Table 4.
Model | coef | P var | P model | R2 | AIC | df | Link | OV test | Het test |
---|---|---|---|---|---|---|---|---|---|
Model 1: Regress pet (square root transformed) on | |||||||||
0.0001 | 0.436 | 95.13 | 2 | – | – | 0.13 | |||
Surveillance 1991 | 2.2 | 0.000 | |||||||
Model 2: Regress pet (square root transformed) on | |||||||||
< 0.0001 | 0.520 | 87.35 | 3 | 0.66 | 0.79 | 0.53 | |||
Surveillance 1991 | 2.13 | 0.000 | |||||||
1 yr lag precip | 0.207 | 0.013 | |||||||
Model 3: Regress pet (square root transformed) on | |||||||||
< 0.0001 | 0.658 | 72.71 | 4 | 0.35 | 0.75 | 0.94 | |||
Surveillance 1991 | 2.17 | 0.000 | |||||||
1 yr lag precip | 0.29 | 0.000 | |||||||
3 yr lag > 27°C | 0.11 | 0.002 | |||||||
Model 4: Regress pet (square root transformed) on | |||||||||
< 0.0001 | 0.749 | 63.33 | 5 | 0.49 | 0.32 | 0.14 | |||
Surveillance 1991 | 1.89 | 0.000 | |||||||
1 yr lag precip | 0.36 | 0.000 | |||||||
3 yr lag > 27°C | 0.09 | 0.006 | |||||||
4 yr lag winter temperature maxium | 0.27 | 0.009 |
The final model included a dichotomized surveillance variable (0 = pre-1991), 1 year lagged annual average precipitation (precip), 3 year lagged total degrees over 27°C, and 4 year lagged winter temperature maximum. Models were compared by Akaike information criterion (AIC) and R2 and tested for validity using a link test, omitted variable test (OV test), and for heteroskedasticity (Het test). Winter spans the months of January through April.