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Introduction

Most of the focus in choroidal and retinal angiogenesis
centers on the regulation of endothelial function by soluble
factors. Less well-understood, but nevertheless significant,
is the regulation of endothelial cell function by its insoluble
microenvironment, the extracellular matrix (ECM). Endo-
thelial interaction with the ECM occurs primarily through
cell surface receptors belonging to the integrin family that
relay information from the ECM to the intracellular
signaling machinery.

The integrin family is composed of 24 heterodimeric
type I transmembrane cell surface receptors containing an
alpha and a beta subunit. To date, there are known to be 18
alpha and eight beta subunits [1]. Alpha subunits are
designated 1–11, iib, v, D, E, L, M, and X. Beta subunits
have designations of 1–8. The heterodimeric receptor is

designated through identification of the corresponding
alpha and beta subunits, e.g., αiibβ3 designates the platelet
integrin. The ECM specificity of individual integrin family
members covers a broad spectrum of selectivity as
exemplified by the restricted specificity of the α5β1
integrin for only fibronectin and the promiscuous binding
of the αvβ3 to a diverse set of ECM [2]. Even with this
disparity in matrix selectivity, integrin family members can
be categorized based on the subset of matrices recognized
and cell type expression patterns. The four categories
consist of integrins that preferentially bind collagen,
laminin, or ECM containing an arg-gly-asp (RGD) tripep-
tide motif and integrins which are primarily leukocyte-
specific receptors [1, 2]. The ability of a number of
integrins to recognize the same primary matrix implies that
there is potential overlap among family members. While
there clearly can be some degree of functional compensa-
tion, as seen in the ability of the αvβ3 integrin to
supplement fibronectin matrix assembly in the absence of
α5β1 integrin [3], this functional compensation is incom-
plete, implying that each family member is likely to have a
crucial functional role within a given biological process.

The functional activity of integrin family members can
be typically viewed as having a permissive role in
providing adhesive function; however, in some cases, this
role may be regulatory rather than permissive in nature, as
in the case of the αvβ3 integrin, which is believed to
modulate neovascular response [4]. Furthermore, the
functional activity may also depend on the presence of
other integrin family members, which may suppress
function via a mechanism of transmodulation known as
transdominance [5, 6]. It is clear that in order to gain a
better understanding of how cell adhesion, and especially
integrins, regulate a biological process, it is essential to
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understand the repertoire of integrins involved and their
expression relative to disease progression.

During neovascularization, several integrin family mem-
bers have been implicated in regulating endothelial cell
function, including α1β1, α2β1, α5β1, αvβ3, and αvβ5
[7]. In ocular neovascular membranes (POHS, idiopathic,
choroidal neovascular [CNV], PVR, and PDR), integrin
expression has been studied in only a few instances [8–10],
with focus on either a subset of receptors [8, 9] or the
examination of a broad range of integrin subunits in a small
number of membranes [10]. To obtain a more comprehensive
understanding of integrin family member expression in
neovascular progression, we examined the expression of
α1β1, α2β1, α5β1, αvβ3, and αvβ5 integrins in surgically
removed subretinal membranes with an emphasis on identi-
fying integrins expressed primarily on endothelial cells.

In the present study, surgically removed human CNV
membranes, for which the patient histories and disease
progression are known, were characterized for integrin
expression relative to the endothelial markers CD31 and
VWF. Consistent with known neovascular responses, endo-
thelial staining correlated well with patient histories, with
endothelial staining in active and mid stage disease, but little
or no staining of endothelial cells in tissues from late stage and
fibrotic membranes. Integrin staining was primarily seen in
early and mid stage where αvβ3, α1β1, α2 β1, and α5β1
staining colocalized with endothelial cells. No correlation
between αvβ5 staining and endothelial cells was observed.

Materials and methods

Tissue preparation and staging

Twenty-four CNVmembranes, at various stages of CNV, were
collected from eyes via vitreoretinal surgery. The membranes
were set in molds using OCT compound (Tissue-Tek,
Torrance, CA, USA) and stored at −80°C prior to sectioning.
Membranes were serially sectioned using a Frigocut 2800N
Cryostat (Reichert-Jung, Chicago, IL, USA) into 6 μm
sections and mounted onto frosted glass slides (using a process
that electrostatically adheres frozen tissue sections and
cytological specimens to the slide; Fisher Scientific, Ottawa,
ON, Canada). Slides were then stored at −20°C until
immunohistochemical processing was conducted. All tissue
collection was conducted according to The University of
British Columbia (UBC) Clinical Research Ethics Board
(CREB)-approved study protocol. The UBC CREB policies
comply with the Tri-Council Policy and the Good Clinical
Practice Guidelines, which have their origins in the ethical
principles set out in the Declaration of Helsinki. Written
informed consent was obtained from patients. Fluorescent
angiographic findings were used in conjunction with clinical

findings to stage the lesions. Clinical categorization of lesions
was based on lesion size and the presence or absence of
fibrosis. Lesions less than four disc areas in total size with no
clinical evidence of fibrosis were classified as “active.”
Lesions greater than four disc areas with no fibrosis were
considered “mid stage.” Lesions with subretinal fibrosis of less
than 50% of the entire lesion size were classified as “late.”
“Fibrotic” lesions were composed of greater than 50% fibrosis.

Immunohistochemical staining

A double immunohistochemical staining procedure was
used to identify the presence and colocalization of integrins
and endothelial cells. Slides were initially air-dried for
20 min at room temperature. The sections on the slides
were then circled with a PAP pen (Daido Sangyo, Tokyo,
Japan) and fixed in acetone for 10 min, followed by rinsing
in phosphate buffer (PBS) and 0.1% Triton X-100 (Sigma)
for 5 min. The sections were treated with 0.3% H2O2 for
15 min, and then blocked in blocking buffer (PBS pH 7.4,
0.1% Triton X-100, and 5% normal horse serum [Vector
Lab]) for 20 min. Sections were incubated with primary
antibodies diluted in probing buffer composed of 0.1%
Triton X-100 in PBS for 1 h. All the anti-integrin antibodies
used were mouse monoclonal or polyclonal rabbit anti-
bodies and can be viewed in Table 1. Primary antibodies to
identify endothelium used included polyclonal rabbit anti-
Von Willebrand factor (VWF) (Chemicon, Temecula, CA,
USA) or monoclonal mouse anti-CD31, clone JC70A
(DakoCytomation, Denmark). Anti-integrin integrin anti-
bodies were obtained from Chemicon (Temecula, CA,
USA) and included rabbit polyclonal antihuman integrin
β3, AB1932 (1:100)—AB1932 recognizes all potential
heterodimers containing the β3 subunit, including αvβ3
and αiibβ3, rabbit polyclonal antihuman integrin α1
(1:100), rabbit polyclonal antihuman integrin α2 AB1936
(1:100), rabbit polyclonal antihuman integrin α5 AB1928
(1:100) and mouse monoclonal antihuman integrin αvβ3,
clone: LM609 (1:100), mouse monoclonal antihuman
integrin αvβ5 clone P1F6 (1:500). For the double staining,
mouse antihuman αvβ3 and αvβ5 were paired with the
polyclonal rabbit anti-VWF (1:200); rabbit antihuman
integrin β3, α1, α2, and α5 were paired with monoclonal
mouse antihuman CD31 (1:200). After incubation at room
temperature for 2 h with the primary antibodies, the slides
were washed three times over 15 min with fresh PBS. This
was followed by the application of fluorescent secondary
antibodies diluted 1:400 in PBS for 30 min. The secondary
antibodies used were antirabbit Alexa-488 (Molecular
Probes, Eugene, OR, USA), antimouse Alexa-488 (Molec-
ular Probes, Eugene, OR, USA), and antimouse Cy3
(Jackson Immunoresearch, West Grave, PA, USA). After
30 min, the slides were washed three times over 15 min
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with fresh PBS. Stained slides were mounted using Slow-
Fade (Molecular Probes, Eugene, ON, USA). Positive
controls were set up using tonsil tissue. Negative controls
were designed using tonsil tissue and CNV membranes
with either one or both primary antibodies removed.

Histology

Several sections from each membrane were also stained for
hematoxylin and eosin to allow bright field visualization of
the cellular content and endogenous pigment and to
compare with immunohistochemical staining. Briefly, the
sections were stained with hematoxylin for 4 min, rinsed in
running tap water, and then dipped in 0.3% acid alcohol.
This was followed by the application of eosin for 2 min.
The slides were dehydrated and mounted.

Analysis

CNV sections were analyzed using a Zeiss Inverted
Axiovert 200M Confocal Laser-scanning Microscope
(Zeiss-LSM 510 META). Random fields of the sections
were imaged at ×20 and ×40 magnifications. The sections
were scanned with laser wavelengths of 488 and 633 nm.

The gain was adjusted for each wavelength to ensure
minimal crosstalk. Absence of crosstalk in double-stained
tissue was verified by analysis of negative controls in which
one or both primary antibodies were absent. For each
tissue, three independent staining and analysis procedures
were conducted. The analysis was conducted by examina-
tion of five random fields per tissue section and the average
score per field determined. Classification of staining was
based on the level of observed fluorescence. If the field
contained ten or more cells positively stained for antigens,
it was classified as “+++” indicating strong expression. If
the field had six to ten cells positively stained for antigens,
it was classified as “++”, while a field with one to five
positively stained cells were classified as “+.” Both “++”
and “+” indicated moderate fluorescence. If the field
exhibited no fluorescence, it was classified as “−.”

Results

Tissue sections

Figure 1 shows a representative bright field visualization of
an active CNV membrane stained with hematoxylin and

Table 1 Summary of integrin antibodies and ligands used in the study

Antigen Dimer
(s)

Type Possible ligand(s) Types of cell(s)
expressing integrin

Concentrations Source and
catalog no.

α1 α1β1 Polyclonal Collagen, laminin Activated T cells, monocytes,
melanoma cells, smooth
muscles cells

1:100 Chemicon,
Temecula;
CA AB1934

α2 α2β1 Polyclonal Collagen, laminin,
thrombospondin

B and T lymphocytes, platelets,
fibroblasts, endothelial cells,
melanoma cells

1:100 Chemicon,
Temecula;
CA AB1936

α5 α5β1 Polyclonal Fibronectin Memory T cells, monocytes,
platelets, fibroblasts

1:100 Chemicon,
Temecula;
CA AB1928

β3 αvβ3
and
αIIbβ3

Polyclonal Vitronectin, fibrinogen, VWF,
fibronectin, OP, BSPI, MFG-
E8, thrombospondin

αvβ3: endothelial cells,
platelets, monocytes; αIIbβ3:
platelets

1:100 Chemicon,
Temecula;
CA AB1932

αvβ3 αvβ3 Monoclonal Vitronectin, fibrinogen, VWF,
fibronectin, OP, BSPI, MFG-
E8, thrombospondin

αvβ3: endothelial cells,
monocytes

1:100 Chemicon,
Temecula;
CA
MAB1976

β5 αvβ5 Polyclonal Vitronectin, MFG-E8 fibronectin Hepatoma cells, fibroblasts,
carcinoma cells

1:100 Chemicon,
Temecula;
CA AB1928

β5 αvβ5 Monoclonal Vitronectin, MFG-E8 fibronectin Hepatoma cells, fibroblasts,
carcinoma cells

1:500 Chemicon,
Temecula;
CA
MAB1961

ECM extracellular matrix, VWF Von Willebrand factor, OP osteopontin, BSPI bone sialoprotein 1, Tsp thrombospondin, MFG-E8 milk fat
globule–EGF 8 (see Humphries et al. [2] for a more detailed list on all known integrins)
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eosin. Note the presence of endogenous pigment. However,
vascular structures were not clearly identifiable using bright
field microscopy and were subsequently identified by
staining for endothelial cells using CD31 and VWF.
Immunofluorescent analysis excluded pigmented regions
which autofluoresce.

Presence of endothelial staining relative to disease
progression

Endothelial markers CD31 and VWF stained strongly to
moderately in active and mid stage CNV membranes and
mildly in late stage, with no staining in fibrotic tissues
(Table 2). These data suggest that active neovascular
response is present in the early and mid stages, while
vessel regression is likely occurring in late stage, with
completely avascular tissue within fibrotic membranes.

Expression of integrin β3 in CNV membranes

Immunostaining for β3 integrin recognizes both the αvβ3
and αiibβ3 integrin heterodimers, which are primarily
associated with endothelial and platelet cells, respectively.
Mild labeling of integrin β3 was seen in 11 out of the 12
CNV membranes (92%, N=12) at active and mid stage
(Table 2). Of the 11 tissues that expressed β3 integrin in
CNV membranes, ten (83%) demonstrated colocalization
with endothelial cells (Fig. 2a–c). Late and fibrotic stage
CNV membranes were negative for integrin β3 (N=12).

Expression of integrin αvβ3 in CNV membranes

Mild to moderate labeling of αvβ3 heterodimer was seen in
80% (N=5) of the CNV membranes characterized as active.
Within positively staining membranes, αvβ3 exclusively
colocalized with the endothelial cell-specific marker, VWF

(Fig. 2d–f). In mid and late stage membranes (N=12), 67%
expressed αvβ3, although expression was not restricted to
endothelial cells alone, with staining observed outside of
positively staining endothelial cells. Membranes at fibrosis
stage were negative for both αvβ3 and endothelial cells.

Expression of integrin α1, α2, and αvβ5 in CNV
membranes

Staining for α1, α2, and αvβ5 was observed in early to late
stage tissues, with α1 and α2 primarily seen in early stage
tissues (Table 2). Within the early stage tissues, only 50%
of the membranes showed α1 and α2 staining colocalizing
with endothelial cells (Fig. 2g–l). αvβ5 staining was more
pronounced in late stage tissues than that observed in early
and mid stage tissues. Eighty-three percent of CNV
membranes characterized as mid to late stage expressed
αvβ5 (N=12). Colocalization of αvβ5 with endothelial
staining occurred in only a single tissue sample from a
patient with presumed ocular histoplasmosis (Fig. 2m–o).
Fibrotic membranes (N=7) were negative for α1, α2, and
αvβ5 integrins.

Expression of integrin α5 and in CNV membranes

Immunostaining for α5 integrin was seen in early and mid
stage membranes, with 80% of active stage CNV samples
(N=5) and 57% (N=7) mid stage samples showing positive
α5 staining. Fifty percent of the membranes in both active
and mid stages demonstrated colocalization with endothe-
lial cell staining (Table 2, Fig. 2p–r). Immunostaining for
α5 integrin was negative in late and fibrotic stages.

Discussion

The present study examined the correlation between the
expression of cell adhesion receptors on endothelial cells
with disease progression in subretinal neovascular mem-
branes. The study was conducted by analyzing immunos-
taining in surgically obtained membranes with a clinically
defined diagnosis. Endothelial staining correlated with the
clinical diagnosis and known disease progression, with
pronounced staining in early and mid stage tissues,
decreasing staining in late stage, and absence in fibrotic
membranes. Within active stage membranes, positive
staining for αvβ3, α1β1, α2β1, and α5β1 integrin family
members colocalizing with endothelial cells was observed,
although, α1β1, α2β1, and α5β1 staining was not
exclusive to endothelial cells. Expression of αvβ5 integrin
did not colocalize with endothelial cells and was present
only in the subset of membranes characterized as active. In
mid stage membranes, a reduction in the presence of

Fig. 1 Light micrograph of a cryostat section (6 μm) taken from an
active CNV membrane obtained during vitrectomy, stained with
hematoxylin and eosin. Note several cell nuclei (purple hematoxylin).
Arrowheads point to cell profiles that contain few pigment granules.
Some areas of tissue contain dense pigment deposits (asterisk), which
were not analyzed due to autofluorescence. Scale bar=20 μm
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positively staining membranes for αvβ3, α1β1, and α2β1
was observed. Similarly to active membranes, 50% of mid
stage membranes stained positive for the α5β1 integrin,
while nearly all membranes were positive for αvβ5 staining
at this stage. The αvβ5 staining did not colocalize with
endothelial cells. Integrin staining in late stage membranes
was greatly reduced, with only the αvβ3 and αvβ5 staining
being observed in a subset of samples. Staining for both
endothelial cells and integrins was absent in fibrotic
membranes, reflecting the acellular nature of the tissue.

These results indicate that expression of αvβ3 and αvβ5
observed in our study are similar to that observed by
Friedlander et al. [9] with αvβ3 expression on endothelial
cells and αvβ5 expression associated with nonendothelial
cells. Temporally, pronounced αvβ5 staining occurred in
mid and late stages, suggesting involvement during active
remodeling and fibrotic stages, while αvβ3 is associated
with mid and active stages of disease progression. In

addition to characterization of αvβ3 and αvβ5, the current
study extends our understanding of integrins involved in
subretinal neovascularization by characterizing the pattern
of expression for α1β1, α2β1, and α5β1.

Expression of α1β1, α2β1, and α5β1 integrin family
members was present in association with endothelial cells
in active membranes. However, in the mid stage tissues,
α5β1 staining was more prevalent relative to that seen with
either α1β1 or α2β1. This may reflect a higher expression
level of α5β1 in newly forming vessels, as has been
previously observed [11]. This suggests that during patho-
physiological progression, expression of α5β1 is an early
response associated with vessel invasion, while in later
stages of disease progression, α1β1 and α2β1 may be
important in matrix assembly and vessel morphology [12].

The association of α1β1, α2β1, and αvβ3 with
endothelial cells in AMD membranes is similar to that
seen in dermal microvascular endothelial cells where the

Table 2 Summary of membrane staining patterns for endothelial cells and integrins in membranes characterized as early, mid, late, and fibrotic
stages of CNV

Number Cause of surgery Age (years) Sex Stage Endothelial staining Integrin staining/colocalization with endothelium

β3 αvβ3 αvβ5 α1 α2 α5

1 AMD 74 M Active +++ +/+ +/+ −/− +/+ +/+ +/+

2 AMD 89 F Active +++ +/+ −/− +/− +/− +/+a −/−
3 AMD 69 M Active +++ +/+ +/+ +/− +/− +/− +/−
4 AMD 81 F Active +++ +/+a +/+ −/− +/+ +/−a +/−
5 Idiopathic 13 F Active +++ +/+a ++/++ −/− +/+a ++/+ +/+

6 AMD 74 M Mid ++ +/+ −/− +/− +/− −/− +/+

7 AMD 60 F Mid ++ +/− +/+a +/−a −/−a −/−a +/−
8 POHS 15 M Mid ++ +/+ +/+ +/+a −/−a −/− +/+

9 Idiopathic CNV 41 M Mid ++ −/− +/+a +/−a −/− −/− +/−
10 AMD 67 F Mid ++ +/+a −/− +/− −/−a −/−a −/−
11 AMD 81 F Mid + +/+a +/− +/−a −/−a −/−a −/−
12 Idiopathic CNV 27 F Mid + +/+a +/− +/−a −/− −/− −/−
13 AMD 67 M Late + −/− +/−a +/− −/− −/− −/−
14 POHS CNV 36 F Late + −/− +/− +/− −/− −/− −/−
15 Multifocal CNV 33 F Late + −/− +/− +/− −/−a −/− −/−
16 Idiopathic CNV 42 F Late + −/−a −/− −/− −/−a −/− −/−
17 Idiopathic CNV 29 F Late − −/−a −/− −/−a −/−a −/−a −/−
18 POHS CNV 42 M Fibrosis − −/− −/− −/− −/− −/− −/−
19 PIC 27 F Fibrosis − −/− −/− −/− −/− −/− −/−
20 UVEITIS 20 M Fibrosis − −/− −/− −/− −/− −/− −/−
21 CNV N.A. N.A. Fibrosis − −/− −/− −/− −/− −/− −/−
22 Myopic CNV 55 F Fibrosis − −/− −/−a −/−a −/−a −/−a −/−
23 Myopic CNV 41 F Fibrosis − −/− −/− −/− −/− −/− −/−
24 Idiopathic CNV 43 M Fibrosis − −/−a −/− −/−a −/− −/−a −/−

DS integrin marker and endothelial marker double staining, POHS presumed ocular histoplasmosis syndrome, PIC punctate inner choroidopathy,
N.A. not available in key
aN=2 (staining repeated twice on three sections per slide)
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same three family members have been implicated in
mediating the neovascular response [13]. Consistent with
α1β1 and α2β1 expression is the presence of VEGF
expression in AMD [14]. The exception to this correlation
is that the most predominant family member expressed in
neovascular membranes, αvβ3 integrin, has been charac-
terized as associated with a bFGF-mediated and not a
VEGF-driven angiogenic response [15]. However, the
relationship between αvβ3 and bFGF is not obligatory
with αvβ3 expression correlating with a VEGF-induced
neovascular response in a number of studies [16–19].
Furthermore, it has been demonstrated that αvβ3 plays a
critical part in regulating VEGF-mediated signaling in
endothelial cells [20–24]. The dynamic pattern of integrin
expression seen is consistent with the complex nature of a

neovascular response with temporal changes likely reflect-
ing differing requirements in endothelial cell adhesion
during a neovascular response [11, 25].

The data suggest that targeting αvβ3 provides the greatest
potential as a selective therapeutic target present at all active
stage of disease progression while targeting α1, α2, and α5
are both patient-restricted and stage-restricted. Blocking
specific integrins, however, may not be sufficient as current
studies targeting a single integrin (αvβ3 or α5β1) have
demonstrated only partial inhibition in CNV models [26, 27].
This may reflect overlapping and complementary functions
between integrin family members expressed within a
individual cell [4, 27], implicating that antagonism of
multiple family members will be required to fully block a
neovascular response [13]. In light of this complexity, greater

Fig. 2 Immunostaining for en-
dothelial cell markers CD31 (a,
j, m, and p) or vWF (d and g)
and integrin staining (b, e, h, k,
n, and q). The corresponding
overlaid images of endothelial
and integrin staining within a
tissue are shown in c, f, i, l, o,
and r, staining for β3 integrin
(b) showed colocalization with
CD31 (a) as demonstrated by
yellow signaling in c. Similar to
the staining for β3, staining for
the heterodimer αvβ3 (e) with
vWF (d) also demonstrated
colocalization (f). The staining
for αvβ5 (h) with vWF (g)
showed limited colocalization
with vWF (i). The majority of
αvβ5 staining (Cy3) localized
outside of endothelial cells as
identified by vWF staining
(Alexa-488). Colocalization of
integrin subunits α1 (k) with
CD31 (j) as well as α2 (n) and
α5 (q) with CD31 (m and p) is
observed. Overlaid images for
α1 and CD31 (l), α2 and CD31
(o), and α5 and CD31 (r). For
all three integrin family mem-
bers, staining was observed to
colocalize with CD31 as well as
to areas negative for the endo-
thelial cell marker
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efficacy in blocking angiogenesis may be achieved through
strategies targeting functional regulation of multiple integrin
family members as seen with endostatin and angiostatin [28]
or by targeting the extracellular matrix [29–31]. Therapeu-
tically, blocking a single integrin may provide a means to
control various components of a subretinal neovascular
response. As an example, inhibition of αvβ3 with cRGD
has been observed to block VEGF-associated vascular
blood–retinal barrier breakdown and cerebral edema [32].
While these data suggest αvβ3 may be a candidate for
therapeutic targeting, a more likely application of the
observation is the potential use of αvβ3 as a marker of
neovascular disease in poorly defined occult CNV, using
imaging techniques based on labeled RGD peptides [33].

Open Access This article is distributed under the terms of the
Creative Commons Attribution Noncommercial License which per-
mits any noncommercial use, distribution, and reproduction in any
medium, provided the original author(s) and source are credited.
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