the phase I stratification) are used in a two-phase analysis. However, a two-phase approach
does not make use of the information in the exposure margins, as does the hybrid design.

The development of two-phase methods was motivated by potential efficiency gains associated
with judicious stratification of an initial sample, from which sub-samples may then be drawn.
In contrast, the present development is motivated by the fundamental difficulty of non-
identifiability of individual-level models when ecological data alone is collected. Although the
hybrid design was proposed to alleviate ecological bias, substantial efficiency gains may also
be achieved through its use of the ecological data.

4. Simulation study for a single binary exposure
The exploitation of between-area exposure variation is a primary motivation for carrying out
an ecological study. We report a simulation study in which there are K = 20 areas with 40,000
individuals in each area (all subsequent simulations use these values). For simplicity we assume
constant θ0 and θX across areas. In this setting the logistic regression analysis must include
K area-specific intercepts, to acknowledge the design. In addition we report inference from the
hybrid and ecological designs (in this situation the ecological data provide an identifiable
likelihood since there are 20 observations and two parameters), and the finite sample case-
control and two-phase approaches. In the simulations reported below, as we assume a constant
baseline risk across strata (area) we note that full two-phase ML estimation is not equivalent
to pseudo-ML; the two are equivalent if the model contains stratum-specific intercepts.
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We report results based on 1,000 simulated datasets and across all areas we assume a common
individual-level model, with θ0 = 0.002 and θX = 2. We examine four different scenarios, with
results in Table 2. In the baseline set of simulations the proportion exposed increases
deterministically between 0.2 and 0.8 across areas. Conditional on the corresponding exposure
totals, and given the disease model, the expected number of cases ranged between 64 and 144.
Within each area, the total number of cases and controls sampled is n = 20, with n0 = n1 = 10.
In the first set of simulations the relatively large exposure range results in an efficiency of 59%
for the ecological analysis, as compared to the hybrid design. For the latter, the standard error
of  is 0.21. The finite-sample case-control analysis, which is highly efficient in the case of a
single area, is far less efficient when compared to the hybrid design since it does not utilise the
exposure variability across areas. There is finite sample bias in the logistic regression estimator
and low efficiency, while for the two-phase design there is some improvement in both bias and
efficiency.

In the second scenario we reduce the range of the proportion exposed across areas to (0.4,0.6)
and, as expected, the ecological analysis performs poorly. There is an increase in the finite
sample bias for all of the estimators, but the relative efficiency is increased for those methods
that use individual-level data. In this case, the standard error for the hybrid estimator of 
increases to 0.29 reflecting the loss of information. In the third scenario we return to the original
variability in the proportion exposed in each area, but increase the number of case-control
samples to n0 = n1 = 25. As expected this results in reduced bias and increased efficiency for
the logistic, two-phase, and finite sample case-control methods, though the finite sample case-
control method still only reaches 57% efficiency when compared to the hybrid analysis. In the
final scenario the number of case-control samples is decreased to n0 = n1 = 5, so that there are
only 200 individual-level samples in total in the study. While the analyses that use only the
individual level data have low efficiencies and exhibit finite sample bias, the hybrid method
performs well. In all simulations two-phase regression is more efficient than logistic regression,
but less efficient than the finite sample case-control analysis, which conditions on the
ecological data in order to reduce the number of possible enumerations of the observed case-
control outcome data. In simulations not reported, doubling the number of areas K resulted in
a halving of the variance of  for all methods. Additional results in Haneuse (2004) show that
for the sample sizes considered here the coverage probabilities of confidence intervals based
on (8) achieve their nominal levels.

5. Stratified outcomes
In almost all epidemiological studies control for confounding is required, and the inability to
control within-area confounding is a major drawback of ecological studies. In this section we
extend the basic scenario of Section 2 by considering control for a single binary confounder
Z. Again, we initially present the development in terms of a single area. At the individual level
assume the logistic model

(12)

where pxz is the probability of disease for an individual with exposure x and confounder z, x =
0, 1, z = 0, 1. Hence θX = exp(βX) is the multiplicative change in odds associated with exposure,
while controlling for Z, with an analogous interpretation for θZ = exp(βZ). Model (12) can
easily be extended to include an interaction term, but for simplicity of presentation we present
the main effects only model. Let Mxz denote the number of individuals with exposure x, and
confounder z, , in a generic area, with Mxz = (M00, M10, M01, M11) and Nyxz be the number of
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individuals with disease status y in exposure/confounder stratum x, z, x = 0, 1, z = 0, 1. In
different settings, various forms of ecological and/or case-control data may be available. Here
we consider the semi-ecological design (see for example, Sheppard, 2003) in which individual-
level data on outcomes and confounders are obtained, but information on the exposure of
interest is only available in the form of an ecological margin; Table 3 summarises notation.
The outcomes stratified by the confounder variable, that is N1+z = (N1+0, N1+1) are observed,
in addition to the marginal counts of X = 1 and Z = 1, denoted Mx+ and M+z, respectively.
Hence, the joint classification of X and Z is unobserved. In practice this scenario may arise in
the context of chronic diseases where incidence is typically recorded by the potential
confounders gender, age and race (see Section 7 for a specific example). It is far less likely
that incidence will be available by exposure, however. Lasserre et al. (2000) considered a study
with two binary risk factors; the response was lung cancer mortality in 82 French departments.
The exposure corresponded to the proportion of men employed in the metal industry, and the
proportion resident in towns larger than 2000 inhabitants was used as a proxy for confounding
variables related to urbanization. In this example, town of residence would be available from
the death certificate and so the stratified ecological data just described would be available.

We assume that within each area cases and controls are sampled within each level of Z.
Consequently, there are n1z cases sampled in stratum z, of which n11z are exposed, with n0z
and n01z being the corresponding numbers amongst the controls, z = 0, 1. We assume that the
stratified total number of cases and controls, n+z, z = 0, 1, are fixed. To simplify notation let
nyz = (n00, n10, n01, n11) and nyxz = (n010, n110, n011, n111). The stratum-specific, case-control
sample sizes, nyz, need to be viewed as random variables though they are again ancillary and
can be conditioned upon. We decompose the joint distribution into the distributions of the
ecological data, and the case-control data conditional upon the ecological data:

(13)

5.1. Ecological Data
To obtain the likelihood for the ecological data note that if M11 were observed, in addition to
Mx+, M+z, then each of N1+z|M0z, M1z, z = 0, 1 is the convolution of a pair of binomial
distributions as in (4). Unconditionally we average over the unobserved M11 to give

(14)

where S11 = {max(0,M+1 − M0+), …, min(M+1, M1+)}, and pr(M11|M1+, M+1, N). The latter is
an extended hypergeometric random variable with odds ratio parameter ϕXZ = q11 × q00/q10 ×
q01, where qxz = pr(X = x,Z = z) and ϕXZ is the odds ratio describing the asociation between
the exposure and confounder variables. Hence we have three auxiliary variables, N110, N111
and M11, in the ecological likelihood. As a likelihood (14) is a function of ϕXZ, as well as θ =
(θ0, θX, θZ).

5.2. Hybrid likelihood
Following a similar argument to that of Section 2 the joint distribution of the ecological and
case-control data is
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(15)

where each of the terms in curly brackets is in the form of the hybrid likelihood in the single
exposure case (as in (7)), and . Asymptotic
inference is again based upon the observed information, details of the calculation of the score
vector and observed information matrix are outlined in the Appendix.

We consider three alternative individual-level designs. First, we implement a two-phase study
design consisting of phase I data composed of a 2 × 2 × K stratification of disease status by
confounder by area. Phase II data then consist of case-control samples within phase I strata.
Second, a conventional logistic regression analysis uses the case-control data only and includes
2K area/confounder specific offsets in the model to acknowledge the matching (since sampling
is carried out on the basis of the confounder margin, θZ cannot be estimated without additional
information). Finally, we examine the finite sample case-control approach that conditions on
the ecological data. The probability distribution in this situation is, from (13), given by

with denominator given by (14) and numerator by (15), and depends upon ϕXZ, as well as upon
θ.

6. Simulation study for stratified outcomes
6.1. Constant baseline odds

In this section we assume the parameters of the disease model to be constant across all areas,
as in (12) while in Section 6.2 we allow between-area heterogeneity in the baseline odds.

We take (θ0, θX, θZ, ϕXZ) = (0.002, 2, 2, 2) and assume that the marginal exposure probability
pr(X = 1) = q10 + q11 ranges uniformly between [0.1, 0.4] and that in each area the probability
of X = Z = 0 is q00 = 0.25; this results in the marginal confounder prevalence ranging between
0.64 and 0.73 across areas. We take 5 cases and 5 controls in each confounder stratum, i.e.
nyz = (5, 5, 5, 5).

A Newton-Raphson algorithm was used to find the ML estimates for the finite sample case-
control and hybrid analyses. Variances were calculated using the observed information, and
asymptotic confidence intervals were again found to display their nominal coverage levels.
The summation over M11 is computationally expensive since the support is large. To reduce
the computational burden a strategy was adopted in which the mode of M11|Mx+, M+z was
found, summing over the values of non-negligible mass to either side of the mode, the
remaining terms being ignored, for further details see Wakefield (2004).
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The results are presented in Table 4, and are based on 1,000 simulations. Focusing upon the
results for the parameter of interest, θX, we see that the hybrid design that uses both case and
control information is the most efficient, closely followed by the case-only hybrid design. Two-
phase regression has negligible bias but low efficiency because the marginal exposure
information is not exploited. The variance of  in the hybrid design is 21% lower than in the
finite sample case-control design, which profits from the use of the ecological data to constrain
the counts, via the hypergeometric contributions. For all methods there is virtually no bias in
the estimation of θZ, because the case-control samples are stratified by Z.

In these simulations, with a semi-ecological design and two binary covariates, we see positive
bias. Jackson et al. (2006) examine the benefits of adding individual-level data to ecological
data, and consider a scenario in which there are two covariates, one binary and one continuous.
In their simulations there is negative correlation between the between-area means and the
variances of the continuous variables which leads to negative bias, as can be deduced from the
formulas presented in Wakefield (2003).

6.2. Fixed effects baseline odds
In this section we consider the extension to the case in which the baseline odds vary by area.
Such a model may be used to control for between-area confounding, though the ideal is to
collect area-level variables to alleviate the need for such fixed effects.

For the development we need to explicitly introduce area-specific notation and so we let pxzk
represent the probability of disease for an individual with exposure x and confounder z in area
k, x = 0, 1, z = 0, 1, k = 1, ..., K, . We replace model (12) with

(16)

where we treat θ0k = exp(β0k) as fixed effects. Assuming a constant ϕXZ across all areas,
estimation of the K + 3 parameters follows in an analogous fashion to that described in Sections
5.1 and 5.2.

For the simulation study, we again have K = 20 areas with 40,000 individuals per area and 5
cases and 5 controls in each confounder stratum, to give 20 individual samples per area. The
parameter values are taken as (θX, θZ, ϕXZ) = (2, 2, 2), with the proportion exposed varying
uniformly across areas between 0.1 and 0.4. The baseline odds, θ0k, k = 1, …, 20, were generated
as uniform random variables over the range [0.001, 0.004], with the same set retained for all
simulations.

The results over 1,000 simulations are reported in Table 5. We first note that two-phase
regression has reduced bias when compared to the logistic regression model. The case-only
hybrid design is again competitive, with small bias and high efficiency for the parameter of
interest, though reduced efficiency for estimation of ϕXZ. With respect to estimation of θX, the
finite sample case-control method gave virtually identical inference to the hybrid design in this
setting. This result is as expected since, in contrast to the common baseline odds model, we
would expect the hybrid design to be less powerful since the benefits of between-area exposure
variability are lost when fixed effect baselines are present in the model. The incorporation of
the finite sample information can still be exploited, however. Both the hybrid and the finite
sample case-control method are more than twice as efficient as the logistic and two-phase
approaches.
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7. Ohio lung cancer data
We illustrate the hybrid design using cancer mortality data from the state of Ohio, taken from
the National Center for Health Statistics (NCHS) Compressed Mortality File. For each of 88
counties population estimates and lung cancer death counts are available by gender, race (white
vs non-white), and year of death (1968 to 1988 inclusively). For simplicity, we focus on
population estimates and death counts for 1988. Further, although age information is available
as 11 five or ten-year age bands, we consider individuals aged between 55 to 84 years collapsed
into a single age category. Over the 88 counties the number of cases range between 4 and 922
with a median of 26. An attractive feature of these data are that counts are stratified by outcome
status, gender and race jointly, and so we have individual-level information; we may therefore
construct a hypothetical ecological study by considering the corresponding area-specific
marginal totals only. Having individual-level information further provides a basis for the direct
assessment of competing methods that do not use all information since an analysis based on
complete individual-level data may be viewed as a gold standard. Hence, the biases that we
report are relative to the complete data analysis.

We report results from three analyses, in each case taking the association of interest to be that
between lung cancer and race. In the first analysis we examine the unadjusted association,
while in the second and third analyses we stratify by gender and consider models with a single
intercept and with area-varying intercepts, respectively. For the case of area-varying intercepts
we do not consider an ecological analysis, since the model is unidentifiable. In the first analysis
we sample 10 cases and 10 controls, apart from a small number of areas in which there are less
than 10 cases; in these areas we sampled all cases, with the remainder individual samples being
taken as controls. In the two stratified designs we take 100 case-control samples; 25 male cases,
25 male controls, 25 female cases and 25 female controls. If the cases were exhausted in a
particular stratum, then additional controls were sampled. For simplicity no interaction between
race and gender is considered.

In Table 6 we see that in the race only analyses the ecological analysis is positively biased,
relative to the individual level (complete data) analysis. Logistic regression and two-phase
regression have large standard errors, with point estimates that are also positively biased. The
finite sample case-control analysis produces a low estimate while the two hybrid analyses
provide accurate inference, although the estimates are slightly larger than that in the complete
data case since we sampled equal numbers of cases and controls (10 of each) from each area.
More information could be gained by varying the numbers sampled in each area; design issues
will be the subject of a future paper.

In the fixed baseline analyses that were stratified by gender the ecological estimate is again
positively biased but the hybrid analyses are accurate. In the analyses stratified by area the
patterns are similar though now the results for the finite sample case-control and hybrid full
analyses are virtually identical, as in the simulations of Section 6.2.

8. Discussion
The fundamental difficulty of using ecological data to assess individual-level associations is
that of identifiability. Standard ecological approaches are susceptible to a range of biases, the
collective impacts of which are referred to as ecological bias. The only solution to reducing
ecological bias is to supplement ecological data with individual level information. In this paper
we have proposed a hybrid design in which ecological and case-control data are combined,
and have provided details of likelihood-based inference. The case-control data provide
identifiability and control for confounding. The ecological data contribute between-area
information on exposure, and by conditioning on the ecological margin increased efficiency
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is gained. Strömberg and Björk (2004) have recently described the use of ecological exposure
information in case-control studies, but without a formal statistical model.

In the simulations we have demonstrated the gains in efficiency of the hybrid design, and also
that the finite sample case-control method can provide large efficiency gains over a
conventional logistic regression approach. The availability of individual-level data allow both
model checking and the fitting of more sophisticated models. In particular, estimation of
contextual effects is important in a number of areas including social epidemiology. For
example, the effects on health of area-level average income, as well as individual-level income,
are the subject of much debate, e.g. Judge et al. (1998).

Throughout, computation was performed using Newton-Raphson and EM algorithms, but no
systematic comparison of the merits of these approaches has been carried out. Asymptotic
inference has also been relied upon, and a clearer understanding of the contributions from
within-area (case-control, two-phase) information and between-area (ecological) information
would be desirable. This will also lead naturally to formal design considerations; in particular
the number of ecological areas to select, the choice of areas within which to sample individual
level data, and the numbers of individuals within each of these areas to take.

For small samples in which asymptotic inference is inappropriate it is natural to turn to a
Bayesian approach, with computation via Markov chain Monte Carlo (MCMC) and the
introduction of auxiliary variables. For studies that are based on small areas in particular,
allowing for spatial dependence in the baseline odds is also desirable. For example Clayton et
al. (1993) use a model with spatially-dependent residuals in an ecological correlation study
context. Implementing such a model may be carried out relatively easily using MCMC. A
variety of ecological disease, exposure and confounder data may be available, and for
increasing numbers of exposures and confounders, and categorical variables with more than
two levels, computation will be prohibitive; the methods described in Dobra et al. (2003),
building on work of Diaconis and Sturmfels (1998), may be useful in this respect.

We envisage that the hybrid design will be particularly useful for the investigation of
environmental pollutants. As with all observational studies, there are a variety of important
practical issues which require careful consideration. When case-control data are to be combined
with ecological data, identifying an appropriate sampling frame is of vital importance. For the
traditional case-control study two common choices are a population-based and a hospital-based
sampling frame. In the context of the hybrid design a natural choice would be a hospital-based
sampling frame. For example, suppose the case data are obtained from a cancer registry as all
cases diagnosed within a well-defined geographical area (the study region) over a specific time
period (the study period). For confidentiality reasons the data are available as the number of
cases within each of a set of sub-regions that partition the study region. The population (case
and non-case data) are obtained from the census as all individuals who were resident in the
study region over the study period (and were eligible), and are also available by sub-region.
Each of the cases and population will typically be broken down by demographic information
such as age, gender and race. Hospital-based population sampling frames are less appealing
since a hospital defined population will not exhaust a geographical area, since other hospitals
may take patients from that area.

In practice, as with all epidemiological studies, exposure misclassification is an important
issue. For the design that we have proposed the ecological exposure margin is likely to be
subject to exposure misclassification. For example, in an environmental context, a pollution
concentration surface may be modeled and a cut-off may determine a proportion in each area
who are exposed. This proportion is likely to be error-prone. We investigate the effect of this
exposure misclassification in the ecological data, via a simulation study which, for simplicity,
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considers just a single binary exposure. We assume there are 10 cases and 10 controls within
each area, with the same parameter values as in the simulations summarized in Table 6.
Exposure data were simulated for each individual, and were then corrupted via probabilities
pr(W = 1|X = 0) = q0, pr(W = 0|X = 1) = q1, where X is the true exposure of a generic individual,
and W the error-prone measure. Summing up the number of error-prone “unexposed” and
“exposed” individuals provides the ecological exposure margin. In the simulation study we
take q0 = q1 = q with q being one of 0, 0.05, 0.10, 0.20. Table 7 reports the mean-squared error
of a number of methods, evaluated over 10,000 simulations. As expected, logistic regression,
two phase and finite sample case-control are una ected by ecological exposure
misclassification. For the ecological analysis, the effect of exposure misclassification is drastic,
while for the hybrid designs, the individual-level data mitigates the exposure misclassification
for levels below q = 0.20, while for q = 0.20, the finite sample case-control analysis is clearly
superior. We are currently working on extending the basic method to correct for this form of
measurement error, via the introduction of exposure misclassification probabilities. Finally we
note that, as with all outcome-dependent sampling schemes, practical issues of selection bias
and compatibility of populations should not be forgotten when implementing the hybrid design
that we have proposed.
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Appendix: Score and information calculations for stratified outcomes
We briefly outline detailed arguments presented in Haneuse (2004). Suppose first that N11 were
observed. Then the score for the ecological data is given by

where  is the ecological score corresponding to the likelihood contribution in stratum z,
z = 0, 1. Let S(ϕXZ) represent the score for ϕXZ based on the extended hypergeometric likelihood
corresponding to N11|M1+, M+1, N. Unconditionally we have

where the expectations are with respect to the distribution of

where each term on the right is available. For the hybrid design we similarly have

where the expectations are now with respect to
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If N11 were observed then the observed information associated with the ecological likelihood
is given by

where  corresponds to the ecological information given stratum z, z = 0, 1. Unconditionally
we have

where the expectation is with respect to N11|N1+0, N1+1, N, M1+, M+1, and I(ϕXZ) is the observed
information associated with the extended hypergeometric likelihood corresponding to N11|N,
M1+, M+1. Similar derivations follow for IH(θ), except now the expectations are with respect
to N11|N1+0, N1+1, N, M1+, M+1, n1+z.
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Fig. 1.
Graphical model representation of the hybrid design; conditional independencies are displayed
using single line arrows, double line arrows indicate deterministic relationships, and circular
and square boxes represent unobserved and observed quantities, respectively.
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Fig. 2.
Likelihood plots for a single area with (N1, M0, M1) = (125, 20000, 20000) and (n0, n1, n01,
n11) = (50, 50, 26, 35). In (a), (c), (d) and (f) the likelihood surfaces are for θ0, the baseline
odds, and θX, the odds ratio; in (b) and (e) the profile log-likelihoods are for βX = log θX.
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Table 6

Relative risk estimates for blacks versus whites for the Ohio lung cancer data.

Race only Fixed
baseline odds

Stratified by Gender
Fixed baseline odds

Stratified by Gender
Area-specific baseline

odds

Ecological likelihood 1.50 (1.16, 1.93) 1.63 (1.28, 2.06) -

Logistic regression 1.62 (0.87, 3.01) 1.15 (0.89, 1.48) 1.15 (0.89, 1.48)

Two-phase regression 1.60 (0.89, 2.85) 1.23 (0.97, 1.57) 1.16 (0.90, 1.49)

Finite sample case-control 1.08 (0.74, 1.58) 1.21 (1.01, 1.46) 1.21 (1.01, 1.46)

Hybrid: full analysis 1.34 (1.07, 1.67) 1.33 (1.14, 1.55) 1.20 (1.00, 1.45)

Hybrid: cases-only 1.34 (1.07, 1.67) 1.30 (1.12, 1.52) 1.16 (0.96, 1.39)

Complete data 1.27 (1.17, 1.37) 1.28 (1.18, 1.38) 1.25 (1.15, 1.36)
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Table 7

Mean squared error for various designs, and under different levels of ecological exposure misclassification.

Exposure misclassification

q = 0.00 q = 0.05 q = 0.10 q = 0.20

Ecological 0.07 0.15 0.42 4.30

Logistic Regression 0.29 0.30 0.27 0.29

Two-Phase 0.16 0.17 0.16 0.16

FSCC 0.11 0.10 0.09 0.09

Hybrid, case only 0.04 0.06 0.09 0.17

Hybrid 0.04 0.06 0.09 0.17
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