Skip to main content
. 2010 Jan;82(1):95–102. doi: 10.4269/ajtmh.2010.09-0247

Table 4.

Forward stepwise models predicting annual pet cases (square root transformed)*

Model coef P var P model R2 AIC df Link OV test Het test
Model 1: Regress pet (square root transformed) on
0.0001 0.436 95.13 2 0.13
Surveillance 1991 2.2 0.000
Model 2: Regress pet (square root transformed) on
< 0.0001 0.520 87.35 3 0.66 0.79 0.53
Surveillance 1991 2.13 0.000
1 yr lag precip 0.207 0.013
Model 3: Regress pet (square root transformed) on
< 0.0001 0.658 72.71 4 0.35 0.75 0.94
Surveillance 1991 2.17 0.000
1 yr lag precip 0.29 0.000
3 yr lag > 27°C 0.11 0.002
Model 4: Regress pet (square root transformed) on
< 0.0001 0.749 63.33 5 0.49 0.32 0.14
Surveillance 1991 1.89 0.000
1 yr lag precip 0.36 0.000
3 yr lag > 27°C 0.09 0.006
4 yr lag winter temperature maxium 0.27 0.009
*

The final model included a dichotomized surveillance variable (0 = pre-1991), 1 year lagged annual average precipitation (precip), 3 year lagged total degrees over 27°C, and 4 year lagged winter temperature maximum. Models were compared by Akaike information criterion (AIC) and R2 and tested for validity using a link test, omitted variable test (OV test), and for heteroskedasticity (Het test). Winter spans the months of January through April.