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Although tuberculosis poses a significant health threat to the 
global population, it is a challenge to develop new and effec-
tive therapeutic strategies. Nitric oxide (NO) and inducible 
NO synthase (iNOS) are important in innate immune re-
sponses to various intracellular bacterial infections, including 
mycobacterial infections. It is generally recognized that re-
active nitrogen intermediates play an effective role in host 
defense mechanisms against tuberculosis. In a murine model 
of tuberculosis, NO plays a crucial role in antimycobacterial 
activity; however, it is controversial whether NO is critically 
involved in host defense against Mycobacterium tuber-
culosis in humans. Here, we review the roles of NO in host 
defense against murine and human tuberculosis. We also dis-
cuss the specific roles of NO in the central nervous system 
and lung epithelial cells during mycobacterial infection. A 
greater understanding of these defense mechanisms in hu-
man tuberculosis will aid in the development of new strat-
egies for the treatment of disease.
[Immune Network 2009;9(2):46-52]

INTRODUCTION

Tuberculosis (TB) is a bacterial infectious disease caused by 

the obligate human pathogen Mycobacterium tuberculosis 

(MTB). TB remains an urgent global health problem, with a 

third of the global population latently infected and eight mil-

lion new cases each year. Although only 5∼10% of infected 

individuals develop active TB, the fatality rate is nearly two 

million people annually (1-3). Following exposure to MTB, 

a series of immune responses are triggered that ultimately de-

fine the course of the infection (4,5). The pathogenesis of 

infection is complicated; however, recent discoveries have at-

tracted great attention due to their association with host-de-

rived and microbial factors. Advances in free radical research 

have revealed that the production of reactive oxygen and ni-

trogen oxide species such as superoxide (O2
−) and nitric ox-

ide (NO) by innate immune cells is a relatively effective host 

defense mechanism against bacterial, viral, parasitic, and fun-

gal infections (5,6).

  The host cells that are protective against TB include macro-

phages, dendritic cells, T lymphocytes, and alveolar epithelial 

cells (2,3,7). Macrophages are believed to play a pivotal role 

in the immune response against mycobacteria through the 

production of cytokines such as tumor necrosis factor (TNF)-

α and interleukin (IL)-1β. TNF-α and IL-1β, along with in-

terferon (IFN)-γ, which is produced by T lymphocytes, can 

induce NO production in macrophages via the action of in-

ducible forms of the enzyme NO synthase (iNOS) (8-10). NO 

and related reactive nitrogen intermediates (RNI)s can kill 

and/or inhibit intracellular pathogens such as mycobacteria 

(11-14). The actions of iNOS and the production of NO corre-

late well with antimycobacterial defense in murine models of 

TB infection (10,12,15). Although it has been demonstrated 

that iNOS expression is up-regulated in macrophages from 

human TB lesions (16), few reports have examined the anti-

mycobacterial effects of cytokines and NO released by human 

macrophages (17,18). These data suggest that human macro-

phages possess a NO-independent antimicrobial mechanism, 

although a role for NO in human host defense cannot be 

excluded.

  MTB infects the airways and stimulates alveolar macro-

phages, epithelial cells, and macrophages. As a result, NO is 

produced in response to the stimulation of cytokines and che-

mokines (19). By producing NO, alveolar epithelial cells can 

actively participate in alveolar inflammatory processes and 
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Figure 1. Yang et al. Synthesis, regulation, and anti- 
mycobacterial function of NO in mycobacterial infec-
tion. Activated inducible nitric oxide synthase (iNOS) 
produces Nω-OH-L-arginine from L-arginine, and then 
Nω-OH-L-arginine is transduced to form NO and L- 
citruline. Synthesis of NO and reactive nitrogen oxides
(RNI) are positively regulated by Th1 cytokines, whereas
they are negatively regulated by Th2 cytokines. Pro-
duced NO and RNIs, which combined with NO and 
O2

－, can directly kill intracellular MTB in the infected
cells (including macrophages, epithelial and glial 
cells), although the action of NO is dependent on the
species and specific cell types.

defense mechanisms against MTB. In this review, we discuss 

the role of NO in defense mechanisms against MTB and the 

mechanisms regulating the production of NO in macrophages, 

including microglia and alveolar epithelial cells.

OVERVIEW OF NO PRODUCTION AND FUNCTION

NO is a gaseous free radical molecule with pleiotropic func-

tions in pathophysiology that is synthesized by a two-step en-

zymatic reaction involving a monooxygenase (12,13). One 

molecule of L-arginine is oxidized at the terminal nitrogen in 

guanidine to produce Nω
-OH-L-arginine as an intermediate. 

This intermediate is then further oxidized to form one mole-

cule each of NO and L-citrulline (13,14). L-arginine (a condi-

tionally essential amino acid) is obtained from exogenous 

(food) and endogenous sources, including whole-body pro-

tein degradation and, to a lesser extent, de novo synthesis 

from citrulline by renal arginosuccinate synthase (20,21). Two 

sequential reactions are catalyzed by NOSs, resulting in the 

constitutive expression of enzymes primarily in endothelial 

cells (eNOS) and neuronal cells (nNOS), and as an inducible 

isoform (iNOS). Constitutively produced NOSs contribute to 

several physiological processes including vasorelaxation and 

neurotransmission. In contrast, iNOS is expressed in various 

cells including macrophages, neutrophils, epithelial cells, and 

hepatocytes, and it produces excessive NO during infection, 

inflammation, and states of physiological stimulation (22-24).

  Th1 cytokines such as IFN-γ, IL-1β, and TNF-α stimulate 

the expression of macrophage iNOS, leading to NO produc-

tion. In contrast, under the influence of Th2 cytokines such 

as IL-4, IL-10, and IL-13, arginine is depleted by arginases 

(8-10). NO is one of several RNIs with antimicrobial activity 

(18,25). The increase in RNIs is mediated through reactive ni-

trogen oxides (e.g., peroxynitrite (ONOO－)) generated by the 

reaction of NO with O2
－

 (13,24) (Fig. 1). NO and RNIs can 

modify bacterial DNA, proteins, and lipids in both the mi-

crobe and host. NO can also deaminate and directly damage 

bacterial DNA by generating abasic sites and strand breaks 

(7). Other potential killing mechanisms by NO include inter-

actions with accessory protein targets such as iron-sulfur 

groups, heme groups, thiols, aromatic or phenolic residues, 

tyrosyl radicals, and amines. These reactions result in enzy-
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matic inactivation and/or other protein malfunctions (26).

THE ROLE OF NO IN HOST DEFENSE AGAINST 
MICROBIAL INFECTIONS

During infection with Mycobacterium, Salmonella, Streptococ-
cus, Leishmania, or Bordetella, excessive NO is produced af-

ter the induction of iNOS. In many cases, excessive NO pro-

duction results in innate resistance to bacterial infection. In 

a study of Bordetella pertussis infection in wild-type (WT) 

and iNOS-knockout (iNOS KO) mice, the iNOS KO mice dis-

played increased bacterial growth and susceptibility to in-

fection as compared with the WT mice (27). In a study of 

murine salmonellosis (Salmonella typhimurium), the use of a 

NO inhibitor, Nω
-monomethyl-L-arginine (L-NMMA), or iNOS 

KO mice led to similar antimicrobial effects (12,28). In these 

studies, the lack of NO production was associated with ex-

tensive damage, including increased bacterial growth, in-

creased apoptosis, and the exacerbation of histopathological 

characteristics in mouse livers infected with Salmonella enter-

ica serovar Typhimurium (12). Although NO shows anti-

microbial activity against bacteria, fungi, and parasites, some 

studies suggest dual functions during viral infection. NO pro-

duced by macrophages and phagocytic cells can act as an 

effector molecule during innate host defense mechanisms. 

For example, NO shows antiviral activity in response to cer-

tain viruses such as coxsackievirus (29-31), Epstein-Barr virus 

(32), and herpes simplex virus (HSV)-1 (33-35). In contrast 

to the antibacterial activity observed with NO, this antiviral 

activity is associated with nonspecific damage to host cells 

and tissues, leading to an exacerbation of viral pathogenesis 

in many infections such as influenza (36), tick-born virus (37), 

sendai virus (38), HSV-1 (39,40), and cytomegalovirus (41,42). 

Therefore, despite the antiviral activity of NO, excessive NO 

production may facilitate viral pathogenesis. These dual func-

tions of NO may lead to differential outcomes during viral 

infection. 

THE ROLE OF NO IN MYCOBACTERIAL 
INFECTION: MURINE STUDIES

NO plays a key role in innate immunity and host defense aga-

inst mycobacteria (1,2,7,43). For example, iNOS KO and im-

munodeficient mice infected with MTB are at a significantly 

higher risk of dissemination and mortality as compared with 

control mice (1,43). In addition, macrophages from mice with 

the Bcg/natural resistance associated macrophage protein-1 

resistance phenotype show inhibition of MTB survival 

through NO production (3,44). Mycobacterial species exhibit 

variations in susceptibility to NO and its RNIs. For example, 

murine macrophages have been shown to inhibit the intra-

cellular growth of M. leprae, M. bovis, and MTB H37Rv 

(7,11,17,45). When IFN-γ-treated rat alveolar macrophages 

were infected with M. avium, the growth of the bacterium 

was significantly inhibited by NO synthesized from L-arginine 

(46). 

  Contrasting data have been reported in murine and human 

macrophages infected with M. avium (6); neither competitive 

inhibition by L-NMMA nor depletion of L-arginine by arginase 

had any effect on M. avium growth in murine peritoneal mac-

rophages or human monocyte-derived macrophages (6). In 

addition, no significant inhibitory effects of NO produced by 

rat macrophages were observed on the growth of M. intra-

cellulare (45). In murine models of latent infection, both 

NO-dependent (iNOS- and IFN-γ-dependent antimycobacteri-

al mechanisms) and -independent (CD4
＋

 T cells required for 

preventing reactivation of the disease) mechanisms maintain 

latent TB (4,47); however, the applicability of these reports 

to humans is uncertain.

THE ROLE OF NO IN MYCOBACTERIAL 
INFECTION: HUMAN STUDIES

In contrast to the murine model of TB, there is controversy 

surrounding the role of NO in the killing and inhibition of 

MTB in humans (5). The early inhibition of mycobacterial 

growth by human alveolar macrophages has been shown to 

be NO-independent (48). Specifically, exogenous IFN-γ fai-

led to produce mycobactericidal effects in human alveolar 

macrophages (48). Nevertheless, a growing body of evidence 

suggests that NO production by MTB-infected human mono-

cytes/macrophages, macrophage-like cell lines, and epithelial 

cells induces mycobacteriostatic activity against MTB (16, 

49-52). For example, alveolar macrophages from healthy con-

trol subjects infected with MTB produce NO, and this pro-

duction is correlated with the intracellular inhibition of MTB 

growth (51). One study demonstrated increased NO pro-

duction in TB patients as compared with healthy controls fol-

lowing the infection of peripheral blood mononuclear cells 

(PBMC)s with MTB (50). Other studies have also demon-

strated that alveolar macrophages are able to kill mycobac-

teria and that these antimycobacterial activities are dependent 
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on iNOS expression (49,53). These results suggest a sig-

nificant role for NO in host defense against mycobacterial 

infection. Moreover, increased iNOS expression and pulmo-

nary NO production have been reported in alveolar macro-

phages and PBMCs from TB patients as compared with 

healthy controls (8,10,16,54). In those studies, NO played a 

role in the enhancement of TNF-α and IL-1β secretion, 

which subsequently affected NO production via feedback 

loops (8). These data indicate an autoregulatory role for NO. 

It has also been shown that iNOS and nitrotyrosine (a tissue 

marker of NO metabolism) are expressed in macrophages 

within granulomatas and areas of TB pneumonitis (15,55). 

Human PBMCs and bronchial epithelial cells may produce 

NO when stimulated with MTB-produced NO (50). In addi-

tion, the avirulent strain H37Ra was shown to induce sig-

nificantly higher levels of NO production as compared with 

the virulent strain H37Rv (50). Recent studies have shown that 

L-arginine depletion induces the down-regulation of CD3ζ, 

thereby impairing T cell signaling, whereas the addition of 

L-arginine leads to CD3ζ re-expression and the recovery of 

T cell proliferation (18,56). In addition, T cells from TB pa-

tients show reduced CD3ζ expression, which is correlated 

with arginase-induced L-arginine deficiency. These expression 

levels were normalized with successful TB treatment (21). 

Taken together, these data suggest that NO plays a contrib-

utory role in human host defense against MTB infection.

THE ROLE OF NO IN MYCOBACTERIAL INFECTION 
OF THE CENTRAL NERVOUS SYSTEM (CNS)

The roles of NO and iNOS in host defense against infection 

of the CNS by intracellular pathogens have been reported in 

previous studies of several intracellular pathogens (e.g., 

Toxoplasma gondii and Sindbis virus) (57,58). The role of mi-

croglial cells in neuropathogenesis following CNS infection 

has been a topic of growing research interest (59). It was 

previously reported that in contrast to astrocytes, iNOS was 

not expressed in human microglia following stimulation by 

IL-1β or IFN-γ (9,60). These findings suggest that NO and 

iNOS expression may be dependent on cell type and species. 

Indeed, previous reports demonstrated NO production in acti-

vated murine microglia, but not in human microglia (61). 

Recently, significant effort has been devoted to developing 

appropriate models of TB infection in the CNS (CNS-TB) us-

ing rabbits or mice. Intracerebral inoculation with MTB or M. 

bovis BCG resulted in mononuclear cell infiltration, microglial 

cell activation, and an increase in the number of bacterial 

cells within the CNS in a mouse model (62,63). In addition, 

inoculation with MTB or M. bovis BCG led to the up-regu-

lation of IL-1β, TNF-α, IL-6, and IFN-γ within the CNS (63). 

Recently, Michael et al. (64) reported that iNOS KO mice in-

fected intracerebrally with MTB developed clinical manifes-

tations of CNS-TB, including high mortality rates and histo-

pathological abnormalities resembling human tuberculous 

meningitis throughout the meninges. The above clinical mani-

festations were absent in WT mice. These studies underscore 

the importance of NO in defense against CNS-TB.

THE ROLE OF NO IN THE MYCOBACTERIAL 
INFECTION OF EPITHELIAL CELLS

Alveolar epithelial cells are able to actively participate in the 

pathogenesis of pulmonary inflammatory diseases by produc-

ing several cytokines and chemokines (65-67). Alveolar epi-

thelial cells produce NO and various innate immune effectors 

including chemokines (IL-8), which regulate immune activa-

tion. In addition, normal T cells express and secrete RANTES 

in response to MTB infection (19,67). Strong NO production 

via iNOS also occurs in human lung epithelial cells (19,66); 

however, the amount of NO released in response to MTB is 

not mycobactericidal (65,66). Various cytokines (IFN-γ, TNF-

α, and IL-1β; alone or in combination) and mycobacterial 

components stimulate MTB-infected epithelial cells, inducing 

NO production and mycobactericidal effects (65,66). These 

factors may contribute to innate immune control in epithelial 

cells against intracellular pathogens such as MTB.

CONCLUDING REMARKS

NO is a nonspecific, chemically reactive molecule that is im-

portant in host defense against a wide variety of microbial 

pathogens. However, it is becoming increasingly clear that 

specific killing mechanisms and cell types are not sufficient 

to kill mycobacteria in vivo. Although NO is not required for 

mycobactericidal activity in mouse models, the lack of a role 

for NO or its products (e.g., ONOO−) has not been defini-

tively proven in humans. Nevertheless, a substantial body of 

evidence indicates a role for NO in human host defenses 

against MTB. Additional studies are necessary to define the 

role of NO in relevant human cells including alveolar macro-

phages, microglia, and epithelial cells. Additionally, it would 

be useful to generate conditions that mimic in vivo environ-
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ments, such as the co-culture of relevant cells. Such studies, 

which will refine our understanding of the importance and 

specific role of NO in TB defense, may lead to innovative 

strategies for TB treatment.
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