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Abstract

Platelet-derived growth factor-BB (PDGF-BB) stimulates repair of healing-impaired chronic 

wounds such as diabetic ulcers and periodontal lesions. However, limitations in predictability of 

tissue regeneration occur due in part to transient growth factor bioavailability in vivo. Here, we 

report that gene delivery of PDGF-B stimulates repair of oral implant extraction socket defects. 

Alveolar ridge defects were created in rats and were treated at the time of titanium implant 

installation with a collagen matrix containing an adenoviral (Ad) vector encoding PDGF-B 

(5.5×108 or 5.5×109 pfu/ml), Ad encoding luciferase (Ad-Luc; 5.5×109 pfu/ml; control) or 

recombinant human PDGF-BB protein (rhPDGF-BB, 0.3 mg/ml). Bone repair and 

osseointegration were measured via backscattered SEM, histomorphometry, microcomputed 

tomography, and biomechanical assessments. Further, a panel of local and systemic safety 

assessments was performed. Results demonstrated bone repair was accelerated by Ad-PDGF-B 
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and rhPDGF-BB delivery compared to Ad-Luc, with the high dose of Ad-PDGF-B more effective 

than the low dose. No significant dissemination of the vector construct or alteration of systemic 

parameters was noted. In summary, gene delivery of Ad-PDGF-B demonstrates regenerative and 

safety capabilities for bone tissue engineering and osseointegration in alveolar bone defects 

comparable to rhPDGF-BB protein delivery in vivo.
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Introduction

Oral implants are widely accepted in dental medicine as a reconstructive treatment modality 

for tooth replacement due to disease, injury, or congenital defects. In clinical situations 

exhibiting limited alveolar bone availability, growth factor application has been advocated 

to improve osteogenesis and osseointegration 1. However, as a result of the transient action 

and the high degradation rate of recombinant proteins in vivo 2, the sustained bioactivity of 

gene therapy vectors has been purported to be an effective alternative for the delivery of 

growth factor proteins 3,4. Adenoviral vectors (Ad) have been shown to exhibit a high in 

vivo transduction efficiency 5 with a relatively short expression period compared with other 

viral-based gene delivery methods, and their effectiveness for promoting initial wound 

healing without eliciting long-term health concerns in wound healing models 6,7.

Platelet-derived growth factor (PDGF) is a potent mitogen that facilitates wound healing 8 

and stimulates bone repair by expanding osteoblastic precursor cells 9,10. PDGF-BB is 

FDA-approved for use in the treatment of localized periodontal defects and diabetic ulcers 

11-13. Ad-mediated PDGF-B (Ad-PDGF-B) gene delivery has been shown to enhance 

periodontal tissue regeneration of tooth-supporting wounds 6,14.

Limited information is available regarding the potential of PDGF-BB on promoting 

osseointegration of oral implants. In addition, the influence of PDGF-B on the mechanical 

integrity of an implant interface is unknown. The purpose of this study was to investigate the 

effects of rhPDGF-BB and Ad-PDGF-B delivered in a collagen matrix on the osteogenesis 

and osseointegration of dental implants in an in vivo osseointegration model in the rat. This 

approach demonstrates the ability of Ad-PDGF-B to accelerate oral implant 

osseointegration. The data support the concept that Ad-PDGF-B gene delivery may be an 

effective and safe mode of therapy comparable to PDGF-BB application to promote dental 

implant osseointegration and oral bone repair.

Materials and Methods

Experimental Design

A total of 100 male Sprague-Dawley rats were used in this study and the general timeline is 

shown in Fig 1a. Based on the power analysis calculations from a similar study, 6∼8 

animals were analyzed per treatment per time point14. A rat dental implant osseointegration 

wound model was modified for the in vivo experiments. Eighty-two animals were utilized 
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for evaluating the effects of osseointegration, with 3 timepoints (day 10, 14, and 21) and 4 

treatment groups (5.5×109 pfu/ml Ad-Luc as the control group, 5.5×108 pfu/ml Ad-PDGF-

BB, 5.5×109 pfu/ml Ad-PDGF-BB, and 0.3 mg/ml rhPDGF-BB) evaluated. Additionally, 18 

animals were equally divided into 3 treatment groups (collagen matrix alone as the control 

group, 5.5×108 pfu/ml Ad-PDGF-BB, 5.5×109 pfu/ml Ad-PDGF-BB) and used for 

determining the preclinical safety profile, with assessments performed on these same 

animals over an observation period of 35 days.

Adenoviral Vectors and Recombinant Protein

Ad-PDGF-B (E1-, E3-deleted adenovirus serotype 5 encoding human platelet-derived 

growth factor-B) and Ad-Luc (E1-, E3-deleted adenovirus serotype 5 encoding firefly 

luciferase) have been previously described 6. In both vectors, transgene expression is under 

control of the CMV promoter. Titers of virus stocks were determined on embryonic kidney 

293 cells by plaque assay and expressed as the particle number per milliliter 7. The 

rhPDGF-BB was purchased from Biomimetic Therapeutics, Inc. (Franklin, TN, USA) at a 

working concentration of 0.5 mg/ml.

Preparation of Vector/Protein-Gene Activated Matrix

Ad-PDGF-B, A d-Luc, and rhPDGF-BB were dialyzed into GTS buffer (2.5% glycerol, 25 

mM NaCl, 20 mM Tris, pH 8.0) and formulated in bovine fibrillar type I collagen matrix 

(Matrix Pharmaceutical Inc., Fremont, CA, USA) at a final concentration of 2.6%.

Animal model for evaluating therapeutic effects

All animal procedures followed the guidelines from the Committee on Use and Care of 

Animals of the University of Michigan. The maxillary first molars were extracted bilaterally 

4 weeks prior to dental implant installation. After healing, an osteotomy was created using a 

custom drill-bit by a single surgeon (YJS). The drill-bit was designed with a 0.95 mm 

diameter, 1 mm long-apical portion and a 2.2 mm diameter, 1 mm long at the coronal aspect 

(Fig. 1b). The apical part of the drill created an osteotomy for initial fixation and the coronal 

part of the drill created a circumferential osseous defect prior to dental implant installation. 

A custom cylinder-type titanium mini-implant (kind gift of Institut Straumann AG, Basel, 

Switzerland), 1 mm-in-diameter and 2 mm-in-depth, was press-fit into the surgically-created 

socket (Fig 1b). The remaining defect was then filled with the type I collagen matrix 

containing 5.5×109 pfu/ml Ad-Luc, 5.5×108 pfu/ml Ad-PDGF-B, 5.5×109 pfu/ml Ad-

PDGF-B, or 0.3 mg/ml rhPDGF-BB (Fig 1b). Ad-Luc has not previously exhibited 

biological activities in dentoalveolar defects 14 and served as control group in this study. 

The surgical area was covered by gingival tissue and reapproximated using butyl 

cyanoacrylate (Periacryl®, Glustitch Inc., Point Roberts, WA, USA). The vital fluorochrome 

dye, calcein (10 mg/kg), was injected intra-muscularly after 3 days, and antibiotics (268 

mg/L ampicillin in 5% dextrose water) were provided during the first 7 days post-operation.

Backscattered SEM and histology

Coded maxillae containing the implants were harvested upon sacrifice, with one side of 

maxillae taken for backscattered SEM and histology while the contralateral maxillae were 
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used for biomechanical assessments (see following section). The specimens were fixed in 

50% ethanol for at least 72 hours and subsequently embedded in epoxy resin. The specimens 

were then sectioned in the longitudinal direction relative to the implants using a diamond 

saw blade (Crystalite Co., Westerville OH, USA), then polished to achieve a 50-100 μm 

final thickness. The tissue mineralization was evaluated under the backscattered mode on 

Qanta F1B SEM with 45× magnification, calibrated with aluminum and carbon discs 15, and 

transferred to physical density using bone substitute radiographic phantoms (Gammex Inc., 

Middleton WI, USA). The photographs were then segmented and threshholded by Otsu's 

adaptive technique16. To eliminate any metal scattering effect, the measured bone-implant 

interface was defined as the horizontal distance 5 μm from the outermost homogenous high-

intensity area. The defect borders were projected using the calcein fluorescent images. 

Bone-area fractions (BAF, the ratio of newly-formed bone in the defect to the entire defect 

area) and Tissue mineral density within the defect (TMD, the average grayscale level of 

mineralized tissue within the defect area) were measured from backscattered SEM images. 

Next, histologic staining by methylene blue was performed, with the acid fuschin utilized as 

the counterstain 17. Bone-implant contact (BIC, the ratio of the length of bone contacting 

the titanium to the entire length of titanium interface with the defect area) and defect fill 

(DF, the ratio of bone-occupied area to the entire defect area) were measured by calibrated 

examiners PCC and YJS).

Biomechanical, three-dimensional radiographic, and functional evaluations

The remaining maxillae were used for biomechanical and micro-CT evaluation and stored in 

normal saline at -20°C to preserve the mechanical integrity. After thawing at room 

temperature, the specimens were rapidly secured in acrylic resin. The mini-implants were 

meticulously pushed out of each maxilla using an MTS machine (Model 858, Mini-Bionix 

II, MTS Systems Corp., Eden Prairie, MN, USA) at a constant displacement rate of 0.1 

mm/s, while recording the load-displacement relationship of the top of implant was recorded 

during the push-out procedures. The region from 20% to 80% of the maximum removal load 

(MRL) was chosen and a linear regression was performed to calculate the interfacial 

stiffness (IS). A previously described osseointegration index (OI) based on the nature of the 

bone fail during implant push-out tests was also utilized to further document the interfacial 

biomechanical behavior (Table S1) 18.

After implant push-out, micro-CT scans were performed using an eXplore Locus SP Micro-

CT system (GE HealthCare, London, ON, Canada) and reconstructed to voxel size of 

18×18×18 μm3. The spatial relationship of the mini-implant and surrounding tissues was 

then analyzed using a customized MATLAB® (Mathworks Inc., Natick, MA, USA) 

algorithm. The images were segmented with a threshold determined by Otsu's adaptive 

technique16, and several parameters were quantitatively evaluated within the osseous defect 

areas: (1) Bone volume fraction (BVF): the volume of mineralized tissue within the osseous 

wound divided by the volume of osseous wound; (2) Tissue mineral density (TMD): the 

mineral content of the radiographic-defined mineralized tissue within the osseous wound 

divided by the volume of osseous wound; (3) Bone mineral density (BMD): the mineral 

density within the radiographic-defined mineralized tissue in the osseous wound. After 

micro-CT evaluations, the images were transferred to create a finite element (FE) mesh, and 
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the functional bone modulus (FBM, referring to the rigidity of bone within the area of 

interest toward dental implant) and functional composite tissue apparent modulus (FCAM, 

rigidity of the whole tissue within the area of interest toward dental implant) were generated 

from previously described simulation procedures 18.

Animal model for safety profile

18 male Sprague-Dawley rats had their first maxillary molars extracted, osseous defect 

created, and implant placement as previously described.17 The osseous defects were filled 

with the type I collagen vehicle alone, or containing Ad-PDGF-B (5.5×108 or 5.5×109 pfu/

ml). Another six animals without any surgical treatments were also included to provide 

baseline parameters. Blood was drawn from rat tail veins at baseline and at 1, 2, 3, 4, 5, 6, 7, 

14, 21, 28, and 35 days. Hematological and clinical chemistry parameters (listed in Table 1) 

were examined at baseline and at 3, 7, 14, 21, 28, and 35 days. Vector dissemination was 

evaluated for all blood draw time points. Genomic DNA was isolated from 50μl whole blood 

using QIAamp DNA Blood Mini kit (QIAGEN Inc., Valencia, CA, USA), and quantitative 

TaqMan PCR was used to determine the copies of Ad-PDGF-B in the bloodstream. The 

primers used for qPCR bridging the vector backbone and PDGF-B prepro region were: sense 

-- 5′-GGATCTTCGAGTCGACAAGCTT-3′; anti-sense -- 5′-

ATCTCATAAAGCTCCTCGGGAAT-3′; internal fluorogenic probe -- 5′-

CGCCCAGCAGCGATTCATGGTGAT-3′. The resulting amplicon was detected by ABI 

Prism 7700 sequence detection instrument (Applied Biosystems, Foster City, CA, USA), 

and the thermal condition was: 50°C 2 minutes, 95°C 10 minutes followed by 45 cycles of 

95°C 15 seconds and 60°C 1 minute. The assay sensitivity was 30 copies/500ng DNA. 

There was no cross-reaction with adenoviral vector encoding PDGF-A, PDGF-1308 

(dominant-negative, PDGF mutant), bone morphogenetic protein-7, noggin, bone 

sialoprotein, Ad-Luc, or green fluorescent protein.

Statistical Analysis

One-way ANOVA with Tukey test was utilized to analyze the difference of coded 

specimens for histomorphometric, backscattered SEM, micro-CT, biomechanical, and 

functional parameters between PDGF-treated (collagen containing 0.3 mg/ml rhPDGF-BB, 

5.5×108 or 5.5×109 pfu/ml Ad-PDGF-B) and non-PDGF-treated (collagen alone) groups at 

each time point. For evaluating the safety profile, the difference of vector replicates, 

hematological and chemical parameters between experimental (collagen containing 5.5×108 

or 5.5×109 pfu/ml Ad-PDGF-B) was evaluated for time-dependent dynamics with control 

(collagen alone) group using Bonferroni post-tests, and the significance was assessed by 

repeated-measures ANOVA. The statistical difference was considered with a p value of less 

than 0.05.

Results

Ad-PDGF-B and rhPDGF-BB enhance osteogenesis in vivo

Based on the descriptive histology (Fig 2a), by day 10 a gradual defect resolution was 

observed over time in all groups. At days 10 and 14, woven bone and primary trabecular 
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bone were noted at the coronal margin (red asterisks) in Ad-Luc-treated specimens, and 

thicker bone trabeculae and defect fill were evident in all PDGF-treated specimens (black 

asterisks in 5.5×108 and 5.5×109 pfu/ml Ad-PDGF-B, and rhPDGF-BB). Also at day 14, 

more mature bone apposition and near-complete defect fill was noted for all PDGF-treated 

specimens (Fig 2a, lower panel). The histomorphometric measurements of the 5.5×109 

pfu/ml Ad-PDGF-B and rhPDGF-BB groups showed significantly higher bone-implant 

contact (BIC) than the Ad-Luc group at day 10 (p<0.05, Fig. 2b). Further, all PDGF groups 

revealed higher defect fill (DF) than Ad-Luc at days 10 (p<0.01, Fig. 2c) and 14 (p<0.05, 

Fig. 2c). An equivalent defect repair pattern was noted from the backscattered SEM (BS-

SEM) images (Fig. 3a). At day 10, BS-SEM measurements also demonstrated a significant 

difference among all PDGF-treated groups compared with the Ad-Luc-treated group in both 

bone-area fraction (BAF, p<0.05, Fig 3b) and tissue mineral density (TMD, p<0.05, Fig 3c). 

A significant difference between rhPDGF-BB and Ad-Luc in TMD was also noted at day 14 

(p<0.05, Fig. 3c). Completion of the defect fill was noted in all the animals by day 21, and 

no significant differences for any BS-SEM or histomorphometric parameters could be found 

among all the groups (data not shown).

Both Ad-PDGF-B and rhPDGF-BB promote osseointegration

The consequence of push-out testing was reflected from the osseointegration index (OI), 

with all PDGF-treated specimens showing higher scores than Ad-Luc, with significant 

differences noted between rhPDGF-BB and Ad-Luc at both days 10 and 14 (p<0.05, Fig 4a). 

PDGF application tended to improve the interfacial stiffness (IS) and maximum removal 

loading (MRL) compared to the Ad-Luc group. The rhPDGF-BB treatment demonstrated 

significantly higher interfacial stiffness (IS) than all other groups at days 10 and 14 (p<0.05, 

Figure 4b), and higher maximum removal loading (MRL) than all other groups at day 10 

(p<0.05, Fig 4c). At day 14, the MRL of rhPDGF-BB was significantly higher compared to 

both the Ad-Luc and the 5.5×109 pfu/ml Ad-PDGF-B groups (p<0.05, Fig 4c). Significant 

improvement of IS using 5.5×108 pfu/ml Ad-PDGF-B treatment versus Ad-Luc (p<0.05, 

Fig. 4b) was also seen at day 10. Most day 21 specimens experienced cortical bone fractures 

during the push-out testing (suggestive of strong osseointegration), and no significant 

differences among all the groups in IS and OI scores were noted (data not shown).

Micro-CT images were analyzed after implant removal, and both the 5.5×109 pfu/ml Ad-

PDGF-B and rhPDGF-BB groups displayed significantly higher bone volume fraction 

(BVF) and tissue mineral density (TMD) than the 5.5×108 pfu/ml Ad-PDGF-B and Ad-Luc 

groups at day 10 (p<0.05, Fig. 4d, e). A significant difference in BVF was found between 

5.5×109 pfu/ml Ad-PDGF-B and Ad-Luc at day 14 (p<0.05, Fig 4d). Both the 5.5×109 

pfu/ml Ad-PDGF-B and rhPDGF-BB groups displayed equivalent extents of functional 

composite tissue apparent modulus (FCAM), which was significantly stiffer than the 

5.5×108 pfu/ml Ad-PDGF-B or Ad-Luc groups at day 10 (p<0.05, Fig. 4f). At day 14, there 

were no FCAM differences between any of the treatment groups.

Local delivery of Ad-PDGF-B exhibits acceptable safety profiles in vivo

In a separate study of systemic safety, animals were treated with collagen alone (control) or 

collagen containing Ad-PDGF-B (5.5×108 or 5.5×109 pfu/ml). Blood samples were taken at 
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various time points for hematological and clinical chemistry analyses and PCR analyses for 

vector sequence. All animals survived until the day of sacrifice, with no progressive 

swelling or symptoms noted. The majority of hematological and clinical chemistry 

parameters were within their normal ranges with no significant differences between Ad-

PDGF-B and collagen only treatments (Tables 1 and 2).

Vector-specific quantitative PCR 6 was performed on blood samples taken (name time 

points) after treatment. Ad-PDGF-B was not detected in the bloodstream over the 35 day 

observation period (data not shown).

Discussion

This study demonstrates that both Ad-PDGF-B gene and rhPDGF-BB protein delivery 

promotes the acceleration of neo-osteogenesis of peri-implant bony defects in vivo. The 

affect on bone apposition was examined through DF from histomorphometry (Fig 2c), BAF 

from BS-SEM (Fig 3b), and BVF from micro-CT (Fig 4d). From these results, all treatment 

groups, especially the 5.5×109 pfu/ml Ad-PDGF-B and rhPDGF-BB groups showed 

significantly greater bone formation compared to the Ad-Luc vector control group at 10 

days. Regarding bone maturation, the Ad-Luc-treated defects showed sparse and limited 

new bone formation and slower bone formation within the defect area compared to the other 

three groups. By day 14, in the Ad-Luc group, new bone near the base of the defect (Fig. 2a) 

showed thick trabeculae and bone marrow formation suggesting greater maturation, whereas 

the thin trabeculae and primary woven bone-like structures at the coronal portion of the 

defects suggests early-stage osteogenesis. However, in all PDGF-treated groups, advanced 

bone maturation throughout the defect area, especially in the higher dose Ad-PDGF-B and 

rhPDGF-BB groups, indicates that new bone formation initiated earlier in those two groups 

compared to controls. Taken together, these results strongly suggest that PDGF delivery, via 

both the protein and the gene delivery vector, significantly accelerated and enhanced new 

bone formation in the peri-implant defects, and the higher dose of Ad-PDGF-B showed 

more favorable results than lower dosage suggesting a dose-dependent effect on 

osseointegration.

We also presented FCAM predicting the functional contribution of the newly-formed bone 

through the FE optimization procedures 18. FCAM is more correlated to the implant 

interfacial resistance than any single structural parameter. Significantly higher FCAM from 

the 5.5×109 pfu/ml Ad-PDGF-B and rhPDGF-BB treatments at day 10 indicates that both 

PDGF protein and gene delivery stimulates not only osteogenesis but also favorable initial 

implant function.

Two-dimensional and three-dimensional quantification results between rhPDGF-BB and 

higher dose Ad-PDGF-B were also comparable (Fig 2-4). However, the biomechanical 

analyses did not show equivalent trends, whereas rhPDGF-BB demonstrated significant 

improvements versus Ad-Luc for most of the parameters (Fig 4a-c). Although the 

correlation between implant stability and peri-implant structures had been proven in 

previous research 19,20, this finding may be due to the different delivery profile of PDGF 

by either Ad or as a protein. While the initial response to a bolus administration of rhPDGF-
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BB may be robust, the protein's short half-life results in rapid degradation within a few days 

2, and a decrease in the mitogenic response. In contrast, Ad-PDGF-B delivery demonstrates 

a delayed PDGF-BB expression profile that gradually decreases to ∼20% of the highest 

level by day 14 in vivo 14. This finding is consistent with a previous report whereby Ad-

PDGF-B prolongs PDGF signaling leading to a delay with respect to timing of osteogenic 

differentiation 21.

PDGF's effects on osseous wound healing have been reported mechanistically in previous 

investigations. It had been shown that PDGF signaling is important for chemotaxis and 

proliferation of osteoblasts and fibroblasts 22,23. However, PDGF's ability to induce 

osteogenic lineage differentiation is less clear. Tokudaga et al. 24 reported PDGFRβ 

signaling strongly inhibited osteogenic differentiation of mesenchymal stem cells, and Kono 

et al. 25 further validated that the Erk signaling, which is the subsequent PDGFR pathway, 

negatively regulated osteogenesis. On the other hand, other evidence implies that PDGF 

contributes to osteogenic differentiation via a more downstream mechanism. Huang et al. 26 

detected PDGF mRNA expression at both the early proliferation stage and a late 

differentiation stage of osteoprogenitor cells. Furthermore, Ng et al. 27 showed that PDGFR 

activation was a key step for the osteogenic lineage differentiation of mesenchymal stem 

cells, while inhibition of PDGFβR resulted in decreased mineralized nodule formation. 

Kratchmarova et al. 28 reported that PDGF increased new bone formation in vivo despite 

limited influences in osteogenic differentiation in vitro. These results imply that the 

differentiation is promoted at a certain level of expression, such as dose- or time-dependent 

reactions 22,23. Donatis et al. 22 reported that a higher concentration of PDGF is favorable 

for mitogenesis and lower doses for cell motility. Hsieh et al. 23 found that pulse application 

of PDGF enhances bone formation, but prolonged exposure to PDGF limited in vitro bone 

regeneration. Since osteogenesis involves a cascade of events in vivo, varying strategies of 

PDGF delivery must be considered for different indications. Thus, the rhPDGF-BB 

treatment may be suitable for the needs of rapid bone fill, where it would quickly recruit 

cells without significantly affecting the time frame of subsequent differentiation 

(Supplementary Fig. 1a). The higher dose of Ad-PDGF-B may be a better choice for a large 

wound site (that remains to be tested), in which the sustained PDGF signal would attract cell 

progenitors for a more extended, but still limited period of time so that the differentiation 

and maturation would initiate after PDGF signaling subsided (supplementary figure 1b). 

Given the limited size of the rat maxilla and the high cell proliferative activity, it is 

necessary to further validate this assumption in a large animal model with more challenging, 

critical-size defects.

This use of gene therapy introduced a different strategy when compared to traditional 

scaffold-growth factor delivery. In our approach, the main function of the gene-activated 

matrix (i.e., collagen matrix) was to mobilize the vector and allow for cell invasion 29. The 

vector is then actively transfected into the cells, followed by disintegration of capsid, 

condensed by the adenovirus core proteins to enter the nucleus (<40 nm diameter) for the 

subsequent expression of the carrier gene 30. Thus, the rate-limiting step of gene delivery 

was the vector transduction. High levels of adenovirus transduction within the first two 

weeks of delivery, and favorable regenerative effects have been documented in several 
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studies 6,14,17. Further efforts on the condensation of adenovirus vector may be beneficial 

for amplifying the efficiency of the gene therapy 30.

The angiogenic effect of PDGF, which are similar to the effect of vascular endothelial 

growth factor (VEGF), may also be favorable for osseous wound repair. During wound 

healing, angiogenesis is an important event for new tissue regeneration (i.e., providing 

nutrients and essential signals). The PDGFs have a similar structure to VEGF 31, and 

PDGF-BB enhances fibroblast growth factor-2 (FGF-2) stimulated VEGF release 32. 

PDGFRβ also has an important role in angiogenesis 33. Therefore, it is reasonable to 

conclude that PDGF-BB also positively affects angiogenesis and ultimately contributes to 

bone formation. Considering that dental implant function (with a metallic non-vascularized 

interface) is largely dependent on the surrounding bone quantity, quality and wound healing 

microenvironment, these accelerating and enhancing bone formation effects of PDGF may 

promote greater bone volume for earlier implant placement and loading.

One important consideration with the use of gene therapy vectors is the potential immune 

response and related sequelae 34,35. In our study, Ad-PDGF-B was delivered in a collagen 

matrix which potentially masks the host immune function against adenoviral vectors in vivo 

17,21,29,36. Typically, transformation and self-replication is eliminated by removing the 

E1- and E3-gene regions of the adenovirus genome 37. We discovered no significant vector 

dissemination or alteration of hematological and clinical chemistry parameters. Our results 

demonstrated a favorable preclinical safety profile and was comparable to our previous 

investigation examining Ad-PDGF-B in periodontal defects6. Furthermore, a non-viral 

based vector might be an alternative for delivering the PDGF-B gene with minimal safety 

concerns. However, further efforts on the improvement of efficient delivery and expression 

of the non-viral vectors is still necessary 38,39.

In summary, this investigation demonstrates the first reported use of Ad-PDGF-B 

administration to promote alveolar bone repair and osseointegration in alveolar ridge 

defects. These findings suggest that Ad-PDGF_B stimulates osseointegration that is 

comparable with delivery of PDGF-BB protein. A good safety profile was demonstrated 

supportive for extending this approach to large animal model studies examining large 

critical-size bony defects in the craniofacial complex.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Experimental design (a) and experimental model illustration (b)
Implant surgery was performed four weeks following maxillary first molar extraction. To 

create a consistent and reproducible defect, custom-made step drills were used. After dental 

implant placement, the bone defect was filled with 5.5×109 pfu/ml Ad-Luc, 5.5×108 pfu/ml 

Ad-PDGF-B, 5.5×109 pfu/ml Ad-PDGF-B or 0.3 mg/ml rhPDGF-BB formulated with the 

collagen matrix for evaluating osseointegration (n=6-8/group/time point). 

Histomorphometric and backscattered SEM measurements were done at days 10, 14 and 21 

after implant installation, and three dimensional evaluations (micro-CT imaging) as well as 

functional assessments (biomechanical testing and functional simulations) were done at days 

10, 14, and 21 after implant installation. For evaluating the safety profile, the bone defect 

was filled with 5.5×108 pfu/ml Ad-PDGF-B, 5.5×109 pfu/ml Ad-PDGF-B, or collagen 

matrix alone. The hematology, chemical chemistry, and vector dissemination were evaluated 

over a period of 35 days (n=6/group/time point).
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Figure 2. Histologic view of each group for 10 days and 14 days (a) and 2-D evaluations; bone-to-
implant contact (BIC) (b), defect fill (c)
(a) Histologic images were overlapped by fluorescent images made by calcein injection 3 

days after surgery. The fluorescence indicates the original defect boundaries. The results of 

Ad-Luc defects shows sparse bone formation at day 10 and a lesser degree of bone 

maturation at 10 and 14 days. All the PDGF-related specimens showed increased new bone 

formation at 10 and 14 days compared to Ad-Luc group. Scale bar in top right panel 

represents 200 μm. (Original magnification: ×40). (b) In BIC analysis, 5.5×109 pfu/ml Ad-

PDGF-B and rhPDGF-BB groups showed significantly higher ratio than the control group at 

10 days and 5.5×109 pfu/ml Ad-PDGF-B showed significantly higher ratio than control 

group at 14 days. (c) In defect fill analysis, all three PDGF treatment groups showed higher 

fractions than Ad-Luc treated defects at 10 and 14 days. Black area in left side: dental 

implant, black asterisks; matured new bone, red asterisks; young new bone, and dashed line; 
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borders of the osseous defect. Data are presented as mean and bars indicate standard error 

measurement (n=6-8).* p<0.05, ** p<0.01, Abbreviations: BIC: bone to implant contact.
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Figure 3. Back scattered SEM (BS-SEM) images (a) and 2-D evaluations; bone area fraction (b), 
and tissue mineral density (c)
(a) BS-SEM images were merged with fluorescent images (dashed line; borders of the 

osseous defect.). The BS-SEM images show mineralized tissue against the oral implant 

surface. (Original magnification: ×42) (b) The three PDGF treatment groups showed a 

significant difference in bone area fraction at 10 days compared to the control group. (c) The 

three PDGF groups also showed significant differences in tissue mineral density at 10 days 

and the rhPDGF-BB group showed significance at 14 days compared to Ad-Luc defects. 

Data are presented as mean and bars indicate standard error measurement (n=6-8). * p<0.05.
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Figure 4. Biomechanical and microCT/functional stimulations demonstrate that Ad-PDGFB and 
PDGF-BB improve osseointegration in vivo
Osseointegration index (a), Interfacial stiffness (b), maximum removing load (c), showed 

significant differences between rhPDGF-BB treatment and the other three groups. Bone 

volume fractions (d), tissue mineral density (e), and functional tissue modulus (f) 
demonstrate that 5.5×109 pfu/ml Ad-PDGF-B and rhPDGF-BB displayed significant 

differences compared to 5.5×108 pfu/ml AD-PDGF-B and Ad-Luc groups. There were no 

significant differences in tissue mineral density and functional composite tissue apparent 

modulus at day 14. Data are presented as mean and bars indicate standard error 

measurement (n=6-8). * p<0.05, Abbreviations: FCAM: functional composite tissue 

apparent modulus.
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