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Despite our advanced understanding of primary cancer devel-
opment and progression, metastasis and the systemic spread 
of the disease to secondary sites remains the leading cause of 
cancer-associated death. The metastatic process is therefore a 
major potential therapeutic target area for cancer researchers 
and elucidating the key steps that are susceptible to therapeutic 
intervention will be critical to improve our treatment strategies. 
Recent advances in intravital imaging are rapidly improving our 
insight into this process and are helping in the design of stage-
specific drug regimes for the treatment of metastatic cancer. 
Here we discuss current developments in intravital imaging and 
our recent use of photobleaching and photoactivation in the 
analysis of dynamic biomarkers in living animals to assess the 
efficacy of therapeutic intervention on early stages of tumor cell 
metastasis.

Metastasis is a complex process consisting of interactions 
between cancer cells and their surrounding extra-cellular matrix 
and stroma. To give rise to a secondary tumor, a primary tumor 
cell undergoes alterations to its cell-cell and cell-ECM contacts, 
allowing it to breach the basement membrane and intravasate 
into the vasculature or the lymphatic system. A tumor cell must 
survive in the circulation before extravasating at a secondary site 
and initiating new tumor growth and the development of its own 
blood supply. Imaging this process in live animals under native 
physiological conditions is inherently difficult due to poor sample 
stability, tissue penetration and autofluorescence of the tissue. 
However, new advances in fluorescent imaging, including the 
continued development of green fluorescent protein (GFP) and its 
variants, have facilitated the observation of this process and shed 

light on some key mechanisms that determine how and why cells 
metastasise. The use of fluorescent probes for in vivo imaging can 
be divided into two types (1) ‘passive’ markers or reporters used for 
direct visualization and tracking of cell movement in relation to 
extracellular structures and (2) more complex, ‘active’ reporters or 
biosensors for monitoring detailed processes such as biochemical 
activity or protein-protein interactions during metastasis.1,2 In 
some cases there can be overlap between both types of imaging 
which will be addressed here.

The majority of early intravital imaging studies focused on the 
stages of metastasis that occur after dissemination from the primary 
tumor and predominantly used a ‘passive’ reporter approach to 
assess tumor cell behavior. Models of circulating tumor cells have 
allowed for analysis at the single cell level of tumor cell velocity, 
persistence, shape change and interactions with the ECM and 
stroma in secondary tissue.3-5 The use of fluorescently-labelled 
cells has also revealed some limiting factors that cause the arrest 
of cancer cells in target tissue such as trapping in small capillary 
networks due to tumor cell size or adhesion to surrounding vessel 
walls.6,7 Furthermore, experimental models of metastasis such as 
intra-splenic, intra-cardial and tail vein injections in combination 
with fluorescently-tagged tumor cells has provided information 
on the colonisation, extravasation and dormancy of tumor cells in 
secondary sites (Fig. 1 and refs. 5, 8 and 9). Collectively, along with 
the rapid increase in tissue specific expression of GFP in mouse 
cancer models,10 a wealth of information on different steps of the 
metastatic process has begun to emerge.

The departure of individual cells away from solid primary 
tumors into the blood stream has been a more difficult process to 
study using intravital imaging. It is a rare, sporadic event, requiring 
long acquisition and the inherent density and complex nature 
of the tumor tissue poses problems for imaging. Overcoming 
autofluorescence and light scattering has recently been improved 
due to advances in fluorophores1,11 and the combined use of 
long-term multiphoton microscopy12 has allowed greater resolu-
tion and tissue penetration than before. Multiphoton imaging can 
also provide additional detail regarding the interaction between 
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cells and the surrounding extracellular environment using second 
harmonic signal generation (SHG) from collagen, elastin and other 
matrix proteins found in connective tissue.13,14 In this regard, 
imaging the interaction of cancer cells with extracellular matrix has 
revealed distinct modes of cell locomotion adopted by cancer cells 
in vivo, such as ameboid or mesenchymal invasion, that depend 
upon the topography or density of the surrounding matrix.3,13,15 
A greater understanding of the initial cell movement and interac-
tion with the extracellular environment will enhance our ability 
to pin-point cell-ECM targets that may be of clinical relevance in 
the future.

Concurrent with the use of GFP as a ‘passive’ marker, a number 
of techniques have been developed that facilitate the visualization 
and localisation of GFP-tagged fusion proteins to quantify changes 
in protein expression, mobility and sub-cellular interactions 
during various processes in vitro. These include photobleaching 
(PB), photoactivation (PA), fluorescence resonance energy transfer 
(FRET) and fluorescent life time imaging microscopy (FLIM).2,16,17 
The adaptation of these techniques for in vivo imaging to examine 
the activity of key molecules will provide new ‘active’ markers or 
reporters that can be correlated with biological processes important 
in disease progression such as migration, proliferation and cell 
death. Other fluorescent probes such as MMPsense or Apotrace 
that measure ‘active’ processes such as metalloproteinase activity or 
apoptosis have also recently been used in animals.18,19 In this way 
we can get closer to understanding how subcellular components or 
signal transduction pathways interact in real-time. The improved 
spatial and temporal detail will facilitate the ‘when and where’ we 
should target metastatic cancer cells for therapy.12

In our recent paper we have adapted two techniques, photo-
bleaching and photoactivation, for in vivo imaging and used them 
to assess the potential of E-cadherin as a molecular biosensor 
for cell migration in live tumors.20 E-cadherin-based cell-cell 
contacts are prominent sites of remodelling during early stages of 
epithelial to mesenchymal transition (EMT). The disruption or 
deregulation of E-cadherin-based adhesions leads to the collapse 
of normal epithelial architecture that precedes the initial intravasa-
tion of cells from tumors.21-23 In vitro photobleaching analysis of 
E-cadherin can be used as an ‘active’ molecular read-out of cell 
migration, as cells within a stationary colony show significantly 
reduced E-cadherin mobility compared to collectively migrating 
cells.20 Moreover, as demonstrated in Figure 2 (reviewed in ref. 
20), E-cadherin mobility can also be spatially regulated within a 
population of tumor cells, as cells at the rear of a wound show 
impaired E-cadherin mobilisation compared to cells at the leading 
edge of the wound. This suggests a gradient of E-cadherin mobili-
sation within the local environment of a tumor may exist and 
could potentially be used in the future to map areas of weakened 
cell-cell adhesion from which cells are more likely to migrate. In 
vivo analysis of E-cadherin dynamics showed that changes in the 
mobility of E-cadherin can also be used as an ‘active’ marker of 
cell behavior in live animals, and may be useful in predicting cell 
mobilisation from primary tumors.20

We also demonstrated the subcellular tracking of plasma 
membrane dynamics in vivo using the membrane-targeting sequence 
of H-Ras fused to photoactivatable-GFP.24,25 Importantly, both the 
dynamics of cell-cell junctions, as visualised using E-cadherin:GFP, 
and the dynamics of the plasma membrane, which also plays a 

Real-time in vivo imaging of metastasis

Figure 1. (A) Whole body optical imaging of mCherry-expressing SW 620 colon cancer cell metastases after approximately six weeks post intra-splenic 
injection. Images were obtained using the Olympus OV100 whole body imaging system with an Olympus MT10, 150 w, Xenon light source, using a 
low magnification objective (macro lens) with a magnification of 0.14x and numerical aperture of 0.04. (B) mCherry expressing SW 620 colon cancer 
cells colonizing the liver 30 mins after intra-splenic injection. 1 x 106 cells were injected into the spleen of an anesthetised CD-1 nude mouse and the 
incision sealed using ‘Clay Adams’ vetinary clips (VetTec). The mouse was placed on a heat pad for 30 mins then sacrificed. An incision was made 
in the abdomen to expose the liver and images of fluorescent cells within the liver were obtained using a 0.8x (0.22 NA) objective lens with variable 
zoom on the Olympus OV100.
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In the context of previous intravital imaging studies, our work 
suggests that we are at the beginning of a new stage of intravital 
imaging in which ‘active’ probes can help predict the efficacy of 
novel therapeutic treatments and also provide a context dependent 
read-out of oncogene-induced biological behavior in live animals. 
Importantly, not all molecules are adaptable for this type of in vivo 
imaging. Careful selection of candidate molecular markers that 
demonstrate clear changes attributable to a biological function, 

fundamental role in cell invasion and metastasis, are significantly 
different in vivo than in vitro.20 Critically, this raises the possibility 
that many signalling axes and networks may function differently 
in vivo and therefore care must be taken when correlating in 
vitro information to the live setting. Lastly, we demonstrated the 
benefits of in vivo imaging in the assessment of molecular-based 
targeted therapeutics by using the Src inhibitor dasatinib, which 
impaired E-cadherin cell mobility in vivo but not in vitro.20,26

Figure 2. FRAP of GFP-E-cadherin at the rear or front of a wound heal assay. (A and B) Schematic and representative images of a wound heal assay 
depicting the area of cells selected for E-cadherin-based cell-cell junction FRAP analysis (red broken line). (C and D) Representative images of FRAP 
experiments performed at the rear or front of a wound heal assay respectively. White solid arrows represent area of photobleaching at the rear and 
white broken arrows represent area of photobleaching at the front of the wound. Red arrows indicate dynamics of cells at the front of the wound. Cells 
were classed to be at the front of the wound within the first three cells from the wound border (reviewed in ref. 20).
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for example, subcellular relocalization or compartmentalisation, 
will be ideally suited for this type of intravital examination in the 
future.

Here we have adopted two key fluorescent imaging techniques 
typically used in vitro and combined them with a fundamental 
biological question in vivo. The adaptation of other techniques for 
in vivo imaging such as FRET or FLIM-FRET probes will provide 
a detailed pixel by pixel map of the activity and behavior of key 
signalling proteins in live animals.2,27 The use of these ‘active’ 
probes in vivo may hold further surprises concerning differences 
in molecular behavior in live animals compared to the traditional 
‘snap-shot’ approach in vitro. Finally, one of the major challenges 
of in vivo imaging during drug discovery is the need for repeated 
imaging of the same animal in the presence or absence of drugs. 
The continued development of optical windows and observation 
chambers for non-invasive real-time imaging will facilitate this and 
allow for the assessment of drug response at the single cell level.28 
This, when combined with the subcellular optical techniques 
described here, will prove very useful in the future for in vivo 
imaging when evaluating the aetiology of the disease or during the 
drug discovery process.
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