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Abstract

Aggregate results from Genome-Wide Association Studies (GWAS)1-3, such as genotype
frequencies for cases and controls were available until recently on public websites4-5 because they
were thought to reveal negligible information concerning an individual’s participation in a study.
Homer et al.6 suggested a method for forensic detection of an individual’s contribution to an
admixed DNA sample could be applied to aggregate GWAS data. Using a likelihood-based
statistical framework, we develop an improved statistic that uses genotype frequencies and an
individual’s genotypes to infer whether the individual or a close relative participated in the GWAS
and, if so, the participant’s phenotype status. Our statistic compares the logarithm of genotype
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frequencies, in contrast to that of Homer et al.6, which is based on differences in SNP probe
intensity or allele frequencies. We derive the theoretical power of the test statistics and explore the
empirical performance in scenarios with a varying numbers of randomly chosen or top-associated
SNPs.

A recent report by Homer et al.6 demonstrated a method to determine whether a given
person contributed a trace amount (<0.1%) of DNA to a pool of DNA from 200 individuals
based on allelic probe intensities from the same microarray genotyping technology
commonly employed in GWAS. Three sets of probe data are required for Homer’s test
statistic, denoted here as Tyjjele: 1) from a pool to which the individual may or may not have
contributed DNA,; 2) from a reference pool of DNA sampled from members of the same
genetic population; and 3) from DNA obtained from a single individual to be tested for
membership in the first pool. Their primary applications were directed toward specific
forensic challenges, such as determining whether a DNA sample contributed to a
biospecimen of mixed origin. They speculated that their method could be applied to GWAS
allele frequency data.

We explored that suggestion and have extended the approach of Homer et al.6 to propose an
improved test statistic Tgeno to detect whether an individual contributed genotypes to a
GWAS, and, if so, determine their case/control phenotype. Conceptually, Tgeno Substitutes
frequencies from two groups (e.g., cases and controls) and genotype states of the individual
to be tested for pools of admixed DNA and measures of allelic probe intensities in the
method of Homer et al.6. Tgeno is a novel likelihood ratio statistic that can detect whether an
individual contributed DNA to neither, one, or both groups given only genotypes for the
individual to be tested and genotype frequencies from each group. Our statistic is similar to
Tallele €Xcept that Tgenq contrasts the logarithm of frequencies of the each observed genotype
of the tested individual (as opposed to allelic probe intensity or allele frequency in Tyjjele)
between two populations.

The predictive power of Tgeno Was derived approximately (see Methods), and evaluated by
simulation under a range of scenarios consistent with the size and scope of current GWAS
designs. In each scenario, we assumed two independent groups of individuals, denoted “test”
and “reference”, drawn from a homogeneous population with genotypes from independent
biallelic single-nucleotide polymorphism (SNP) markers in Hardy-Weinberg equilibrium
with fixed minor allele frequency (MAF). We varied the size of each group, the number and
MAF of independent loci, and genotype error rate. Power was computed by simulation,
randomly sampling test and reference groups as well as individuals to be tested and
comparing Tgeno to its theoretical null distribution using a two-sided test that assumes Z
could be a member of either group.

Table 1 shows simulation results of the sensitivity and specificity of Tgeno for significance
levels ranging from 0.05 to 1076 for scenarios labeled (a)-(e). We observed that the power to
detect membership in either group increased as the test group size decreased due to the
larger contribution of the individual relative to the size of the test group; power also
increased as the reference group size increased due to the improved knowledge of
underlying population frequencies. Scenario (c) demonstrated that substantial genotyping
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error was required to attenuate the power of the method. Power was essentially unaffected
with 1% genotyping error and only began to appreciably diminish with rates approaching
10%. Scenario (d) demonstrated that the power to detect membership does not depend on
MAF. Scenario (e) emphasized the role of the size of the population that did not contain the
individual being tested. Power was dramatically reduced when only 60 individuals were
available in the reference group, reaching only 20% at the 0.05 significance level and no
power at the 1078 significance level; power increases to 100% at the 0.05 significance level
and to 96% at the 107% significance level with 5,000 reference individuals. In each scenario,
the predicted theoretical and empirical power matched very closely.

In Table 2, we explored the power to detect membership of a close relative of an individual
in the test group using 200,000 independent SNPs simulated under the same assumptions as
in Table 1. In (f) and (g) the genotype discordance rate due to the familial relationship was a
function of MAF (see Methods) and reflects no additional discordance due to assay-related
genotyping errors. Power to detect membership of relatives decreased as MAF increased
(and consequently the genotype discordance rate increased), but remained high for MAFs
lower than 30%. In populations of European descent, the average MAF for most whole-
genome SNP panels is between 20-25%.

We applied our method to data combined from several GWAS conducted at the US National
Institutes of Health using genotype data from individuals of European descent. The dataset
contained 6,733 individuals affected with a disease (cases) and 6,871 unaffected individuals
(controls) and genotype data for 557,005 SNPs from the Illumina HumanHap550 assay.
Figure 1 shows a histogram of Tgen, for a hypothetical GWAS with 1,000 cases (in red),
1,000 controls (in blue) and 11,604 subjects not in the virtual study (in gray), and with the
theoretical null density curve shown in black. The groups were well-differentiated,
indicating that Tgeno is capable of accurately inferring membership and case/control
phenotype. Both the mean and variance of the empirical null distribution were shifted from
those of the theoretical standard normal distribution. These differences arise from use of
fixed test and reference samples, while the theoretical null distribution holds over repeated
random samples of the two groups. In addition, LD between SNPs is expected to inflate the
variance of the test-statistics relative to our derivation that assumes locus independence.
Thus, making inferences about Tgeno When applied to particular GWAS data requires
suitable calibration of the null distribution. Figure 2 shows histograms comparing Tgeno and
Talele for a fixed subset of 1,000 cases and 1,000 controls for varying numbers of “top
associated” SNPs.

Using these data, GWAS scenarios were explored by selecting subsets of cases and controls,
estimating genotype frequencies of each group, and fitting logistic genotype-phenotype
association models. In each scenario, all 13,604 individuals were tested for membership
conditional on a fixed set of cases and controls chosen. We also attempted to infer the
phenotype of the cases and controls selected in each scenario given the knowledge that they
participated in the study. Individuals not selected as cases or controls for a given scenario
were used to empirically estimate the null distribution. Figure 3 contains Receiver Operating
Characteristic (ROC) curves showing empirical sensitivity and specificity for classifying
individuals as participants and the determination of their phenotype given knowledge of
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participation. GWAS scenarios with a fixed subset of 1,000 and 5,000 cases and an equal
number of controls are shown for varying numbers of randomly chosen or top associated
SNPs. These ROC curves focus on high values of specificity with 1-specificity in the range
of 0.05 to 1078 on a logarithmic scale. Supplementary Figure 1 shows ROC curves for
additional GWAS scenarios with 1,000-5,000 cases and an equal number of controls.
Supplementary Figure 2 is analogous to Supplementary Figure 1 except showing ROC
curves for the non-log scale for the full range of specificity. Supplementary Figure 3 is
analogous to Supplementary Figure 1, except with ROC curves for Tjjele.

Figure 3(a) shows a hypothetical GWAS with 1,000 cases and 1,000 controls. If the top
1,000 associated SNPs are published, the power to detect whether an individual is included
in the study is approximately 43%, when the chance of a false positive, incorrectly
concluding the individual is in the study, is 1 in 20. Power approaches zero when the false-
positive rate is less than 1 in 1,000. If frequencies of 5,000 of the top associated SNPs are
published, approximately 90% power is attained at a false-positive rate of 1 in 20 and 41%
power when the false-positive rate is 1 in 1,000. When 50,000 of the top associated SNP
frequencies are published, near perfect power is attained at a false-positive rate of 1 in 20
and approximately 98% power when the false-positive rate is 1 in 1,000.

We have shown the robustness of a novel test statistic, Tgeno, an extension of the Tyjjele
approach by Homer et al.6 adapted for use on genotype frequency data rather than SNP
probe intensity or allele frequency data. We found that Tgeno Was more powerful than Tajjele
since the Tgeno statistic conditions on known genotype states and is a likelihood-ratio
statistic, and has optimality properties for both hypothesis testing and classification (see
Figure 2 and Supplementary Figure 2).

This method makes a critical assumption that individuals in both groups are sampled from
the same population. Unless population structure or substructure is identical in both groups,
incorrect inferences are likely to be made. Essentially, Tgeno and Tgyele test whether an
individual’s genotypes are more consistent with one group versus another (see Methods for a
formal description). These statistics are valid for determining membership only when the
differences between groups are due to sampling variation. Otherwise, the relatively small
bias due to membership of an individual quickly becomes swamped by the systematic
differences in the underlying populations. Although this characteristic may be problematic
in forensic applications in which test groups are often of unknown and potentially varied
population origin, GWAS case and control groups are usually drawn from genetically
comparable populations.

In addition to the number and selection method of SNPs, the sensitivity of our method, that
is the power to detect true membership, is affected by several parameters: the number of
subjects in each group, the number of SNPs tested, genotyping error, and genetic
relatedness. As the size of the group containing the individual decreases, it becomes easier
to detect the contribution of a single individual; as the size of the group without the
individual increases, a more precise knowledge of the background population frequencies
improves power. Because this method does not rely on patterns of rare or unique variation,
power is not greatly affected by MAF for relatively common SNPs (MAF>5%) (see
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Methods for details). Although substantial genotype error can decrease power, modest error
rates (<5%) have little effect (current commercial genotyping platforms typically have error
rates <0.1%). One can detect membership of siblings, parents and offspring, whereas the
presence of more distant relatives would be more challenging to detect. For some
applications, the ability to detect relatives is not desirable and could decrease specificity.

The conditional power to detect membership of an individual given a test and a reference
sample is affected by sampling variation in the estimates of genotype frequencies between
the two groups. The genetic variants need not have different underlying frequencies in the
two groups, as might be a consequence of association with disease; only a non-zero
difference in estimates is required. SNPs with low association p-values or, equivalently,
large differences in estimated genotype frequencies between cases and controls, result in
higher power because the magnitude of the ratio of frequencies between the two groups is
larger. Two-sided association p-values are inversely correlated with the magnitude of the
difference in genotype frequencies, but do not indicate the direction of the differences or
provide additional information useful for detection of membership when using Tgeno.

This method is particularly well-suited to case-control GWAS designs since subjects are
partitioned into disjoint sets that provide both groups of frequency data required by this
method. Publication of genotype frequencies separately for cases and controls also increases
power to detect membership, since each group is typically a large fraction of the size of the
overall study. GWAS are also often composed of a combination of multiple study
populations and results may be published for each subset, increasing the power of this
method, particularly for rare diseases that necessitate the collaboration of multiple studies.
Similarly, re-use of sets of cases and controls among several GWAS can allow the
calculation of frequencies for smaller groups by removing the contribution of overlapping
individuals.

Further work is required to address some issues raised by our analyses. A more thorough
understanding of the test statistic is required to account for linkage disequilibrium.
Aggregate statistics other than frequencies could reveal membership information. It is
notable that our approach could be applied to other types of dense datasets, both genetic and
non-genetic. The underlying principle is based on detecting small correlations in categorical
or continuous data accumulated over a sufficient number of highly repeatable outcomes.

We anticipate that these findings will aid in understanding the implications of publishing
and sharing aggregate genomic data in ways that protect the privacy of research subjects.
This method could be used to determine if specific individuals participated in a clinical
study and perhaps influence the decision to enroll or continue participating. Our results
should be considered as a lower bound for the power to detect membership and phenotype in
an aggregate genotype dataset, as more efficient methods may yet exist. In light of these
developments, the policies and practices guiding genomic data sharing should continue to
evolve in order to promote quality science, minimize duplicative research, and merit the
ongoing trust of the research subjects who consent to participate in scientific studies.
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Let Xj g and Yj 4 denote genotype frequencies genotype g at locus i=1..s for two independent
sets X and Y of DNA samples from unrelated individuals of size n and m, respectively. Let
Z; denote the genotype of an individual at locus i. We assume all loci are in linkage
equilibrium, that samples were drawn from the same population with genotype frequencies
fjj for j=1..g;, the number of genotypes that may be observed at each locus. We wish to test
the ratio of frequencies of genotypes Z; in groups X and Y and define a distance metric
based on the log transformed ratio,

_, (PEZX)) _ X )
d_log (P (Z|Y)) _log (HY - (lOgXLZi - logYi,Zi)

i=1 " 1% i=1

d is the sum of the differences in the natural logarithm of the frequency of individual Z’s
genotypes between the two groups. If individual Z is a member of a group X or Y, then the
observed genotype count at each locus for Z’s genotype has a contribution of 1 instead of
the population frequency to the frequency statistic, and the resulting frequency so will tend
to be slightly higher than that of the overall population by a factor of 1/n or 1/m,
respectively. Notice that the distance measure d can also be motivated as a log-likelihood-
ratio statistic for classifying individual Z’s genotypes as “randomly” drawn from group X
versus group Y.

We assume that genotypes are drawn from the same population with frequencies f; j, so that
Xi,g is distributed as Bin(n, fj g)/n and Y; 4 is distributed as Bin(m, fj g)/m, where Bin(n,f)
denotes the binomial distribution with n trials with success probability f. Throughout the
calculations below we assume that mean and variance of log(Xj ) and log(Y; ) can be well
approximated by first order Taylor’s approximation, given that in large samples we can
assume X; 4 and Y; 4 are approximately distributed as normal variates.

Under the listed ideal assumptions and in sufficiently large samples, a T statistic can be
utilized to test the significance of d:

d — Ey, (d]Z)

Tgeno:
Vary, (d[Z)

A two-sided test of Tgeno is appropriate when individual Z’s DNA may be in either group.
Otherwise, a one-sided test would be more powerful.

Consider four scenarios (Hg — Hzg):

Ho: Individual Z’s DNA is in neither group. Under this null model, the expected value of d
is zero
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E,, (d) :; [E {10g (1Bin (n,1,))} ~ E{tog (£Bin (m,1,))}]

1
S

~ 3 [1og (5,) - 1oy 1) =0

with variance

I 1\ 1-1,
Vary, (d|Z) ~ <H+E> > 4

H1: Individual Z’s DNAis in X and not in Y. X is composed of n-1 genotypes observed by
chance, but Z’s genotype is known to be in X. Thus X; ~ (Bin(n-1,f;)+1)/n and the expected
value of d given Z is

Bu02) =35 [Eo0 (3 (30 s 1.8,) 1))}~ o (00 ()}
~ ilog (H—%) ~ ?11 3 1;ZfZi
i=1 i =1 %

H»: Individual Z’s DNAis in Y, but not X: Using an analogous argument to Hy, the expected
value of d given Z is

E,, (d2) :; [E{10g (1Bin (n,£,))} = B {tog (& (Bin (m - 1,1,) +1))}]
= —i:log <1+ :ffzzi> ~— :1 1;;4

i=1 i i i

g~

Hs: Individual Z’s DNA is in both X and Y. Then n-1 genotypes from X and m-1 genotypes
from Y observed by chance, but Z’s genotype is known to be in both. The expected value of
d given Z is

By (A2) = [B{tog (% (Bin (n—1.8,)+1))} ~ Etog (& (Bin (m - 1.t,) +1))}]

N Sl m(nfl)fszm (1 1 s 17fZi
~ _Z og n(mfl)fZiJrn ~\n m i; fZi

This scenario is particularly relevant when X or Y represents a large population sample or
perhaps even the whole population of interest.

Genotyping error

It is useful to consider the effect of a class of genotyping error in these models though we
restrict our model to genotyping errors in Z that result in discordant genotype calls between
Z and any group that may contain Z. We denote this genotype discordance rate €. We utilize
this error term to model genotype discordance when Z is a close relative of a member of X
ory.
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For hypothesis 1, unless an error in genotyping occurred resulting in discordant genotypes
for Z with probability &, in which case X; ~ Bin(n-1,f;)/n. Incorporating this non-zero
possibility of genotyping error, X; ~ (Bin(n-1,f;;)+ Bin(1,1,—¢))/n, the expected value of d
given Z

E,, (dZ) =% {E {tog (% (Bin (n—1,£, ) +Bin (1,1 <))} - E{iog (LBin (m,1,)) H

1
1-f, —e S 1—e—f
Z ~ 1 Zi
log <1—|— nf; ) A~ i

f
G i=1 Z

i

~
~

s
=1

s
%

i=1

The effect of genotyping error for other hypotheses is similar.

Statistical Power

For large s, the test-statistic Tgeno Will approximately follow a standard normal distribution
under Hq given Z. Moreover, given the conditional null distribution being independent of Z,
Tgeno Will also follow standard normal distribution unconditionally on Z under Ho.

The conditional power of the test-statistics given Z will depend on the “non-centrality”
parameter

Ey (d]7)

By Teeno=NCy (2)=
Var,, (d|Z)

where the formulae for Ey(d|Z) under various hypotheses are shown above. The
unconditional non-centrality parameter can be calculated using the double expectation
formula and the fact that E((Zi=1 s W(Z;))") ~ (Zi=1s E(W(Z;))+0(Vs))* for any function w,
assuming large s. The non-centrality parameter under Hq is

E [NCHI (Z)] =B [M}

v/ Vary,(d|Z)
- E m s lffzi —€
~ [Il(n—l—nl) 2:1 fZi

i=

ms(g(lfe)fl)
" a(etm)

~
~

where 8 =
There are three possible genotype categories per locus (g —3) When Tgenq is computed from
biallelic SNP data with MAF sufficiently high to ensure that all genotypes are observed.
Assuming normality of the test-statistic and that the variance of under H; remains
approximately the same as under Hp, the unconditional power of a two-sided test of Tgeno
(which assumes Z may be a member of X or Y) under Hy at significance level a is

&, the average number of possible genotype categories over all loci.
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ms (g (1—¢)— 1)

n (n+m)

power, (a)=Pry, (|Tg0no| >Ta/2) ~®|d 7! (a)2)+

where @ is the standard normal cumulative distribution function and ®~1 its inverse. Power
may be derived under the other alternative hypotheses in a similar fashion. The power of a
one-sided test, one that assumes Z is not a member of Y, substitutes a for a/2 in the right-
hand side of previous equation. Use of low frequency SNPs (e.g., MAF<5%) will reduce g
and, as a consequence, the power of the test.

Modeling Relatives

The genotype discordance rate € can be used to represent other sources of discordance other
than that due to genotyping error. Genotype concordance among a pair of relatives is
equivalent to the probability of sharing two alleles identical by state (IBS), which are
functions of the relationship type and minor allele frequencies for independent loci in
Hardy-Weinberg equilibrium. The probability of not sharing two alleles identical by state for
parent offspring pairs is

P (IBS # 2|Parent — Offsping) =1 — p4 — q4 —pq (p2+q2+1>

and for sibling pairs is

P (IBS # 2|sibling) =1 — p* — q* — 2pq (p2+§pq+q2)

where p is the minor allele frequency and g=1-p is the major allele frequency.

Relaxing assumptions

Independence of X and Y: Similar results hold when at least one member of X and one
member of Y are the same person or close relatives. The expected values of d under each
case are unchanged but the variances are reduced depending on the amount of overlap as the
effective sizes of X and Y are reduced.

Independence of loci: The assumption of linkage equilibrium is currently necessary to derive
analytical expectations of the moments and power of our test statistic. When applying this
method to empirical data, many of the model assumptions needed to precisely determine the
null distribution of the test statistic and determine significance by comparison to a
theoretical distribution no longer hold. Thus it seems sensible to shift perspective from a
hypothesis testing framework to one of classification, which examines the trade-off between
sensitivity (true positive rate) and specificity (true negative rate) across a range of cut-off
values for the statistic.
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When applied to empirical GWAS data, the distribution of Tgeno Need not be centered at
zero (Upz0) and the variance is greater than would be expected (see Figure 1). The lack of
centrality is likely due to sampling variation, while the variance is inflated due primarily to
correlation among loci from linkage disequilibrium.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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a. Detection of an individual among 1,000 samples/group
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Figure 1. Histogram of Tgeno for a GWAS with 1,000 cases and controls
The figure presents data using 1,000 cases (group 1 in red), 1,000 controls (group 2 in blue)

and 1,000 subjects not in the study based on genotypes from lllumina HumanHap550 assay.
The theoretical null density curve is shown in black.
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Figure 2. Histograms of calibrated Tgeno and Homer’s Tgjele With 1,000 cases and controls and
varying numbers of SNPs

The figure presents theoretical null density curves (black) for a GWAS with 1,000 cases
(group 1 in red), 1,000 controls (group 2 in blue) and 12,000 subjects not in the study (in
gray) using genotypes for (a) 10,000, (b) 100,000, and (c) 550,000 top associated SNPs from
the Hllumina HumanHap550 assay. Statistics were calibrated so that the null distribution was
centered at zero with unit variance.
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a. Distribution of T for 1,000 samples/group, top 10k SNPs
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Figure 3. Sensitivity and specificity of Tgeno applied to GWAS data
Log-scale Receiver Operating Characteristic (ROC) curves of Tgeno with Illumina

HumanHap550 data from GWAS scenarios with 1000/1000 and 5000/5000 cases and
controls of European descent.
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