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e Background and Aims Plant cyanogenesis is the release of toxic cyanide from endogenous cyanide-containing
compounds, typically cyanogenic glycosides. Despite a large body of phytochemical, taxonomic and ecological
work on cyanogenic species, little is known of their frequency in natural plant communities. This study aimed to
investigate the frequency of cyanogenesis in Australian tropical rainforests. Secondary aims were to quantify the
cyanogenic glycoside content of tissues, to investigate intra-plant and intra-population variation in cyanogenic
glycoside concentration and to appraise the potential chemotaxonomic significance of any findings in relation to the
distribution of cyanogenesis in related taxa.

o Methods All species in six 200 m? plots at each of five sites across lowland, upland and highland tropical rainforest
were screened for cyanogenesis using Feigl-Anger indicator papers. The concentrations of cyanogenic glycosides
were accurately determined for all cyanogenic individuals.

e Key Results Over 400 species from 87 plant families were screened. Overall, 18 species (4-5 %) were cyanogenic,
accounting for 7-3 % of total stem basal area. Cyanogenesis has not previously been reported for 17 of the 18 species,
13 of which are endemic to Australia. Several species belong to plant families or orders in which cyanogenesis has
been little reported, if at all (e.g. Elacocarpaceae, Myrsinaceae, Araliaceae and Lamiaceae). A number of species
contained concentrations of cyanogenic glycosides among the highest ever reported for mature leaves—up to
52mg CN g~ d. wt, for example, in leaves of Elacocarpus sericopetalus. There was significant variation in cyano-
genic glycoside concentration within individuals; young leaves and reproductive tissues typically had higher
cyanogen content. In addition, there was substantial variation in cyanogenic glycoside content within populations
of single species.

e Conclusions This study expands the limited knowledge of the frequency of cyanogenesis in natural plant
communities, includes novel reports of cyanogenesis among a range of taxa and characterizes patterns in intra-plant
and intra-population variation of cyanogensis.
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INTRODUCTION

Cyanogenesis is the ability to release toxic hydrogen
cyanide (HCN) from endogenous cyanide-containing com-
pounds. It has long been recognized in plants (Conn, 1991;
Seigler, 1991), and has been recorded in ferns, fern-allies,
gymnosperms, as well as monocotyledonous and dicotyle-
donous angiosperms from >550 genera and 130 plant
families (Conn, 1981; Poulton, 1990; Jones, 1998). Cyano-
genesis in plants requires the presence of either an unstable
cyanohydrin, or of a stable cyanogen and its degradative
enzymes (Seigler, 1991). While cyanolipids have been
identified from a few taxa (Mikolajczak et al., 1970), cyano-
genesis in plants most commonly results from the hydrolysis
of cyanogenic glycosides (Conn, 1981). Autotoxicity in
intact plants is prevented by the spatial separation—
either at the subcellular or at the tissue level—of the cyano-
genic glycoside and catabolic enzymes (Kojima ez al., 1979;
Selmar, 1993a; Poulton and Li, 1994; Zheng and Poulton,
1995; Hickel et al., 1996). The catabolism of cyanogenic
glycosides is therefore initiated upon tissue disruption,
due to mechanical damage or ingestion by herbivores, for
example, which enables mixing of enzymes and cyanogenic
substrate (Wajant et al., 1994; Patton et al., 1997).
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Little is known about the frequency of cyanogenesis
in natural plant communities. This is despite a large body
of literature documenting cyanogenesis in >2650 species of
angiosperms worldwide (Lechtenberg and Nahrstedt, 1999).
Indeed, as many as 11 % of all plant species are predicted to
be cyanogenic (Jones, 1998). Historically, much of the
interest in cyanogenesis centred around recording toxic
plants with the potential for stock and human poisoning,
the high frequency of cyanogenesis among food plants
(Jones, 1998), and the potential utility of cyanogenesis
and the structure of specific cyanogens in elucidating phylo-
genetic relationships between taxa (e.g. Gibbs, 1974). As a
consequence, much of what is known about the frequency
of cyanogenesis comes from surveys of regional floras, or
of specific taxonomic groups. There are a number of
substantial chemotaxonomic works incorporating informa-
tion on cyanogenesis (see Hegnauer, 1966, 1973, 1986,
1989, 1990; Gibbs, 1974), several smaller and more specific
chemotaxonomic works (e.g. Tjon Sie Fat, 1978, 1979b;
Spencer and Seigler, 1985; van Wyk and Whitehead,
1990; Seigler, 1994), including work on Australian Acacia
spp. (Conn et al., 1985; Maslin et al., 1988), and numerous
inventories of cyanogenic species (e.g. Rosenthaler, 1919;
Seigler, 1976a, 1976b; Tjon Sie Fat, 1979a; Francisco and
Pinotti, 2000). Several Australian researchers were active in
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the field early last century, reporting a number of
cyanogenic species and the specific cyanogenic consti-
tuents involved (e.g. Petrie, 1912, 1913, 1914, 1920;
Finnemore and Cox, 1928, 1929; Finnemore and
Cooper, 1936, 1938). More than 700 species in the
Queensland flora were screened by Smith and White
(1918). Further phytochemical screening of the Queensland
flora was conducted by Webb (1948, 1949); however, there
was negligible testing among tropical taxa. Importantly,
many of these records are based on qualitative tests per-
formed using herbarium specimens, and tests of this kind
using dried material are by no means conclusive. One fur-
ther limitation of these data in terms of extrapolating to
natural plant communities is that negative results were
often not reported.

Tropical rainforests are of particular interest in the
study of plant chemical defences. Elevated herbivore pres-
sure in tropical environments is hypothesized to have
favoured both a diverse array of defences and high levels
of investment in chemical defence (Levin, 1976; Levin and
York, 1978; Coley and Barone, 1996; Kursar and Coley,
2003). Indeed, in the field of plant secondary chemistry, the
tropical rainforest has been the focus of intense interest
in co-evolutionary relationships between plants and
herbivores, and the extraordinary inter-specific and intra-
plant variation in chemical defence strategies (Feeny,
1976; Levin, 1976; Coley et al., 1985; Coley and
Kursar, 1996).

On the whole, community-level studies of the distribution
of chemical defences have focused on a small set of Asian
and African rainforests (McKey et al., 1978; Gartlan et al.,
1980; Davies et al., 1988; Waterman et al., 1988). In
addition, these and other studies have tended to focus on
C-based ‘quantitative’ defences (e.g. Coley, 1983, 1988).
Among N-based defences, the greater awareness of the
frequency of alkaloid-bearing plants in tropical and other
ecosystems is a consequence of extensive phytochemical
screening for bioactive compounds (e.g. Swanholm et al.,
1960; Hartley et al., 1973; Smolenski et al., 1974; Collins
et al., 1990; Hadi and Bremmer, 2001) or ecological
research into specific plant-herbivore interactions (e.g.
Janzen and Waterman, 1984; Hartmann et al., 1997), rather
than systematic studies within natural communities (but
see Mali and Borges, 2003).

There are some hypothesis-driven surveys for cyanogen-
esis. Two studies have investigated the frequency of cyano-
genesis in floras, investigating evolutionary and ecological
hypotheses about exposure to herbivory (see Kaplan et al.,
1983; Adsersen et al., 1988; Adsersen and Adsersen, 1993).
However, only the survey of Thomsen and Brimer (1997) in
Costa Rican rainforest has been conducted in a systematic
fashion, well defined with respect to forest area and plant
size. As with other N-based defences, work on cyanogenic
tropical rainforest species worldwide is limited, and
there has been no work on cyanogenesis in Australian trop-
ical rainforests, or any other form of chemical defence. The
lack of work on cyanogenesis in diverse tropical rainforests
is further surprising, as it is a readily detectable and con-
stitutive chemical defence (Gleadow and Woodrow,
20000).
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Here we report some of the findings of a large-scale
quantitative survey for cyanogenesis in Australian tropical
rainforests. First, we investigated the frequency of cyano-
genesis and the contribution of cyanogenic species to
biomass (basal area) in lowland, upland and highland trop-
ical rainforest in north Queensland, Australia. Conducting
the survey in a standardized fashion will enable comparison
with other communities (e.g. Thomsen and Brimer, 1997).
Secondly, intra-plant and intra-population variation in con-
centrations of cyanogenic glycosides was quantified. The
high level of endemism among the Australian tropical rain-
forest flora (Webb and Tracey, 1981) and the number of
rainforest taxa previously untested for cyanogenesis under-
score the potential for novel reports of cyanogenesis within
different taxonomic groups. Finally, therefore, this study
aimed to investigate the potential taxonomic significance
of cyanogenesis reported here. Overall, this study aimed
to expand the limited knowledge of the frequency of
cyanogenesis in the Australian flora and in natural plant
communities.

MATERIALS AND METHODS
Field sites

Field work was conducted between July 1999 and
September 2002. Six 200 m? plots (20 x 10 m) were estab-
lished at each of five sites (total area 1200 m” per site) in
lowland and upland rainforest in the tropics of north east
Queensland, Australia (Fig. 1). Six plots were selected for
two reasons: first, the number of new species captured with
each additional plot had reached a plateau at around five
species and, secondly, it was a realistic sample size given
the time and resources available. Sites were selected to
capture maximum species diversity as on the Atherton
Tablelands, forest type and species composition vary
both with substrate and with altitude (Tracey, 1982). Fur-
ther, to enable comparison of forests occurring on different
soil types, two pairs of sites with similar altitude and rainfall
were selected. The first pair comprised a site on soil derived
from basalt at Lamins Hill and one on soil derived from
granite at Mt Nomico (Fig. 1). The second pair comprised
sites on soils derived from basalt and rhyolite at Longlands
Gap (Fig. 1). A fifth site in lowland rainforest near
Cape Tribulation and Myall Creek, on soil derived
from metamorphic substrate, was also surveyed (Fig. 1).
The distribution of cyanogenic species in relation to
resource availability (soil nutrients) will be addressed
elsewhere (see Miller, 2004).

It was not possible to control strictly for logging history;
all sites on the Atherton Tablelands had been selectively
logged prior to the declaration of the Wet Tropics World
Heritage Area in 1988. Detailed site descriptions are pro-
vided in Miller (2004).

All individuals (palms, trees and vines) with a diameter at
breast height (dbh) of =5cm were tagged and identified.
All additional species (dbh <5cm) present in lower strata,
with the exception of herbaceous ground species, were also
tagged and identified.
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Samples of all cyanogenic species, as well as species
dominant at each site, and some rare species were pressed
and lodged at the University of Melbourne (MELU) and
Brisbane (BRI) Herbaria. Accession numbers, where
assigned, are listed (Appendix).

Climate

The climate in far north Queensland is characterized
by a marked wet season from December to April. Climate
recording stations in the study area are scattered, therefore
data specific to each site were not available. While located
in the tropical latitudes, because of its higher altitude, the
climate of the Atherton Tableland is semi-tropical. Mean
annual temperature within the study area on the Tableland
is 22 °C (Nix, 1991), with a minimum of 10 °C (Hall et al.,
1981; see Graham et al., 1995). All the upland and highland
rainforests surveyed on the Atherton Tableland have
high average annual rainfall, generally in the range
2000-3000mm plus cloud interception (Tracey, 1982).
For example, the average annual rainfall at Lamins Hill
is 3584 mm, based on 30 years of records from the Queens-
land Bureau of Meteorology (see Osunkoya et al., 1993). In
contrast, the climate in the coastal lowland tropical rain-
forest near Cape Tribulation is characterized by higher
temperatures. Mean daily temperatures range from 28 °C
in January to 22°C in July, and temperatures may reach
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Fi1G. 1. Location of study sites in tropical rainforest in far north east Queensland, Australia. There were two pairs of sites in upland rainforest on the Atherton
Tableland: Lamins Hill (17°22-4S, 145°42-5'E) and Mt Nomico (17°13-3'S, 145°40-4'E), and two sites at Longlands Gap (17°27'S, 145°28'E). A fifth site was
in lowland rainforest near Myall Creek and Cape Tribulation (16°06-2'S, 145°26-9'E).

the mid to high 30s during the summer months. Average
annual rainfall is also high, at 3928 mm recorded at Cape
Tribulation (based on 65 years of records from the
Queensland Bureau of Meteorology).

Sites

Upland and highland rainforest. The upland rainforest at
Lamins Hill [17°22-4'S, 145°42-5'E; altitude 850 m above
sea level (a.s.l.); Fig. 1] is classified as complex mesophyll
vine forest on basalt (type 1b; Tracey, 1982; Tracey and
Webb, 1975). This forest type typically occurs on upland
sites (400-800 m), on high fertility kraznozem soils derived
from basalt, with high rainfall (Tracey, 1982). It is charac-
terized by a closed canopy with multiple tree layers, and
an uneven canopy with height ranging from 35 to 45m
(Tracey 1982).

The upland rainforest at Mt Nomico (17°13-3'S,
145°40-4'E, 900m a.s.l.; Fig. 1) is within the Gillies
Range State Forest, and is on low nutrient soil derived
from granite. The forest is classified as complex notophyll
vine forest, typical of upland granitic soils (type 6; Tracey,
1982; Tracey and Webb, 1975).

In the highland rainforest of Longlands Gap State Forest
(altitude 1100-1200m a.s.l.), there is a sharp boundary
in forest type defined by basalt (17°27-7'S; 145°28-5'E)
and rhyolite (17°27-3'S, 14528-6'E) parent substrates.
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On basalt, the forest is complex notophyll vine forest
(type 5a; Tracey, 1982; Tracey and Webb, 1975), a forest
type characterized by an uneven canopy (20—40 m high) and
numerous tree layers, typical of basaltic cool wet uplands
and highlands (Tracey, 1982). On rhyolite, the forest is
simple microphyll vine forest (type 9; Tracey, 1982),
which is common on upland granitic soils (800—1300 m),
and is characterized by an uneven canopy 20-25m high,
with emergent Agathis atropurpurea (up to 35 m).

Lowland rainforest. The fifth site was in lowland
rainforest in the Daintree World Heritage Area, near
Cape Tribulation (Fig. 1). The site was near to Thompson
and Myall Creeks (16°06-2'S, 145°26-9'E; altitude 40 m
a.s.l.). The forest is complex mesophyll vine forest (type 1a;
Tracey, 1982), the canopy is irregular, from 25 to 33 m in
height, and supports a great diversity of species and life
forms, including many palms and lianas. The floristic
composition is patchy, with considerable variation in
canopy and understorey dominants over small distances
(Webb et al., 1972; Tracey, 1982). The soil is relatively
nutrient-poor red clay loam podsol derived from
metamorphic substrate.

Sampling for detection of cyanogenesis

Whole leaf samples (1-2 g f. wt) were taken from indi-
viduals with a dbh =5cm, and from all additional species
in the lower strata, until at least three individuals of each
species had been sampled. Where possible, the youngest
fully expanded leaves without epiphyllous communities
were selected; however, in the case of samples acquired
by pruning shears attached to extension poles or by sling-
shot and rope from the canopy, it was not always possible
to be selective. In instances where it was not possible to
obtain samples from large canopy trees, samples were taken
from nearby individuals of the same species. Fresh whole
leaf samples used for cyanide testing were stored in air-tight
bags on ice until tested for cyanide 2—6 h later using Feigl—
Anger (FA) papers (Feigl and Anger, 1966). Individuals of
rare species, and those with little foliage, were sampled only
once for analysis in the laboratory where a quantitative
assay was used to test for cyanogenesis using freeze-
dried ground tissue. Because cyanogenesis is known to
be a polymorphic trait (e.g. Hughes, 1991; Aikman et al.,
1996), a minimum of three individuals of all species was
tested, more where species were common. Owing to the
diverse and heterogeneous nature of the forests, multiple
individuals of each species were not always represented in
the plots. Therefore, for these rare species, testing indivi-
duals located outside the plots was required, and still there
were several species for which only single samples were
obtained.

A range of other factors was taken into consideration
when sampling. For example, given that young leaves
of tropical species, in particular, are typically more highly
defended than older leaves (Coley, 1983; Coley and Barone,
1996), both young (soft expanding leaves) and old (recent
fully expanded) leaves were tested for cyanogenesis, where
possible. In addition, depending on availability, fruit and
flowers from several species were tested. Owing to the large
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number of species and samples in the survey, it was not
possible to examine seasonal trends in defence; however,
individuals of the majority of species were tested in wet
and dry seasons for qualitative changes in cyanogenic sta-
tus, as there is some evidence for seasonal variation in
cyanogenesis (Seigler, 1976b; Janzen et al., 1980; Kaplan
et al., 1983). Finally, because edaphic factors have been
reported to affect the expression of cyanogenesis (e.g.
Urbanska, 1982), species found on more than one substrate
type were tested at each site.

Sample collection, handling and storage for quantitative
analysis

In addition to samples for fresh cyanide tests, whole leaf
samples (again recent fully expanded leaves) were taken for
quantification of cyanogenic glycosides. All individuals of
species that produced a positive result and individuals of
rare species were sampled. Depending on sampling condi-
tions, samples were either placed immediately into liquid
nitrogen, or placed in a sealed air-tight bag and kept on ice
for 2-6h until snap frozen in liquid nitrogen. Frozen
samples were transported to the laboratory on dry ice,
freeze-dried and stored on desiccant at —20 °C for analysis.
Freeze-dried samples were ground using either a cooled
IKA Labortechnic A10 Analytical Mill (Janke and Kunkel,
Stanfen, Germany) or, for smaller samples, an Ultramat 2
Dental Grinder (Southern Dental Industries Ltd, Bayswater,
Victoria, Australia).

Chemical analyses

Detection of cyanogenesis: Feigl-Anger papers. The
presence of cyanogenic compounds in fresh field samples
was determined using FA indicator papers (Feigl and
Anger, 1966). FA papers were selected in preference to
picrate papers because FA papers are more sensitive
(Nahrstedt, 1980) and less prone to giving false-positive
results (Brinker and Seigler, 1989). FA test papers were
prepared according to Brinker and Seigler (1989). Because
FA papers can be sensitive to moisture and light (Brinker
and Seigler, 1989), they were stored in the dark and on
desiccant until use.

Fresh leaves (approx. 1-2gf.wt) were crushed in
duplicate screw-top vials. Old and young foliage samples
were tested separately. To facilitate cyanogenesis, 0-5 mL of
water was added to one of the vials, and pectinase from
Rhizopus spp. (Macerase® Pectinase, 441201 Calbiochem®,
Calbiochem-Novabiochem Corp., La Jolla CA, USA)
04¢g L™ in 0-1M Tris—-HCI (pH 6-8) was added to the
other. Pectinase has been found to have non-specific B-glyc-
osidase activity (Brimer et al., 1995) and, therefore, in
the absence of sufficient endogenous B-glycosidase, enables
tests for the presence of cyanogenic glycosides to be made.
The indicator papers were suspended above the tissue by
means of the screw-top lid, and vials were left at room
temperature and checked after 12 and 24h. This 24h
time period, used in other surveys (e.g. Dickenmann,
1982; Thomsen and Brimer, 1997; Buhrmester et al.,
2000; Lewis and Zona, 2000), was selected to avoid spuri-
ous test results due to substantial bacterial contamination
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which may occur beyond 24 h (Saupe et al., 1982). Tissue of
known cyanogenic species, Prunus turneriana or Ryparosa
Jjavanica, was used as a positive control. Moderate to
strongly cyanogenic samples gave a positive result within
a few minutes or up to a few hours, while more weakly
cyanogenic samples took several more hours. In accordance
with the recommendations of Brinker and Seigler (1989), a
new test was conducted for any samples producing a slow
positive response (24 h) in case of interference by microbial
cyanogenesis. In addition, any samples with inconclusive
colour change were re-tested. An individual was considered
cyanogenic if a positive, repeatable result was obtained,
and a species was considered cyanogenic if at least
one individual produced a consistent and repeatable
positive result. A negative test result indicates the absence
of a cyanogenic glycoside, or of the specific cyanogenic
B-glycosidase, or both.

In the few instances where insufficient tissue was avail-
able for both FA paper tests using fresh leaves and sub-
sequent laboratory analysis, cyanogenesis was determined
based on the quantitative assay of freeze-dried ground
leaf tissue (as described below) by comparison with a
negative tissue control (e.g. Alstonia scholaris or Aglaia
meridionalis).

In this study, tests for cyanogenesis used approx.
1-2 gf. wt of leaves, which is larger than tissue samples
tested in previous surveys (e.g. S0mgf. wt by Lewis and
Zona, 2000; and 200 mgf. wt by Thomsen and Brimer,
1997; Buhrmester et al., 2000). According to Dickenmann
(1982) who used 500 mgf. wt tissue, a weak positive reac-
tion with FA papers, where part of the paper turns blue,
indicated approx. 2-20mg HCN kg™ f. wt, while a strong
reaction indicated >50mgHCNkg ' f.wt. These lower
values equate to just over 6-60 ug HCN g~' d. wt using a
conversion based on the mean foliar water content of
several species in this study, which was 70 %. In this
study, based on fresh leaf tests and quantitative analysis
of freeze-dried tissue from the same sample, the threshold
sensitivity of FA papers was similar, within the range
5-8ugHCN g™ 'd.wt. This threshold sensitivity of FA
papers corresponds well to the criteria of Adsersen
et al. (1988) for classifying individuals as cyanogenic,
where individuals with <93 nmol HCN g™' f. wt (approxim-
ately equivalent to 8 ugHCN g™'d. wt) were considered
acyanogenic.

Polymorphism and confirmation of acyanogenesis

For the purposes of the survey, a species was considered
cyanogenic if at least one individual produced a repeatable
and positive test result. For a few species, not all individuals
produced positive results using FA papers; therefore, some
further investigation of the polymorphism for cyanogenesis
in these species was conducted. First, to confirm the acy-
anogenic character of the individuals producing negative
results with FA papers, a greater mass of freeze-dried tissue
(100 mg) was assayed quantitatively for the evolution of
cyanide (see below) and compared with a non-cyanogenic
species, A. scholaris, as a control for baseline noise in the
assay. Based on the criteria of Adsersen et al. (1988), if
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<8ug HCN g7' d. wt was detected, then that individual was
considered acyanogenic.

Quantification of cyanogenic glycosides

The concentration of cyanogenic glycoside in plant tis-
sues was measured by trapping the cyanide (CN), liberated
following hydrolysis of the glycoside, in a well containing
IMNaOH (Brinker and Seigler, 1989; Gleadow et al.,
1998). Freeze-dried, ground plant tissue (30-50mg) was
incubated for 20-24h at 37°C with 1 mL of 0-1wm citrate—
HCI (pH 5-5). Cyanide in the NaOH well was determined
using the method of Gleadow and Woodrow (2002) adapted
from Brinker and Seigler (1989) for use with a photometric
microplate reader (Labsystems Multiskan® Ascent, with
incubator, Labsystems, Helsinki, Finland). The method is
highly sensitive; the determination of CN in NaOH is
relatively specific for cyanide, and can detect as little as
S5ugL™" (Brinker and Seigler, 1989). The absorbance was
measured at 590 nm with NaCN as the standard.

RESULTS

Survey for cyanogenesis

In total, fresh leaf material from 401 woody plant species
from 87 families was tested for cyanogenesis (Appendix).
Cyanogenesis was found in 18 species from 13 families,
representing 4-5 % of species occurring within 1200 m? of
rainforest at each of five sites. In each case, the addition of
pectinase during incubation did not result in any additional
positive results. The test with added enzyme therefore
effectively served as a replicate test for each sample. A
further two species were found to be cyanogenic but
were not included in the analysis—the non-woody Alocasia
brisbanensis, and Helicia nortoniana which occurred out-
side the plots (Table 1). The number of cyanogenic species
at each site ranged from four to 10. The cyanogenic species
ranged in life form from climbing monocotyledons such
as the supplejack, Flagellaria indica, to 30m canopy
trees such as the northern silky oak, Cardwellia sublimis.
The proportion of cyanogenic species ranged from 4-7 % in
upland rainforest at Mt Nomico, to 6-5 % in lowland rain-
forest near Cape Tribulation. Overall, cyanogenic species
accounted for 7-3 % of total basal area (range 1-2—-13-4 %).
The highest proportion was in highland rainforest on basalt
soil at Longlands Gap, while forest on rhyolite in adjacent
forest had the lowest proportion. In lowland rainforest,
the contribution of cyanogenic species to biomass was
also high, at 11-6 %, compared with 3-3 and 7-1 % at Mt
Nomico and Lamins Hill sites, respectively.

The cyanogenic species and concentrations of cyano-
genic glycosides in leaves and other plant parts are
summarized in Table 1. The foliar concentrations of cyano-
genic glycosides among species ranged from around
8ug CN g~ d. wt—the concentration below which individu-
als were considered acyanogenic based on the criteria of
Adsersen et al. (1988) and the limits of FA paper
detection—to very high concentrations in excess of several
mgCNg'd. wt (Table 1). For example, fully expanded
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leaves of numerous individuals of  Polyscias
australiana tested negative for cyanide, and contained
<8ug CN g d. wt, while others tested positive and were
in the range of 10-28 ugCN g™' d. wt. Even in the weakly
cyanogenic samples, only in very few cases did the colora-
tion of the test paper change from 12 to 24 h in a qualit-
ative sense. Individuals of numerous species had high
concentrations of cyanogenic glycosides in excess of
ImgCNg'd.wt (e.g. Mischocarpus grandissimus,
Brombya platynema and Beilschmiedia collina), and several
species contained extremely high concentrations of cyano-
genic glycosides in mature tree leaves. Notably, fully
expanded leaves from the tree species Elaeocarpus serico-
petalus, Clerodendrum grayi and Prunus turneriana had
concentrations of cyanogenic glycosides up to 5-2, 4.9
and 4-8mg CN g d. wt, respectively (Table 1).

Qualitative and quantitative variation in cyanogenesis

Intra-population variation in cyanogenic glycosides. For
the majority of species initially identified as being cyano-
genic, all individuals tested were cyanogenic; however, the
concentrations of cyanogenic glycosides varied markedly
between conspecific individuals (Table 1). For example, all
saplings and trees of B. collina at each site tested positive
for cyanogenesis, but the concentration of cyanogenic glyc-
osides in fully expanded leaves from saplings (n = 19)
ranged from 23-2 to 1263-4ug CN g~' d. wt at Mt Nomico
alone, where B. collina was most abundant. In contrast to
this quantitative phenotypic variation in cyanogenesis, con-
specific individuals of a small number of species produced
both positive and negative FA paper test results. This
apparent qualitative polymorphism was most notable in
B. platynema, a subcanopy tree species restricted to the
lowland rainforest. Within the population of B. platynema,
approx. 50% of individuals tested produced negative
FA test paper results for both young and old leaves, and
had cyanogenic glycoside concentrations in the range
0-6-6-8ugCNg'd.wt (Table 1.). The addition of
buffered pectinase during testing did not alter the qualitative
FA paper test result for any individual. Among cyanogenic
B. platynema, the concentrations of cyanogenic glyco-
sides varied over orders of magnitude from 10-5 to
1285-9ug CN g~ d. wt (Table 1).

Negative results with FA papers were obtained for two
other species, Cleistanthus myrianthus and Polyscias
australiana. Qualitative and quantitative analysis of old
leaves from individuals of these species indicated a high
frequency of acyanogenic individuals; however, unlike
B. platynema, the phenotypic expression of cyanogenesis
varied qualitatively with leaf age such that young leaves
and leaf tips from these same individuals were consistently
cyanogenic, as were reproductive tissues from C. myrianthus
(Table 1).

Even among less common species with small
sample sizes, the concentrations of cyanogenic glycosides
varied markedly between individuals. For example, in
Mischocarpus grandissimus, the concentration among
six individuals from two sites ranged from 49 to
680ugCNg'd.wt at Mt Nomico and from 637 to
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2006 ugCN g 'd.wt in lowland rainforest, and among
three individuals of the woody vine Parsonsia latifolia,
concentrations ranged from 765 to 4835ugCNg~"d. wt.
There was no detectable affect of soil type on qualitative
determination of cyanogenesis for individuals of the same
species; where cyanogenic species were found on different
substrates, all individuals tested were cyanogenic.

Intra-plant variation in cyanogenic glycoside concen-
tration. In addition to cyanogenic polymorphism, both qual-
itative and quantitative, within populations of cyanogenic
species, the concentration of cyanogenic glycosides varied
with leaf age and plant part. In all cases where tested, young
leaves or leaf tips had higher concentrations of cyanogenic
glycosides than older leaves (Table 1). In some cases, the
concentrations in young and old leaves differed by over an
order of magnitude (e.g. C. sublimis and Opisthiolepis
heterophylla; Table 1). In terms of determining the cyano-
genic phenotype of an individual, this difference between
leaves of different ages was most notable for C. myrianthus
and P. australiana. Based on FA paper tests of mature fully
expanded leaves of these species, there were frequent acy-
anogenic individuals; however, young leaves and leaf tips
sampled from the same individuals of both species routinely
tested positive for cyanogenesis. Furthermore, among
mature trees of C. myrianthus, which had low levels of
cyanogenic glycosides in old leaves (6-8 ug CN g~ ' d. wt,
i.e. considered acyanogenic), the fruit, in particular,
had higher concentrations of cyanogenic glycosides
(>800ug CN g~ ' d. wt; Table 1). Overall, few tests were
made of seeds or other reproductive tissues as part of the
survey; however, where reproductive tissues were tested
from species with cyanogenic leaves, they were typically
cyanogenic and contained higher concentrations of cyano-
genic glycosides, although the concentration varied with
the maturity of the fruit/seed. For example, the immature
seed and fruit (combined) from Prunus turneriana had
>8mgCNg 'd. wt compared with mature seed alone
(<1 mgCN g~ 'd. wt), while in R. javanica cyanogenic gly-
coside concentrations in flesh and seed of immature fruit
decreased with maturity (Table 1; Webber and Woodrow,
2004). One exception was the papery wind-dispersed seeds
of C. sublimis which yielded negligible cyanide (Table 1).

DISCUSSION
Cyanogenic species

Despite a substantial body of early work screening Austra-
lian flora, including some tropical flora, for cyanogenesis
(e.g. Petrie, 1912; Smith and White, 1918; Finnemore and
Cox, 1928; Hurst, 1942; Webb, 1948, 1949), few of the
species tested in this study had previously been tested.
Of the 18 species from 13 families found to be cyanogenic
in this study, only one, F. indica, has previously been repor-
ted as cyanogenic (Petrie, 1912). Thirteen of the cyanogenic
species are endemic to Queensland or Australia; several are
restricted to small areas within north east Queensland. For
example, Clerodendrum grayi is found only in a small area
on the Atherton Tableland (Miller et al., 2006a), while
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R. javanica occurs in a limited area within lowland rain-
forest north of the Daintree River. Cyanogenesis is reported
for the first time in the genera Beilschmiedia, Cardwellia,
Cleistanthus, Elaeocarpus, Embelia, Mischocarpus,
Opisthiolepis, Parsonsia and Polyscias. The number of
new reports at the generic level may in part reflect the
high level of endemism among the Australian tropical rain-
forest flora. In addition, several species are from families in
which cyanogenesis has been rarely reported, if at all. For
example, cyanogenesis is rare in Elaeocarpaceae,
Lauraceae, Apocynaceae, Myrsinaceae and Araliaceae
families. Following are descriptions of each cyanogenic
species (listed alphabetically by family) discussed in rela-
tion to previous reports of cyanogenesis within the relevant
taxonomic groups.

Ryparosa javanica (Blume) Kurz ex Koord. &
Valeton (Achariaceae)

Ryparosa javanica is currently the subject of taxonomic
revision (Webber, 2005). The Queensland Ryparosa sp.
currently known as R. javanica is endemic to lowland rain-
forest north of the Daintree River to Cape Tribulation, north
east Queensland. This species was found to be cyanogenic
early in this survey, and has subsequently been the focus
of extensive population-level studies of cyanogenesis
(Webber, 2005). Reports of cyanogenesis in this genus
are common; for example, R. javanica (sensu stricto) and
R. caesia are cyanogenic (Rosenthaler, 1919). Cyanogen-
esis has been reported among other genera in Achariaceae,
e.g. Hydnocarpus, Calancoba, Ceratiosicyos, Gynocardia,
Erythrospermum, Pangium and Kiggelaria (Rosenthaler,
1919; Tjon Sie Fat, 1979a; Jensen and Nielsen, 1986).
Many of these genera were previously in the Flacourtiaceae
until recent revisions saw most cyanogenic genera assigned
to the Achariaceae (Chase et al., 2002), including the tribe
Pangieae of which Ryparosa is a member. Cyanogenesis
was considered a useful taxonomic marker in Flacourtiaceae
(Spencer and Seigler, 1985), this utility being apparent in
the revision of the family (Chase ef al., 2002). All individu-
als in sizeable populations of R. javanica were cyanogenic,
and the cyanogenic glycoside in R. javanica has been
identified as gynocardin (Webber, 2005), a cyclopentenoid
cyanogenic glycoside typical of Achariaceae (Jaroszewski
and Olafsdottir, 1987). Cyanogenic glycosides derived
from valine/isoleucine have also been reported in
species formerly in the Flacourtiaceae (Lechtenberg and
Nahrstedt, 1999).

Parsonsia latifolia (Benth.) S.T.Blake (Apocynaceae)

This is the first report of cyanogenesis in the genus
Parsonsia, a genus of woody or semi-woody climbers
(130 species) distributed from Southeast Asia to Australia,
New Caledonia and New Zealand. Members of the Apo-
cynaceae family (220 genera, 2000 species) commonly have
clear or milky latex, and frequently contain alkaloids
(Mabberley, 1990; Collins et al., 1990). Parsonia latifolia
(diameter up to 9 cm) has milky white latex, and is endemic
to Australia (Forster and Williams, 1996). It is found in
lowland and highland rainforest in noth east Queensland,
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parts of New South Wales and the Northern Territory
(Hyland et al., 2003). Reports of cyanogenesis in Apocyn-
aceae and the order Gentianales are few; Gibbs (1974), who
reported negative results for Parsonsia eucalyptifolia and
P. lanceolata, found only Alstonia scholaris (L.) R.Br. to be
cyanogenic, and noted positive reports for four other
species. Tests for cyanogenesis in the Apocynaceae are,
however, apparently limited, with negative reports for
only approx. 20 species (Gibbs, 1974; Adsersen et al.,
1988; Thomsen and Brimer, 1997). In this study, leaf
samples of all ages from multiple A. scholaris trees and
seedlings gave negative FA paper results; quantitative
assaying confirmed the absence of cyanogenesis. No cyano-
genic constituents in the family have been characterized.

Polyscias australiana (F.Muell.) Philipson (Araliaceae)

This is the first report of cyanogenesis in the genus
Polyscias, a genus of approx. 100 species distributed
throughout Africa, Asia, Malesia, Australia and the Pacific
Islands. In addition, cyanogenesis is very rare in the order
Umbellales; Gibbs (1974) reported only negative results or
some doubtful positive results in a few members of
Araliaceae (Nothopanax sp. and Schefflera sp.) and the
Umbelliferac. Subsequently, only Aralia spinosa L.
(above-ground parts) has been reported as cyanogenic
(Seigler, 1976b). Polyscias australiana is often considered
a regrowth species in disturbed rainforest, and commonly
occurs at rainforest margins. Concentrations of cyanogenic
glycosides in this species were variable, and in mature
leaves were commonly less than the threshold value used
for classifying individuals as cyanogenic in this study
(<8 ug CN g~'d wt); however, the species was considered
cyanogenic on the basis of repeatable positive results with
FA papers for multiple individuals, in particular when
analysing young foliage. Interestingly, in reporting cyan-
ogenesis in A. spinosa, Seigler (1976b) noted substantial
seasonal variation, in that the individual was cyanogenic at
only one of three testing times throughout the year. Analysis
of the distribution of cyanogenic glycosides in fruit,
flowers and seasonal variation in foliar concentrations in
P. australiana would better characterize cyanogenesis
in this species.

Elaeocarpus sericopetalus F.Muell. (Elaeocarpaceae)

Elaeocarpus sericopetalus (‘Northern Quandong’) is a
small to medium sized tree endemic to tropical rainforest
within the Cook and Kennedy Districts of north eastern
Queensland. This is the first report of cyanogenesis in
the genus Elaeocarpus. Elaeocarpus sericopetalus was
the only cyanogenic species identified among eight
Elaeocarpus spp. and 11 species from the Elaeocarpaceae
family tested in this study (Appendix). The extremely high
foliar concentrations of cyanogenic glycosides (up to
52mgCNg'd.wt in mature field-grown leaves) in
E. sericopetalus rank it among the most cyanogenic tree
species ever reported. Cyanogenesis is rare within the
family Elaeocarpaceae and the order Malvales (Gibbs,
1974; Hegnauer, 1990; Lechtenberg and Nahrstedt,
1999), whereas alkaloids (e.g. indolizidine alkaloids) are
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considered common (Gibbs, 1974; Hegnauer, 1990;
Mabberley, 1990). In the Elaeocarpaceae family, cyanogen-
esis has previously been reported in only two species: the
leaves of Vallea stipularis ‘pyrifolia’ F.Ballard (Gibbs
1974), and the leaves [Greshoff (1898) cited in Hegnauer
(1973)] and the bark (Pammel, 1911; Rosenthaler, 1919) of
Sloanea sigun (Blume) K.Schum (syn. Echinocarpus
sigun), were found to be cyanogenic. Sambunigrin was
isolated from the leaves of S. sigun [R. Hegnauer and
L. H. Fikenscher, unpubl. data (1983) cited in Hegnauer
(1990)], the only previous report of a cyanogenic constitu-
ent in Elaeocarpaceae and Malvales. Characterization of the
principal foliar cyanogenic glycoside—an apparently
unusual phenylalanine-derived glycoside with an organic
acid residue—is ongoing (Miller, 2004).

Cleistanthus myrianthus (Hassk.) Kurz (Euphorbiaceae)

This appears to be the first report of cyanogenesis in
the genus Cleistanthus, which consists of 100—140 species.
Cleistanthus myrianthus is a subcanopy rainforest tree (to
7m), found in the lowland and foothills from the Daintree
River to Rossville, north east Queensland (Cooper and
Cooper, 1994). In Australia, it is classified as rare on the
basis of this limited distribution, but it is also found in
Southeast Asia and Malesia (Hyland et al., 2003). Cyano-
genesis is especially common in Euphorbiaceae (300
genera, 7500 species), and is found in many genera includ-
ing Bridelia, Euphorbia and Phyllanthus, as well as the
economically important species Hevea brasiliensis (rubber
tree) and Manihot esculenta (cassava) (e.g. Rosenthaler,
1919; Tjon Sie Fat, 1979a; Seigler et al., 1979; Adsersen
et al., 1988).

The chemotaxonomic utility of cyanogenesis, as well
as other secondary metabolites (e.g. alkaloids and terpenes),
has been demonstrated in Euphorbiaceae (Seigler, 1994).
Cyanogenic glycosides are useful at the infra-familial
level in the Euphorbiaceae (van Valen, 1978; Seigler,
1994); the species in the subfamily Phyllanthoideae typic-
ally contain the tyrosine-derived cyanogenic glycosides
dhurrin, taxiphyllin or triglochinin, while species in the
subfamily Crotonoideae (sensu Pax and Hoffman, 1931;
see van Valen, 1978), including Hevea and Manihot, pro-
duce cyanogenic glycosides derived from valine and iso-
leucine (e.g. linamarin and lotaustralin) (van Valen, 1978,
Nahrstedt, 1987; Seigler, 1994). Given this pattern, one may
predict Cleistanthus—assigned to the Phyllanthoideae—to
contain cyanogens derived from tyrosine.

Flagellaria indica L. (Flagellariaceae)

Flagellaria indica (‘the supplejack’), a leaf tendril clim-
ber with cane-like stems, is known to be cyanogenic (Petrie,
1912; Webb, 1948; Gibbs, 1974; Morley and Toelken,
1983). Young shoots were suspected of poisoning stock
in Australia (Everist, 1981), and it has also been reported
to have medicinal properties (e.g. tumour inhibition; Collins
et al., 1990). In other countries, it has been used as a hair
wash, and as a contraceptive (see Hyland et al., 2003),
but was not apparently used medicinally by aboriginal
Australians (Morley and Toelken, 1983). Interestingly,
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monocotyledons are typically characterized by cyanogenic
glycosides  biosynthetically derived from tyrosine
(Lechtenberg and Nahrstedt, 1999). Consistent with this,
the tyrosine-derived cyanogenic glycoside triglochinin
was isolated from the stem (and rhizome) of F. indica
(L. H. Fikenscher unpubl. data, cited in Hegnauer, 1966),
although meta-hydroxylated valine or isoleucine, and
leucine-derived glycosides have also been found in
monocotyledons (Nahrstedt, 1987; Lechtenberg and
Nabhrstedt, 1999).

Clerodendrum grayi Munir (Lamiaceae)

Clerodendrum grayi is a rare subcanopy tree endemic to
the northern part of Queensland, Australia (Munir, 1989).
Recent revisions of the division between Lamiaceae and
Verbenaceae families (Cantino, 1992; Wagstaff et al.,
1997, 1998) transferred the genus Clerodendrum, and others
historically in the Verbenaceae family, to the Lamiaceae
family. Cyanogenesis in Lamiaceae, and also Verbenaceae,
has rarely been reported. Even within the order Lamiales,
cyanogenesis is considered rare (Gibbs, 1974). In the
Lamiaceae, known for its culinary and medicinal herbs
[e.g. Lavandula (lavender); Mentha (mint)], typical con-
stituents are monoterpenoids, diterpenes or triterpenes, as
well as flavonoids and iridoid glycosides (Gibbs, 1974;
Hegnauer, 1989; Taskova et al., 1997). In a survey of the
flora of the Galapagos Islands, Clerodendrum molle var.
molle was found to be cyanogenic (Adsersen et al., 1988;
see also Gibbs, 1974, Tjon sie Fat, 1979a). In addition,
several species of Clerodendrum are known to be toxic
(Hurst, 1942; Webb, 1948; CFSAN, 2003); however, the
poison is not detailed.

In this study, the extremely high foliar concentrations of
cyanogenic compounds—up to 4-8mgCNg 'd.wt in
mature field-grown tree leaves—are among the highest
reported for tree leaves (Table 1). Two cyanogenic glycos-
ides were purified from the leaf tissue of C. grayi (Miller
et al., 2006a). Prunasin and its primerveroside, the rare
diglycoside lucumin (Eyjélfsson, 1971), were found in
the ratio 1:1-58 (mol:mol) (Miller et al., 2006a), the first
reported co-occurrence of these glycosides, and the first
confirmed report of lucumin in vegetative tissue (see
Thomsen and Brimer, 1997). Given the relatively rarity
of reports of cyanogenic glycosides from the Lamiaceae,
and even within the order Lamiales, it is difficult to draw
any conclusions about the biogenetic origins of glycosides
within these taxonomic groups. Refer to Miller et al.
(2006a) for a detailed discussion of cyanogenesis in
C. grayi and associated taxa.

Beilschmiedia collina B.Hyland (Lauraceae)

Beilschmiedia collina (‘the mountain blush walnut’) is a
tree species endemic to Queensland rainforest (Cooper and
Cooper, 1994). Cyanogenesis is very rare in Lauraceae
(Gibbs, 1974; Hegnauer, 1989), having only been reported
from Cinnamomum camphora and Litsea glutinosa (Gibbs,
1974), with one other species (Nectranda megapotamica)
reported to have cyanogenic glycosides but apparently
lacks the catabolic enzymes, requiring further investigation
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(Francisco and Pinotti, 2000). The Lauraceae is better
known for producing a range of alkaloids (e.g. Gibbs,
1974), and as a dominant family in the rainforest flora of
Australia has been much studied for its toxic and potentially
medicinal alkaloids (Webb, 1949, 1952; Collins et al., 1990).
Of 39 species tested in the Lauraceae family in this survey,
only B. collina was cyanogenic (Appendix). Given the
apparent rarity of cyanogenesis in the family, and even
the order Laurales, it is difficult to speculate as to the
biosynthetic precursor of the cyanogenic constituent in
B. collina. To the authors’ knowledge, only the tyrosine-
derived cyanogenic glycoside taxiphyllin has been repor-
ted in the Calycanthaceae family within the Laurales
(Lechtenberg and Nahrstedt, 1999); tyrosine-derived
glycosides are also found in Ranunculaceae in the order
Ranunculales, which is in the same subclass Magnoliidae
(sensu Cronquist, 1981) as Laurales.

Embelia grayi S.T. Reynolds (Myrsinaceae)

This is the first report of cyanogenesis in the genus
Embelia—a genus of approx. 130 species—and among
the first in the family Myrsinaceae. Furthermore, Gibbs
(1974) considered cyanogenesis to be unknown in the
order Primulales. Subsequent to Gibbs (1974), only two
reports of cyanogenesis in Myrsinaceae could be found—
for Rapanea parviflora (Kaplan et al., 1983), and for
R. umbellata, which needs confirmation as cyanogenesis
was only detected after 24h of tissue incubation
(Francisco and Pinotti, 2000). Overall, there are even a
few negative test records for the family. Embelia grayi is
a vine with diameter up to 9 cm, endemic to upland and
highland rainforest in north east Queensland. Embelia
caulialata, and three Rapanea spp., also tested here, were
not cyanogenic. The order Primulales (sensu Cronquist,
1981) is in the subclass Dilleniidae which also includes
the orders Malvales and Violales. Within the Violales,
cyanogenesis is common in the Achariaceae (including
Flacourtiaceae), Passifloraceae and Turneraceae families,
which tend to contain cyanogenic glycosides of the cyclo-
pentanoid series (Lechtenberg and Nahrstedt, 1999).

Passiflora sp. (Kuranda BH12896) (Passifloraceae)

Passiflora sp. (Kuranda BH12896) was the only species
in the Passifloraceae tested in this study. It is a vine found
in the lowland rainforests of north east Queensland; all
Australian members of the Passifloraceae are climbers or
sprawling shrubs (Morley and Toelken, 1983). Cyanogen-
esis is common within the family Passifloraceae (600
species, two genera worldwide), and the genus Passiflora
(e.g. Rosenthaler, 1919; Tjon Sie Fat, 1979a; Adsersen et al.,
1988; Olafsdottir et al., 1989). Several Australian Passiflora
spp. were reported to be cyanogenic, including P. aurantia
(Petrie, 1912; Smith and White, 1918; Webb, 1952; Gardner
and Bennetts, 1956) and the endemic P. herbertiana Lindl.
(Petrie, 1912), and implicated in poisoning stock (Smith
and White, 1918). Within Passifloraceae, cyanogenesis
has also been reported in Adenia spp. and Ophiocaulon
spp. (Rosenthaler, 1919; Tjon Sie Fat, 1979a). The specific
cyanogenic constituents may be taxonomically diagnostic at
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the infrafamilial level (e.g. occurrence of the rare glycoside
passibiflorin; Adsersen et al., 1993). Cyanogenic Passiflor-
aceae typically contain cyanogenic glycosides with
cyclopentenoid ring structures (Seigler et al., 1982;
Spencer and Seigler, 1985; Nahrstedt, 1987; Lechtenberg
and Nahrstedt, 1999), although phenylalanine-derived glyc-
osides (e.g. prunasin) have been isolated from Passiflora
edulis (Spencer and Seigler, 1983; Chassagne et al., 1996;
Seigler et al., 2002), and valine/isoleucine-derived glycos-
ides (e.g. linamarin, lotaustralin) from several Passiflora
spp. in the subgenus Plectostemma (Spencer et al., 1986).

Cyanogenesis in the Proteaceae family

Five of the 20 species tested in the Proteaceae family
were found to be cyanogenic: C. sublimis F.Muell.,
O. heterophylla L.S.Sm., Helicia australasica F.Muell,
H. blakei Foreman and H. nortoniana (F.M.Bailey)
F.M.Bailey. The latter species was opportunistically tested
as it was found only outside the plots. This is the first
formal report of cyanogenesis in the monospecific genera
Cardwellia and Opisthiolepis, while cyanogenesis has pre-
viously been reported in the genus Helicia (H. robusta;
Gibbs, 1974).

Cardwellia sublimis (‘the northern silky oak’) is the only
species in the tribe Cardwelliinae (Hoot and Douglas, 1998).
This canopy species (to 30 m), an important timber tree, is
endemic to north east Queensland, being widely distributed
throughout well-developed lowland to highland rainforest
(Hyland et al., 2003). Cardwellia sublimis was common to
all sites in this study.

Opisthiolepis heterophylla (‘the blush silky oak’) is
endemic and confined to north east Queensland, from the
Kirrama Range to Cooktown. It grows to 30 m in lowland
to highland rainforest, but is most common in upland and
highland rainforest on the Atherton Tableland (Hyland et al.,
2003). The flowers of O. heterophylla have been found to
be cyanogenic (E. E. Conn, University of California, Davis,
CA, USA, pers. comm.).

The genus Helicia (approx. 90 species) occurs through-
out Asia and the Pacific, with nine species found naturally
in Australia (Foreman, 1995). Helicia blakei (‘Blake’s silky
oak’) is endemic to north east Queensland, occurring as an
understorey tree in well-developed upland rainforest
(Hyland et al., 2003). Helicia australasica is a shrub or
tree (3—20 m) widespread throughout northern Australian
through to Papua New Guinea. It occurs as an understorey
tree in well-developed rainforest, monsoon forest and dry
rainforest (Foreman, 1995; Hyland et al., 2003). The fruit is
known to be eaten by aborigines (Foreman, 1995). Helicia
nortoniana is also an understorey tree (to 20 m), endemic
to north east Queensland, and found in well-developed
lowland and highland rainforest (Cooper and Cooper,
1994; Foreman, 1995; Hyland et al., 2003). These data
support the preliminary results of tests on dried herbarium
samples where only some samples of H. australasica and
H. nortoniana tested positive for cyanide (E. E. Conn,
University of California, Davis, CA, USA, pers. comm.).
Tests of dried herbarium samples of H. blakei, however,
gave only negative results (E. E. Conn, University of
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California, Davis, CA, USA, pers. comm.). The inconsistent
findings by Conn are probably the result of using dried
herbarium material.

Cyanogenesis is considered especially common in
the Proteaceae (Swenson et al., 1989; Lechtenberg and
Nahrstedt, 1999), known in a range of genera, but par-
ticularly in Grevillea and Hakea spp. In Australia, cyano-
genic members of the Proteaceae have been implicated in
stock poisoning (Gardner and Bennetts, 1956). Based on the
reports of Gibbs (1974) and Tjon Sie Fat (1979a), and the
study of Swenson et al. (1989) who found 44 of 155 pro-
teaceous species tested to be cyanogenic, cyanogenesis
is most widespread in the subfamily Grevilleoideae. For
example, cyanogenesis has been reported in the genera
Stenocarpus, Lomatia, Helicia, Xylomelum, Telopea,
Macadamia, Hicksbeachia, Lambertia, Grevillea and
Xylomelum (Petrie, 1912; Smith and White, 1918; Hurst,
1942; Gardner and Bennetts, 1956; Gibbs, 1974; Swenson
et al., 1989; Lamont, 1993; E. E. Conn, University of
California, Davis, CA, USA, pers. comm.), all of which
are in the Grevilloiedeae (Hoot and Douglas, 1998). Con-
sistent with this pattern, the cyanogenic genera reported
here are all in the subfamily Grevilleoideae; Cardwellia
in the subtribe Cardwelliinae (tribe Knightieae), Opisthio-
lepis in the subtribe Buckinghamiinae (tribe Embothrieae),
and Helicia in the subtribe Heliciinae (tribe Heliceae). In
contrast, there are only a few reports of cyanogenesis within
the Proteoideae subfamily; cyanogenesis was only reported
in single species of Conospermum, Petrophile and Protea
(Gibbs, 1974; Swenson et al., 1989; E. E. Conn, University
of California, Davis, CA, USA, pers. comm.).

The cyanogenic constituents, which have been identified
in comparatively few species, appear to be biogenetically
derived from tyrosine. Swenson et al. (1989) identified
the cyanogenic glycosides in eight species; leaves and
flowers of several Hakea, Leucadendron, Grevillea
and Macadamia species were found to contain dhurrin
and proteacin (see also Plouvier, 1964; Young and
Hamilton, 1966). In this regard, the identity of the cyano-
genic constituent in the monospecific genera in particular
would be interesting.

Prunus turneriana (F.M.Bailey) Kalkman (Rosaceae)

Cyanogenesis is widespread within Rosaceae (Hegnauer,
1990), and has been much studied in the subfamily
Prunoideae in particular, as it contains many cyanogenic
cultivated species [e.g. Prunus domestica L. (plum);
Armeniaca vulgaris Lam. (apricot)]. Cyanogenic Rosaceae
(in particular Prunus spp.) are also a common source of
poisoning in domestic animals (e.g. Poulton, 1983;
Schuster and James, 1988). Prunus turneriana is one of
only two Prunus species native to Australia and is a late
successional canopy tree species in the lowland and upland
rainforests of far north Queensland, Australia. The fruits of
this canopy species are known to be toxic, yet are also eaten
by cassowaries, fruit pigeons, Herbert river ringtail possums
and musky-rat kangaroos (Cooper and Cooper, 1994).
The flesh of the fruit was used raw by the Ngadjonji
people—the original inhabitants of the rainforests on
the Atherton Tablelands, north Queensland—for treating
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toothache, while the toxic kernels were processed for a
starchy food (Huxley, 2003). Despite its common name
‘Almond bark’ and phytochemical surveys of Australian
rainforest species (e.g. Webb, 1949), cyanogenesis in P.
turneriana had not previously been reported. Cyanogenic
glycosides were found to be distributed throughout all tis-
sues and, consistent with other species in the Rosaceae, are
biosynthetically derived from the amino acid phenylalanine
(Mgller and Seigler, 1999). Prunasin was identified as the
major cyanogen in leaf, stem, root and seed tissues of
P. turneriana, and amygdalin was restricted to the seed.
What was unusual about P. turneriana was the presence
of significant amounts of the (R)-prunasin epimer, (S)-
sambunigrin, in leaf, stem and seed tissue, whereas root
tissue contained only prunasin. Refer to Miller et al.
(2004) for the detailed characterization of cyanogenesis
in P. turneriana.

Brombya platynema F.Muell. (Rutaceae)

This is the first report of cyanogenesis in the genus
Brombya, which is a genus of 1-2 species endemic to
Australia (Hyland et al., 2003). Brombya platynema is
endemic to north east Queensland where it occurs as an
understorey tree in well-developed forest (from sea level
to 1100m a.s.l.) (Hyland et al., 2003). The family (150
genera, 1500 species) includes many strongly scented
shrubs and trees, and rutaceous species are known for
their terpenoids and alkaloids (Price, 1963; Gibbs, 1974;
Everist, 1981). Cyanogenesis is rare in Rutaceae, and has
only been reported in Boronia bipinnate Lindl. (leaves;
Rosenthaler, 1919), Zieria spp. (Hurst, 1942; Gibbs, 1974;
Fikenscher and Hegnauer, 1977), Zanthoxylum fagara
(Adsersen et al., 1988) and Loureira cochinchinensis
Meissa (Gibbs, 1974). Even within the order Rutales,
cyanogenesis is rare, with only a few additional definitive
reports of cyanogenesis in the Tremandraceae family
(Gibbs, 1974). The phenylalanine-derived cyanogenic glyc-
osides prunasin/sambunigrin and zierin have been isolated
from leaves of two Zieria spp. (Finnemore and Cooper,
1936; Fikenscher and Hegnauer, 1977). The rare meta-
hydroxylated cyanogenic glycoside holocalin was recently
identified as the principal cyanogen in leaves of
B. platynema; traces of prunasin and amygdalin were
also detected (Miller er al., 2006b). These data suggest
the possibility that species in this family have cyanogenic
glycosides biosynthetically derived from the amino acid
phenylalanine.

Mischocarpus grandissimus (F.Muell.) Radlk. and
Mischocarpus exangulatus (F.Muell.) Radlk. (Sapindaceae)

Two of the four species of Mischocarpus tested in this
study were found to be cyanogenic—M. grandissimus and
M. exangulatus—representing the first reports of cyanogen-
esis for the genus. Mischocarpus is a genus of 15 species
found in Asia, Malesia and Australia; nine species occur
naturally in Australia (Hyland er al., 2003). Both species
are endemic to Queensland; M. grandissimus is restricted to
north east Queensland, while M. exangulatus is also found
on the Cape York Peninsula, Queensland. Mischocarpus
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grandissimus occurs as an understorey tree in well-
developed lowland and upland rainforest (sea level to
750 m a.s.1.; Hyland et al., 2003). Similarly, M. exangulatus
(‘the red bell mischocarp’) is an understorey tree to 15m
found in well-developed lowland and highland rainforest
(sea level to 1100m a.s.l.; Cooper and Cooper, 1994;
Hyland er al., 2003). These were the only cyanogenic
species identified among the 29 species in the Sapindaceae
family tested in this study (Appendix). Cyanogenesis
is known in the Sapindaceae family; however, the
family is best known for cyanolipids in the seed oils of
numerous species (e.g. Alectryon spp., Allophylus spp.,
Cardiospermum spp., Sapindus spp., Paullinia spp. and
Ungnadia speciosa) (Mikolajczak et al., 1970; Seigler
et al., 1971; Gowrikumar et al., 1976; Seigler and
Kawahara, 1976). There are only a few reports of
cyanogenesis in  Australian  indigenous = members
of Sapindaceae—for Dodonaea spp. (Hurst, 1942; Webb,
1949) and Alectryon spp. (Smith and White 1918;
Finnemore and Cooper, 1938)—and, with the exception
of Heterodendrum oleifolium Desf. [syn. Alectryon oleifo-
lius (Desf.) S.Reyn], the cyanogenic constituents in these
species have not been characterized. In addition to cyanol-
ipids in the seeds, leucine-derived cyanogenic glycosides
have been characterized from vegetative parts of sapin-
daceous species (Seigler et al., 1974; Hibel and
Nahrstedt, 1975, 1979; Nahrstedt, and Hiibel, 1978).

Further findings

Alocasia brisbanensis (Araceae) was also found to be
cyanogenic, consistent with reports of cyanogenesis in
numerous congeneric species (Rosenthaler, 1919; Tjon
Sie Fat, 1979a). However, as a herb, it was not included
in the analysis. The tyrosine-derived cyanogenic glycoside
triglochinin has been isolated from the closely related
A. macrorrhiza (Nahrstedt, 1975).

There were several findings which contradicted previous
reports for species. In addition to negative results for
A. scholaris noted above, Eupomatia laurina (Eupoma-
tiaceae) was reported to be ‘doubtfully cyanogenic’ and
Cananga odorata (Annonaceae) cyanogenic by Gibbs
(1974), but neither species was found to be cyanogenic
in this study (based on repeated tests of four and two indi-
viduals, respectively). Similarly, reports of cyanogenesis in
fruit and leaves of the Australian endemic Davidson’s plum
(Davidsonia pruriens) (Petrie, 1912; Rosenthaler, 1929)
were not corroborated, both mature leaves and fruit testing
negative in this study. Gibbs (1974) also only found neg-
ative results for leaves of D. pruriens. In addition, negative
test results for cyanogenesis in this study corroborate pre-
vious negative reports for Neolitsea dealbata (syn. Litsea
dealbata), Cayratia acris, Morinda jasminoides and Sarco-
petalum harveyanum (Gibbs, 1974; Appendix). A screening
of Australian Proteaceae family, conducted primarily using
dry herbarium material, was carried out by E. E. Conn
(University of California, Davis, CA, USA, pers. comm.)
and included several species tested in this study. As noted
above, Conn had some inconsistent, and possibly therefore
inconclusive, results for a number of species, which were
confirmed by fresh sampling in this study. One of eight
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samples of Musgravea heterophylla gave a positive reaction
after 12h in Conn’s survey, a species which was not found
to be cyanogenic here. Further testing of M. heterophylla
is warranted. As far as could be discerned, the majority of
species tested in this study had not previously been tested,
despite numerous screenings of Australian and Queensland
plants, most notably by Webb (1948, 1949).

General findings: frequency of cyanogenesis

Of 401 species from 87 families tested in the survey,
18 (4-5%) species from 13 families were cyanogenic.
The proportion of cyanogenic species at the sites ranged
from 4-7 to 6-5 %, values similar to the frequency of cyano-
genic species found in a substantial survey of woody species
in Costa Rican rainforest (Thomsen and Brimer, 1997)—the
only previous study to report the frequency of cyanogenesis
standardized with respect to plant size (dbh >10cm) and
forest area (7 x 1 ha plots). Overall, Thomsen and Brimer
(1997) found that 4-0% (range 2-1-5-7% for plots) of
401 species from 68 families were cyanogenic, and that
cyanogenic stems (dbh = 5cm) accounted for 3% of
total basal area (range 1-6-5-1 %). Here, the overall propor-
tion of total basal area in cyanogenic stems was 7-3 % and
ranged from 1-2 to 13-4 %. The highest proportions were in
highland rainforest on basalt soil (13-4 %) and in lowland
rainforest (11-6 %). Highland rainforest on rhyolite had the
lowest proportion.

Overall, at a community level, there are few studies with
which to compare frequencies of cyanogenesis reported
here for tropical rainforest in north east Queensland. In
the first instance, there have been few studies in tropical
systems, but also, the screening methodology varies
depending on the research question being addressed, be it
taxonomic (e.g. examining chemical differences in relation
to proposed phylogenetic relationships) or ecological
(e.g. the role of secondary compounds in plant—animal inter-
actions). For example, while the survey of Thomsen and
Brimer (1997) was standardized with respect to plant size
and forest area, the few surveys in other tropical systems
have focused on plant-animal interactions, and have not
screened in a standardized fashion. Only 2-3 % (one species)
was found to be cyanogenic in the screening of >90 % of the
flora (n =43 species) in a species-poor seasonal cloud forest
in India (Mali and Borges, 2003). In contrast, in a survey
examining the frequency of cyanogenesis in relation to
environmental factors and insect density along a transect
from the shoreline to an inland lagoon in a neotropical
woodland (‘restinga’), Kaplan ez al. (1983) found 25 species
(23 %) of 108 species screened to be cyanogenic. They also
reported variable test results for a further 49 species (for n =
2-16 individuals), elevating the proportion of cyanogenic
species to 68 %, a value which requires further examination
before interpretation, as the sampling strategy (e.g. plant
size, random sampling strategy, life form and transect area)
was unclear, and some uncertainty with regard to picrate
paper test results was expressed by the authors (Kaplan
et al., 1983).

Adsersen et al. (1988) compared frequencies of cyano-
genesis within the endemic and non-endemic flora of the
Galapagos Islands, two floras subject to different suites of
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herbivores over a period of time. They screened fresh and
herbarium specimens of a significant proportion (65 %) of
the flora from the Archipelago, and reported 8-1% of
endemic species, and 5-3% of native species—those
which also occur on the South American mainland—to
be cyanogenic. Interestingly, they also reported a further
22 % of native species and 30 % of endemic species to
release cyanide in the presence of a crude mix of [-
glycosidases (including 5 % B-glucuronidase from snails),
suggesting that a large number of species contain cyano-
genic glycosides but lack the catabolic B-glycoside enzyme.
This contrasts with the findings of several other studies
where the addition of non-specific B-glycosidases or
pectinase during qualitative testing did not alter the fre-
quency of positive results (e.g. Petrie, 1912; Thomsen
and Brimer, 1997; Buhrmester et al., 2000; Lewis and
Zona, 2000; but see Conn et al., 1985). Similarly, in this
study, all samples were spontaneously cyanogenic without
the addition of pectinase from Rhizopus spp., indicating
that non-cyanogenic individuals probably lacked both the
cyanogenic glycoside and B-glycosidase, or possibly that
pectinase was not able to catalyse the cyanogenesis in these
species. It is perhaps noteworthy that the greater frequency
of cyanogenesis reported by Conn et al. (1985) in response
to the addition of B-glycosidase (emulsin) was in a survey
solely of the genus Acacia, indicating that such a response
may vary among taxa.

It is important to note that the frequencies reported in
all of these surveys were apparently based on the testing of
single specimens of the vast majority of species (Adsersen
et al., 1988; Thomsen and Brimer, 1997; Mali and Borges,
2003). Similarly, while the present study aimed to test at
least three individuals of each species in duplicate (i.e. with
and without added enzyme), only one individual of many
species was encountered (Appendix). Furthermore most
species here were also tested in both wet and dry seasons.
A range of studies report variable positive and negative test
results among sample sizes as small as n = 2 (e.g. Kaplan
et al., 1983; Thomsen and Brimer, 1997). Given such poly-
morphism for cyanogenesis (see also Aikman et al., 1996),
the reported frequencies in these surveys may underestimate
overall the actual proportion of cyanogenic species in plant
communities. The reported frequency of cyanogenesis may
also vary with the plant part tested. In the Costa Rican study,
Thomsen and Brimer (1997) reported a greater frequency of
cyanogenesis among reproductive plant parts than leaves,
as did Buhrmester et al. (2000) in populations of Sambucus
canadensis (elderberry) in Illinois. Consistent with that
trend, individuals of species with weakly cyanogenic leaves,
including some which produced negative FA paper results,
had higher concentrations of glycosides in flowers or fruits;
however, overall, only a small number of reproductive
tissues were tested, so limited comparison can be drawn
(Table 1).

The frequency of cyanogenesis varies between
taxonomic groups and with life form. Cyanogenesis is con-
sidered especially common in some plant families (e.g.
Rosaceae, Euphorbiaceae, Passifloraceae and Proteaceae;
Lechtenberg and Nahrstedt, 1999), and rare or absent in
others (e.g. Lauraceae and Araliaceae; Gibbs, 1974;
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Hegnauer, 1989), a trend which may in part reflect differ-
ential intensity of testing among taxonomic groups. In this
study, the frequency of cyanogenesis among the dominant
plant families varied. In the Proteaceae family, five of
20 (25%) species were cyanogenic, while two of 29
(6:9 %) species in the Sapindaceae, and one of 39 (2-5 %)
species in the Lauraceae were cyanogenic (Table 1). In a
screening of Australian Acacia, 6-9 % of 360 species were
cyanogenic (Conn et al., 1985). Cyanogenesis appears to be
rare among palms; only two species (1-2 %) of 155 species
of palms (108 genera) were found to be cyanogenic
(Lewis and Zona, 2000). No cyanogenic palm species
were identified in this study.

Concentrations of cyanogenic glycosides

Several of the 18 cyanogenic species detected in this
study contained concentrations of cyanogenic glycosides
among the highest reported for leaves of woody species.
Most notably, tree species E. sericopetalus, C. grayi and P.
turneriana had foliar concentrations of cyanogenic glycos-
ides up to 52, 49 and 4-8mgCN g ' d. wt, respectively
(Table 1). Similarly, Webber (1999) recorded concentra-
tions up to 5 mg CN g~' d. wt in the tree species R. javanica;
individuals of that species occurring within the survey
area of this study had a lower mean concentration of
1-8mgCN g'd.wt (Table 1). These high concentrations
are substantially greater than the majority of values reported
for foliage from a range of tropical and temperate taxa. For
example, concentrations up to 1-1mgHCN g™' d. wt were
reported in the tropical shrub Turnera ulmifolia (Shore
and Obrist, 1992; Schappert and Shore, 1999), while the
highest concentrations in naturally occurring populations of
Australian Eucalyptus spp. were 2-59mg CN g ' d. wt and
3-16mgCN g ' d. wt for E. cladocalyx and E. yarraensis,
respectively (Gleadow and Woodrow, 2000a; Goodger
and Woodrow, 2002). Foliar concentrations of between
1-66 and 3-78 mgHCN g 'd.wt have been recorded in
cultivated Prunus spp. (Santamour, 1998). To our know-
ledge, possibly the highest foliar cyanogenic glycoside
concentration among naturally occurring woody species
was reported in the tropical proteaceous species Panopsis
costaricensis by Thomsen and Brimer (1997), who meas-
ured 2150 mg HCN kg™ f. wt (approximately equivalent to
7-2mg HCN g~ ' d. wt using a conversion based on the mean
foliar water content of several species in this study, which
was 70 %). The age of the leaves analysed was not specified,
however, and it should also be noted that this value was
determined using picrate papers and reflectrometry, a less
dependable method more sensitive to the presence of
interfering substances (Brinker and Seigler, 1989).

Assessing the ecological significance of the range
of cyanogenic glycoside concentrations recorded here is
difficult. While the high concentrations in several species
(e.g. >2mg CN g~ 'd. wt; Table 1) would almost certainly
constitute toxic levels important in defence—plants with
>600 ug HCN ¢~ ' d. wt are considered potentially danger-
ous to livestock, for example (Haskins e al., 1987)—the
ecological significance of lower concentrations (e.g. approx.
8-50ug CN g~ ' d. wt) is harder to determine. This reflects
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the fact that despite the well-documented effectiveness of
cyanogenesis in defence against generalist herbivores
(e.g. Jones, 1998; Gleadow and Woodrow, 2002), overall
there is no known particular concentration at which
cyanogenic compounds are effective in herbivore deter-
rence. This is in part because unfortunately many herbivory
studies only report the presence or absence of cyanogenesis,
and not the actual concentrations of cyanogenic glyc-
osides. Moreover, the efficacy of cyanogenesis as a
defence depends not only on the concentration of cyano-
genic glycosides, but also on the physiology, morphology
and behaviour of the consumer (Gleadow and Woodrow,
2002).

Intra-plant variation in cyanogenic glycoside content

In tropical forests, it is estimated that up to 70 % of a leaf’s
lifetime damage occurs while expanding (Coley and Barone,
1996). This differential intensity of herbivory among old
and young leaves, and the frequent observation that defence
compounds tend to be concentrated in plant tissues of higher
value to reproduction or growth (e.g. young leaves) is sum-
marized in the Optimal Allocation Theory (OAT) of
defence. This theory predicts that the most vulnerable
and valuable plant parts—those susceptible to attack and
most likely to contribute to growth and reproductive fitness
such as reproductive structures and young leaves—will be
more defended (McKey, 1974; Rhoades, 1979).

Results here add to the already substantial body of work
on mostly temperate cyanogenic species consistent with
the predictions of the OAT (e.g. Martin et al., 1938;
Dement and Mooney, 1974; Cooper-Driver et al., 1977;
Shore and Obrist, 1992; Dahler et al., 1995; Thomsen
and Brimer, 1997; Gleadow et al., 1998; Gleadow and
Woodrow, 20000). In all species where young leaves
were sampled, they contained significantly higher concen-
trations of cyanogenic glycosides than old leaves. This
trend was most apparent in species that had low cyanogen
content in old leaves (e.g. C. sublimis, C. myrianthus,
O. heterophylla and P. australiana) (Table 1). Moreover,
in some cases, individuals of these species appeared only to
invest in cyanogenic glycoside defence in young leaves;
acyanogenic old leaves were seemingly reliant more on
physical toughness. Thus, leaf age is an important consid-
eration when assigning the cyanogenic phenotype.

Again consistent with the OAT, reproductive tissues
such as floral buds, flowers and fruits/seeds tended to
have high total cyanogen content (Table 1). This pattern
has been commonly reported among cyanogenic species
(e.g. Spencer and Seigler, 1983; Selmar et al., 1991;
Selmar, 1993bH; Thomsen and Brimer, 1997; Webber,
1999). One notable exception to this was the low to negli-
gible concentrations of cyanogenic glycosides in mature
seeds of C. sublimis; unlike the fleshy seeds of many rain-
forest species, C. sublimis seeds are dry and papery. The
absence of cyanogenesis in mature seeds of proteaceous
Grevillea spp. was reported by Lamont (1993) in species
with cyanogenic foliage and flowers. The higher concentra-
tions in floral tissues of C. sublimis is consistent with pre-
vious reports for proteaceous species which tend to have
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high concentrations of cyanogenic glycosides in flowers,
while leaves may have low total cyanogen content or be
acyanogenic (e.g. Smith and White, 1918; Tjon Sie Fat,
1979a; Lamont, 1993).

Intra-population variation in cyanogenic glycoside content

All individuals of the majority of species were cyano-
genic, albeit with low concentrations of cyanogenic
glycosides in some instances. Negative results with FA
papers for old leaves were only obtained for individuals
of three of the 18 cyanogenic species. In the population
of one of these species, B. platynema, 50 % of individuals
were determined to be acyanogenic, with cyanogenic gly-
coside concentrations much less than the 8 ug CN g~ ' d. wt
threshold. The two other exceptions were C. myrianthus
and P. australiana. Unlike B. platynema, cyanogenesis in
individuals of these species varied qualitatively with leaf
age and plant part. Thus, assigning the acyanogenic pheno-
type in these species was problematic.

This developmental trend towards differences in
expression of cyanogenic potential has been reported pre-
viously; cyanogenesis is known be affected by plant age,
growth phase, as well as the plant part used (Jones, 1972;
Gibbs, 1974; Seigler, 1991). Consequently, as noted earlier,
studies have reported a greater frequency of cyanogenesis
when testing reproductive tissues, young foliage and shoots
compared with old leaves (e.g. Gibbs, 1974; Aikman et al.,
1996; Thomsen and Brimer, 1997; Buhrmester et al., 2000;
Mali and Borges, 2003). These findings emphasize the
importance of only comparing leaves of a similar age
when classifying individuals according to the presence or
absence of cyanogenesis.

Aside from the three species mentioned above, no
acyanogenic individuals were identified in populations of
other cyanogenic species. While the small sample sizes for
most species reduced the likelihood of encountering an
acyanogenic individual, even within populations of the
more abundant species such as B. collina (n = 46 all
sites), C. sublimis (n = 31 at all sites) and R. javanica
(n = 249; Webber, 1999), no acyanogenic individuals
were detected. In the latter example, the quantitative screen-
ing of >800 individuals of R. javanica failed to detect an
acyanogenic individual in several distinct populations
(Webber, 2005). This number (800) was substantially
greater than the number of individuals predicted by
Gleadow and Woodrow (2000a) and Goodger et al.
(2002) (n = 95-100) that would need to be sampled to
capture an acyanogenic individual assuming a similar gen-
etic system for cyanogenesis to Trifolium repens (Hughes
et al., 1988) and an estimate of the rarity of a species (or
polymorph) (McArdle, 1990). The floristic heterogeneity of
the rainforest makes sampling large populations challen-
ging; it is noteworthy, however, that others have detected
polymorphism for cyanogenesis in tropical studies based
on very small sample sizes (e.g. n = 2) (Kaplan et al.,
1983; Thomsen and Brimer, 1997). These acyanogenic
morphs, determined only by indicator paper tests in these
studies, were not verified by quantitative assay as for
B. platynema here.
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Conclusions

In summary, the findings of this survey indicate that
cyanogenesis is an important, yet little studied, chemical
defence in tropical rainforests. The identification of specific
cyanogens in but a few of the cyanogenic species first repor-
ted here has yielded novel findings. Given the large number
of new reports for species belonging to plant families
or orders in which cyanogenesis has been little reported,
the ongoing characterization of cyanogenic constituents in
these species will potentially be of both phytochemical and
chemotaxonomic significance. In addition, preliminary data
on intra-population variation in cyanogenesis here suggest
that ontogenetic variation in cyanogenesis, and polymorph-
ism for cyanogenesis merit further investigation in tropical
rainforest species.
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APPENDIX

Summary of all species tested for cyanogenesis within
6 x 200m? plots at five sites in upland/highland (U) or
lowland (L) tropical rainforest, on sites contrasting in
soil type: basalt sites at Lamins Hill (B1) and Longlands
Gap (B2), and sites on granite at Mt Nomico (G), on rhyolite
at Longlands Gap (R) and on metamorphic substrate near
Cape Tribulation (M). Species are listed in alphabetical
order. Life forms: tree (T), shrub (SH), herb (H), vine (V),
treefern (TF), palm (P) and hemi-epiphyte (HE). The results
(+ or —) for tests using Feigl-Anger papers and approx.
1gf.wt leaf tissue, with and without the addition of
pectinase (+/— enz) for n individuals of each species are
listed. All tests were carried out using most recently fully
expanded leaves and in most instances also using young
leaves. In some cases, leaf tips (tips), only a few fruit
(ft) or flowers (flwr) were tested. Previous findings for
species and in some cases genera are noted (e.g. Proteaceae
species tested by E. E. Conn, University of California,
Davis, CA, USA, pers. comm. based on herbarium speci-
mens). Species included in phytochemical screenings of
Queensland rainforest taxa (alkaloids, CN; Webb, 1948,
Webb, 1949) are noted, most were not tested for CN
(DNT). Canopy species or rare species for which no sample
was obtained were included in floristic analysis, but were
not tested for cyanogenesis (DNT). Lodgement numbers at
Brisbane (BRI) and The University of Melbourne (MELU)
herbaria are given.
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